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Abstract: The investigation of a series of secondary aromatic nitramines was performed to reveal the
impact of incremental methylene groups on the stability, shock impulse, and energetic properties of
these compounds. Becke’s three-parameter hybrid functional approach with non-local correlation
provided by Lee, Yang, and Parr and a cc-pVTZ basis set was used to obtain the geometry, total energy,
and heat of formation of the most stable conformers of these aromatic nitramines. These parameters
were used to evaluate the density, resistance to shock stimuli, detonation pressure, and velocity of the
nitramines under study. Referring to the results obtained, we concluded that the thermal stability and
resistance to shock stimuli of the compound investigated was directly CH2 chain length-dependent,
while their energetic- properties, such as detonation pressure and velocity, were worsened due to this
chain increase. We also found that the stability of the compounds increases more significantly than
the worsening energetic properties of aromatic nitramines. The results obtained reveal that in some
cases the number of CH2 in the chain should be smaller than three so that the explosive properties of
the compounds under study would not be worse than TNT.

Keywords: aromatic nitramines; methylene group; energetic properties; stability; resistance to
shock stimuli

1. Introduction

High-energy materials are a class of materials with a high amount of stored chemical
energy that can be released [1–10]. Various types of high energy materials (HEMs) are used
for civil and military purposes due to their unique properties [11–16]. Most of currently
known popular HEMs contain in their structures three typical, so called, explosoforic
groups: NO2 (nitro), ONO2 (nitrate), and >N-NO2 (nitramine) [17–21]. The last type of en-
ergetic compounds, “nitramines”, can be divided into two subgroups: primary nitramines
(R-NH-NO2) and secondary nitramines (R1R2N-NO2) [11,12,22–31]. Thus, many high-
energy materials are similar in that they mostly contain nitro groups [1,3,14,19,32–35], but
they can have very different properties that are substitution depended [23,36,37]. For exam-
ple, primary nitramines, and their typical representatives methylnitramine (CH3-NHNO2)
and ethylene dinitramine (O2NNH-CH2CH2-NHNO2, EDNA), possess good energetic
characteristics and both are powerful explosives [2,8,9,26,38]; however, from the practical
point of view, they suffer from poor thermal stability and high shock sensitivity [39–50].
Moreover, due to the acidic nature of the proton (NH-NO2), primary nitramines are com-
paratively strong organic acids, and they can induce corrosion for metals [28,47,51–53].
While nitramines have long been used as powerful explosives, their poor thermal stability
and high shock sensitivity have limited their practical applications. As such, there is a
growing interest in exploring the potential of nitramines, which possess more favorable
energetic properties and improved stability.
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As the demand for high-energy materials continues to grow, scientists have focused
on the search for high-energy materials with a combination of properties such as safety,
reliability, stability, cost-effectiveness, and eco-friendliness; i.e., there is a rising interest in
exploring the potential of secondary nitramines, which possess more favorable energetic
properties and improved stability [4,9,12,17,24,53]. To approach their goal, the synthesis of
energetic metal complexes, the modification of the existing primary HEMs with insensitive
materials, coordination polymerization, etc., are performed [22,23,45,54,55]. However, there
remains much to be understood about the fundamental chemistry behind these compounds
and their properties, particularly in the case of secondary nitramines.

This study is dedicated to the investigation of energetic-property peculiarities of some
secondary nitramines. More strictly, we have selected for the current theoretical inves-
tigation a series of secondary aromatic nitramines, possessing as the main substituents
traditional 2,4,6-trinitrophenyl moiety and variating lengths of the CH2 (methylene) chain,
attached to the nitramine group nitrogen, aiming to improve the stability and resistance to
shock stimuli and to identify the optimal chain length for maximizing both their energetic
properties and stability. We carried out this investigation because there is a lack of informa-
tion on the dependence of the energetic properties of the aromatic nitramines on the -CH2
chain length. The results of our study will indicate how long the -CH2 length should be in
order that the stability and resistance to shock stimuli of the aromatic nitramines would be
high along with energetic properties. The insight gained from this research could pave the
way for the development of new and improved high-energy materials in the future.

2. Materials and Methods

At least two different geometric structures of the compounds under study were
modeled to obtain the most stable conformer by using the Berny optimization without
any symmetry constraints (all bond’s length, angles, and dihedral angles are changed).
The vibration frequencies analysis was performed so as to be sure that the equilibrium
point was found. The results of the comparison of the total energy allowed us to select
the most stable conformers for further study. Becke’s three-parameter hybrid functional
approach with non-local correlation provided by Lee, Yang, and Parr (B3LYP) and the cc-
pVTZ basis set implemented in a GAUSSIAN package was applied in our studies [56–58].
This approach described well the geometric and electronic structure of various molecules
and their derivatives [59–67]. To predict the stability and sensitivity of the materials and
foresee how these properties are changed due to various modifications, we calculated and
compared the binding energy per atom, chemical hardness, softness, electronegativity, and
hardness index [68,69]. The oxygen balance was calculated, too.

The density of the materials under investigation was obtained by both approaches im-
plemented in the ACD/Labs program as suggested by M.S. Keshavarz to avoid unexpected
errors [70,71]. In the ACD/Labs program, the density is equal to the division of molecular
weight from molar volume. Molar volume was calculated by molar division from additive
increments. The additive atomic increments were obtained using a database implemented
in this program.

The detonation velocity was also calculated by using several empirical approaches de-
scribed in [72]. The Equations for the evaluation of this parameter are given below. We used
these various approaches because there is no possibility to predict which of them is more
accurate for the compound under study. Even though there are other methods to assess
detonation velocities, these methods are also imprecise and necessitate fixed parameters.
On the other hand, if we use the same approach to determine the detonation velocities of all
the molecules under investigation, we can ensure that the statistical errors in the velocities
for each molecule will be similar. This allows us to compare the detonation velocities of the
compounds studied here, regardless of the model used to compute them, and subsequently
rank those molecules. Moreover, the data obtained by different approaches allow us to
reveal general features.
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When the detonation velocity is known, its pressure can be evaluated as follows:

P(kbar) = 15.58 (D ρ/(1.01(1 + 1.30 ρ))2

where D is the detonation velocity and ρ is the density of the compounds. A detailed
description of the methodology used to evaluate and interpret the results is presented in
our paper [36]. The main points of the methodology are as follows:

• The lowest value of total energy indicates the most stable conformers for further study;
• A higher value of the binding energy per atom shows higher thermal stability;
• Obtaining larger values of the HOMO–LUMO gap and chemical hardness points to

increasing chemical stability;
• A low chemical softness value denotes a high tendency of the molecule to degrade;
• A higher electronegativity reflects the higher tendency of a compound to form a bond;
• A high negative value of oxygen balance exhibits a low sensitivity of an explo-

sive molecule to shocks. Oxygen balance also expresses the degree to which an
explosive can be oxidized and provides information on the strength and brisance of
high-energy materials;

• A low value of the impact sensitivity reveals a low resistance to impact;
• The hardness index indicates the resistance to indentation and deformation under

mechanical stress and durability. A higher value indicates higher resistance.

It is important that the calculated detonation velocity of Tetryl coincides well with
that of 7.59–7.7 km/s presented by other researchers, which indicates the reliability of the
approaches used for our study [73–77].

3. Results

As is mentioned above, the density of the materials under study was calculated using
two approaches. To simplify the communications, we use indexes I and II to denote
results obtained when the density value used was calculated by ACD/Labs and the M.S.
Keshavarz approach, respectively. The obtained densities are presented in Appendix A.

We separated our investigated compounds into three groups to foresee the influence
of CH2 chain length on the energetic properties of Tetryl and to obtain whether the main
features obtained remain when this compound is substituted by -NH2. The first group
(a) consists of Tetryls with different -CH2 chain lengths (n = 1–5) [(2,4,6-trinitrophenyl-
(O2N)N(CH2)n H]. Bis-aromatic nitramine homologs of chain length variation (CH2)n of
[(2,4,6-trinitrophenyl-N(NO2)]2(CH2)n (n = 1–5) joined per different lengths of the -CH2
chain belong to the second group (b). The third group (c) is formed like the first one, but in
this case, Tetryl is substituted by -NH2, i.e., 3-Amino derivatives of chain length variation
N(CH2)n (n = 1–5) analogs of 2,4,6-trinitrophenyl-N-nitramine were investigated. The
details of the compounds and their chemical composition are presented in Appendix B.
The parameters revealing the chemical and thermal stability are presented in Table 1.

To evaluate the resistance to impact, the oxygen balance [78] and impact sensitivity
were calculated. The impact sensitivity is obtained as follows:

logh1 = (11.76a + 61.72b + 26.89c + 11.48d)/M

logh2 = (47.33a + 23.50b + 2.357c − 1.105d)/M

where a, b, c, and d indicate the number of C, H, N, and O atoms, respectively, and M is the
molar mass of compounds [79–81]. The results achieved are presented in Table 2.
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Table 1. The parameters describing the chemical and thermal stability of the compounds belonging
to. (a) Homologous aromatic N-nitramines, tetryl derivatives [(2,4,6-trinitrophenyl-(O2N)N(CH2)n

H, n = 0–5]. (b) Bis-aromatic homologs of chain length variation (CH2)n of [(2,4,6-trinitrophenyl-
N(NO2)]2(CH2)n, (n = 1–5)]. (c) 3-Amino derivatives of tetryl with chain length variation [(3-amino-
2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 1–5] homologs. The results are discussed in the next
section of this paper.

(a)

Compound Binding Energy per Atom, eV Hardness, eV Softness, eV Electronegativity, eV Hardness Index Y

2,4,6-Trinitrophenyl-N-nitramine 4.344 2.222 0.225 6.441 0.90
Tetryl 4.835 2.171 0.230 6.193 0.89

Ethyltetryl 5.339 2.130 0.235 6.127 0.89
Propyltetryl 5.841 2.111 0.237 6.095 0.89

Propyltetryl 1 5.840 2.109 0.237 6.119 0.89
Butyltetryl 6.396 2.161 0.231 6.183 0.89
Amyltetryl 6.845 2.160 0.232 6.173 0.89

(b)

Compound Binding Energy per Atom, eV Hardness, eV Softness, eV Electronegativity, eV Hardness Index Y

Bis-tetryl-CH2 9.233 2.191 0.228 6.545 0.90
Bis-tetryl-CH2CH2 9.769 2.098 0.238 6.375 0.89

Bis-tetryl-CH2CH2CH2 10.305 2.071 0.241 6.375 0.88
Bis-tetryl-CH2CH2CH2CH2 10.299 2.191 0.228 6.545 0.90

Bis-tetryl-CH2CH2CH2CH2CH2 11.362 2.072 0.241 6.256 0.88

(c)

Compound Binding Energy per Atom, eV Hardness, eV Softness, eV Electronegativity, eV Hardness Index Y

3-Amino-tetryl 5.207 2.130 0.253 6.127 0.86
3-Amino-tetryl 1 5.207 1.984 0.252 5.913 0.87

3-Amino-N-ethyltetryl 5.709 1.918 0.261 5.872 0.86
3-Amino-N-propyltetryl 6.209 1.917 0.261 5.876 0.86
3-Amino-N-butyltetryl 6.712 1.984 0.252 5.913 0.87
3-Amino-N-amyltetryl 7.213 1.894 0.264 5.858 0.86

1 denotes the other conformer of the Propyltetryl obtained by us.

Table 2. The parameters describing the resistance to the impact of the compounds belonging (a) Ho-
mologous aromatic N-nitramines, tetryl derivatives [(2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 0–5].
(b) Bis-aromatic homologs of chain length variation (CH2)n of [(2,4,6-trinitrophenyl-N(NO2)]2(CH2)n,
(n = 1–5)]. (c) 3-Amino derivatives of tetryl with chain length variation [(3-amino-2,4,6-trinitrophenyl-
(O2N)N(CH2)n H, n = 1–5] homologs. The results are discussed in the next section of this paper.

(a)

Compound Oxygen Balance, % logh1 logh2

2,4,6-Trinitrophenyl-N-nitramine −32.22 1.545 1.309
Tetryl −47.36 1.906 1.573

Ethyltetryl −61.09 2.233 1.813
Propyltetryl −73.60 2.530 2.032
Butyltetryl −85.05 2.803 2.232
Amyltetryl −95.56 3.053 2.415

(b)

Compound Oxygen Balance, % Logh1 Logh2

Bis-tetryl-CH2 −37.26 1.515 1.365
Bis-tetryl-CH2CH2 −44.73 1.697 1.497

Bis-tetryl-CH2CH2CH2 −51.85 1.870 1.622
Bis-tetryl-CH2CH2CH2CH2 −58.63 2.035 1.741

Bis-tetryl-CH2CH2CH2CH2CH2 −61.11 2.192 1.855

(c)

Compound Oxygen Balance, % Logh1 Logh2

3-Amino-tetryl −47.66 2.104 1.581
3-Amino-N-ethyltetryl −60.72 2.407 1.809

3-Amino-N-propyltetryl −72.68 2.684 2.018
3-Amino-N-butyltetryl −83.66 2.938 2.210
3-Amino-N-amyltetryl −93.78 3.173 2.386

The parameters indicating the effectiveness of energetic properties are presented in
Tables 3 and 4. It is necessary to mention that the detonation velocity and consequently the
detonation pressure were evaluated by using different expressions. We remind the reader
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that the density of the materials under study was also calculated by applying two different
approaches. Thus, detonation velocities denoted as D1 and D2 are calculated followingly:

D2
1 = −393.6877− 0.2454

(
NE
M

)
− 114.0793

E
M

(1)

D2
2 = −372.4122− 1.31980

(
NE
M

)
− 106.8382

E
M

(2)

where N is the number of -NO2 groups in the molecule, E is total energy, a.u., and M is
molar mass, g/mol. These equations are given by Türker [82].

The detonation velocity denoted as D3 is calculated by using the following equation:

D3 = 1.9 +
(
−2.97a + 9.32b + 27.68c + 98.9d + 1.22∆Hf

M

)
ρ (3)

presented in [72]. Here, a, b, c, and d indicate the number of C, H, N, and O atoms,
respectively, ρ is density in g/cm3, and ∆Hf is the gas phase heat of formation of the
energetic compound. The very well know Kamlet–Jacobs equation of the detonation
velocity was also used to calculate this parameter [83]:

D4 = 1.01ϕ1 / 2(1 + 1.30ρ) (4)

where ϕ = nM1 / 2Q1 / 2.
Here, n is the number of moles of gaseous products of detonation per gram of explosive,

M is the average molecular weight of the gas found from the chemical reaction equations
with an assumed equilibrium composition, Q is the heat of detonation in calories per gram
of explosive, and ρ is loading density. The values obtained by this approach are marked as
D4. The obtained detonation velocity is presented in Table 3.

Table 3. The detonation velocity of the compounds (a) Homologous aromatic N-nitramines, tetryl
derivatives [(2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 0–5]. (b) Bis-aromatic homologs of chain length
variation (CH2)n of [(2,4,6-trinitrophenyl-N(NO2)]2(CH2)n, (n = 1–5)]. (c) 3-Amino derivatives of tetryl
with chain length variation [(3-amino-2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 1–5] homologs.

(a)

Compound D1, km/s D2, km/s * D3I, km/s * D4I, km/s ** D3II, km/s ** D4II, km/s,

2,4,6-Trinitrophenyl-N-nitramine 8.44 8.73 8.62 8.56 8.21 8.18
Tetryl 8.07 8.64 7.94 7.98 7.83 7.88

Ethyltetryl 7.67 8.28 7.47 7.56 7.50 7.59
Propyltetryl 7.29 7.93 7.33 7.21 7.46 7.34
Butyltetryl 6.91 7.60 6.38 6.91 6.57 7.10
Amyltetryl 6.55 7.28 6.46 6.64 6.71 6.88

(b)

Compound D1, km/s D2, km/s * D3I, km/s * D4I, km/s ** D3II, km/s ** D4II, km/s

Bis-tetryl-CH2 8.55 9.99 8.81 8.72 7.99 7.97
Bis-tetryl-CH2CH2 8.55 10.00 8.81 8.72 8.00 7.97

Bis-tetryl-CH2CH2CH2 8.40 9.86 8.47 8.45 7.81 8.45
Bis-tetryl-CH2CH2CH2CH2 8.20 9.69 8.17 8.19 7.64 8.19

Bis-tetryl-CH2CH2CH2CH2CH2 8.00 9.52 7.91 7.91 7.48 7.96

(c)

Compound D1, km/s D2, km/s * D3I, km/s * D4I, km/s ** D3II, km/s ** D4II, km/s

Tetryl # 8.07 8.64 7.94 7.98 7.83 7.88
3-Amino-tetryl 7.97 8.55 8.09 8.19 7.80 7.92

3-Amino-tetryl *,1 7.97 8.55 8.09 8.19 7.80 7.92
3-Amino-N-ethyltetryl 7.58 8.20 7.61 7.76 7.49 7.65

3-Amino-N-propyltetryl 7.21 7.87 7.21 7.40 7.21 7.40
3-Amino-N-butyltetryl 6.85 7.55 6.87 7.08 6.96 7.16
3-Amino-N-amyltetryl 6.10 7.24 6.18 6.42 6.73 6.95

* ‘I’ denotes detonation velocity obtained by density calculated by applying the approach implemented in
ACD/Labs program. ** ‘II’ denotes detonation velocity obtained by density calculated by applying the approach
suggested in [84]. # Here and below, the parameters of tetryl are included in the table for the convenience of
readers, i.e., to show the influence of the NH2 substituent in a more suitable way. 1 means that the parameter of
the other conformer is presented, too.
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We remind the reader that the detonation pressure was calculated as follows:

P(kbar) = 15.58 (D ρ/(1.01(1 + 1.30 ρ))2

As detonation velocity and density were calculated by different approaches, we have
several values of these parameters, as presented in Table 4.

Table 4. The detonation pressure of the compounds belonging to (a) Homologous aromatic N-nitramines,
tetryl derivatives [(2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 0–5]. (b) Bis-aromatic homologs of chain
length variation (CH2)n of [(2,4,6-trinitrophenyl-N(NO2)]2 (CH2)n, (n = 1–5)]. (c) 3-Amino derivatives of
tetryl with chain length variation [(3-amino-2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 1–5] homologs.

(a)

Compound * P(D1I), kbar P(D1II), kbar P(D2I), kbar P(D2II), kbar P(D3I), kbar P(D3II), kbar P(D4I), kbar P(D4II), kbar

2,4,6-Trinitrophenyl-N-nitramine 330.00 317.94 353.21 340.3 342.40 300.88 339.72 298.83
Tetryl 289.38 286.11 331.73 318.37 274.22 263.95 282.59 272.11

Ethyltetryl 253.14 254.04 294.89 291.98 230.19 232.86 246.16 248.98
Propyltetryl 222.28 225.79 263.50 267.65 196.27 217.28 217.67 228.82
Butyltetryl 199.86 203.05 241.65 246.01 169.46 168.15 194.82 211.16
Amyltetryl 171.00 177.09 211.32 218.85 147.53 164.34 175.80 195.48

(b)

Compound * P(D1I), kbar P(D1II), kbar P(D2I), Kbar P(D2II), kbar P(D3I), kbar P(D3II), kbar P(D4I), kbar P(D4II), kbar

Bis-tetryl-CH2 384.62 324.43 476.26 425.53 363.07 281.88 6362.59 282.09
Bis-tetryl-CH2CH2 329.97 310.26 476.26 425.76 326.99 264.17 333.81 270.18

Bis-tetryl-CH2CH2CH2 308.98 293.21 431.50 400.01 296.36 247.88 308.40 258.32
Bis-tetryl-CH2CH2CH2CH2 289.57 277.15 409.92 386.35 269.91 232.90 286.27 247.39

Bis-tetryl-CH2CH2CH2CH2CH2 233.0 258.38 339.01 370.93 234.61 209.47 282.80 226.82

(c)

Compound * P(D1I), kbar P(D1II), kbar P(D2I), kbar P(D2II), kbar P(D3I), kbar P(D3II), kbar P(D4I), kbar P(D4II), kbar

Tetryl # 289.38 286.11 331.73 318.37 274.22 263.95 282.59 272.11
3-Amino-tetryl *,1 287.90 331.37 279.82 311.25 295.06 267.79 304.35 276.46

3-Amino-N-ethyltetryl 252.91 295.74 249.56 286.42 248.40 237.62 265.19 253.81
3-Amino-N-propyltetryl 222.53 264.78 222.49 263.70 211.96 211.82 234.12 233.96
3-Amino-N-butyltetryl 196.05 237.79 198.17 242.83 183.20 189.58 209.29 216.48
3-Amino-N-amyltetryl 225.83 176.24 263.07 218.35 133.33 170.30 158.01 200.99

* Here Dn, where n = 1–4, denotes the equation used to calculate detonation velocity, while “I” and “II” denote
that detonation pressure obtained by density calculated by applying the approach implemented in ACD/Labs
program and that suggested in [84], respectively. We remind one that the parameters of tetryl (Tetryl #) are
included in the table to show the influence of the NH2 substituent in a more suitable way. 1 indicate that the
parameters of conformer is presented.

4. Discussion

Let us remind the reader that our investigated compound could be addressed to
CaHbNcOd group derivatives. Most often, this type of explosives generally have crystal
densities of 1.7–1.9 g/cm3, and they are generally used at high fractions of theoretical
maximum density [85]. According to our calculation results, the density of Bis-tetryl-CH2
and Bis-tetryl-CH2CH2 is higher than 1.9 g/cm3, while that of 3-Amino-N-butyltetryl,
Amyltetryl, and Butyltetryl are lower than 1.7 g/cm3. Thus, the densities obtained by
using the approach implemented in ACD/Labs laboratory could be overestimated or
undervalued, more probably in the case of insufficient data in the database implemented.
The results have been considered when the detonation pressure and velocity were evaluated
and compared.

The hardness index of 0.80–0.90 indicates that the compounds under investigation
are chemically and thermally stable. The binding energy per atom revealed that the
thermal stability of the compound investigated also increased when the CH2 chain length
increased. It occurred in all compounds investigated. We did not find strict dependence
of the chemical stability of the compound under study on the -CH2 length. Referring
to the results presented in Table 1, we may state that chemical stability is related to the
geometrical structure of the compound, for example, the conformers of 3-Amino-tetryl with
different bending of NO2-N-CH3 substitution. The analysis of values of chemical hardness,
softness, and electronegativity indicates that one of these conformers (3-Amino-tetryl) is
more resistant to deformation or change than another (3-Amino-tetryl *), better attracting
shared electrons (or electron density) when forming a chemical bond. Briefly, the bonding
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chemical reactions should be faster if 3-Amino-tetryl will be involved in them; however,
3-Amino-tetryl * activation could be easier than that of 3-Amino-tetryl. We speculate that
the occurrence of less stable conformers could lead to faster aging of this type of explosives.

The bending, not only of the abovementioned substitution but also of the -CH2 chain,
could lead to higher stability. The parameters revealing the stability of the (b) compound
group clearly indicate this finding. In the case when the CH2 chain is bending in this way,
the initial (gem/mother) molecules displace above each other (see Figure 1, n = 1, 3 cases),
and the chemical and thermal stabilities of the compounds increase.
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The values of oxygen balance representing the brisance, strength, and sensitivity to
shock stimuli increase with the enlargement of the CH2 chain length in the compound
investigated (Table 2). It allows us to conclude that the brisance and strength of the materials
under study tend to approach their maxima as the oxygen balance approaches a more
negative value. The log1 and log2 values revealed that the -CH2 chain length of Tetryl
leads to higher resistance to shock stimuli. Let us remind the reader that the value of the
oxygen balance of TNT, which is considered a standard reference for many purposes, is
equal to −74% [87]. Thus, the properties of the HEMs’ power of group (a) and (c) materials
are greater than TNT when the number of -CH2 is smaller than 3. However, these materials
are more sensitive to stimuli than indicated by the calculated values of log1 and log2. In the
case of group (b) materials, the abovementioned parameter’s values indicate their better
energetic properties and higher sensitivity than TNT, but these properties are worse than
nitromethane (oxygen balance −39%), and PETN (−10%), along with higher resistance
to the shock stimuli. The comparison of the parameters representing the effectiveness of
explosion and resistance for stimuli of the (a) and (c) group materials leads to a conclusion
that the inclusion of NH2 insignificantly changes explosive properties and resistance to
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shock stimuli. It leads to a presumption that certain combinations of substituents and CH2
could allow one to design brisance and insensitive materials.

The calculated values of detonation velocity and pressure (Tables 3 and 4) also revealed
the worseness of the energetic properties with increasing -CH2 chain length. These results
show that an increasing -CH2 chain length leads to decreasing in detonation velocity and
pressure, which indicates a decrease in explosive effectiveness. The exception is the cases
when the density of the materials is inaccurately calculated due to a lack of data in the
database used. However, considering the 6.9 km/s detonation velocity of TNT [88] (in
comparison to our calculated 7.31–7.69 km/s), we could foresee that (b) materials possess
better energetic properties than TNT despite their worseness due to -CH2 chain length
increases. In the case of (a) and (c) group materials, the above properties remain better than
those of TNT when the -CH2 number in the compound is not larger than 3. Moreover, the
detonation velocities for high explosives range from 3300 to 29,900 fps (1.01 to 9.11 km/s).
Hence, the results obtained indicate that the compounds under investigation remain highly
energetic despite the decrease in explosive effectiveness due to CH2 chain length increases.
This conclusion is also supported by the results of the detonation pressure calculations that
showed that values are higher than those of TNT in most of the material investigated. For
comparison, the detonation pressure of TNT is equal to 171.8 kbar in a liquid state [89]
and 213–259 kbar in a solid state, and is used as a standard; the detonation pressure
evaluated by us varies from 133 to 364 kbar. However, only group (a) and (b) materials’
detonation pressures are below that of TNT when the CH2 number in the chain is higher
than 3, and these values depended on the approach used. Hence, as is mentioned above,
increasing CH2 chain length in the Tetryl should increase the stability of the compounds
more significantly than worsening the explosion properties.

5. Conclusions

Our study was performed to reveal if and how variating lengths of the CH2 (methylene)
chain, attached to the nitramine group nitrogen gaining, improves the stability and resistance
for shock stimuli as well as explosive properties of the series of secondary aromatic nitramines,
possessing as the main substituents traditional 2,4,6-trinitrophenyl moiety. Referring to the
results obtained, we may state that the thermal stability and resistance to shock stimuli of
the compound investigated are directly dependent on the CH2 chain length, while their
explosive properties are worsened due to this chain lengthening. The results of our study also
show that the case of Tetryl with different -CH2 chain lengths (n = 1–5) [(2,4,6-trinitrophenyl-
(O2N)N(CH2)n H] ((a) group) could not be longer than 3 in order for the detonation pressure
of these compound not to be below that of TNT. A similar conclusion follows from the results
of the investigation of Bis-aromatic nitramine homologs of chain length variation (CH2)n
of [(2,4,6-trinitrophenyl-N(NO2)]2(CH2)n (n = 1–5)- joined per different lengths of the -CH2
chain ((b) group). However, the stability of the compounds increases more significantly
than the worsening of the explosive properties. These results were proven by the different
approaches applied.
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Appendix A

Table A1. The values of density for the studied compounds, obtained using the approach implemented
in the ACD/Labs program (denoted as ρ1) and that suggested by M.S. Keshavarz (denoted as ρ2).

Compound ρ1, g/cm3 ρ2, g/cm3 Deviation, %

2,4,6-Trinitrophenyl-N-nitramine 1.574 1.642 −4.30
Tetryl 1.803 1.769 1.87

Ethyltetryl 1.713 1.723 −0.57
Propyltetryl 1.523 1.606 −8.30
Butyltetryl 1.639 1.680 −2.53
Amyltetryl 1.870 1.782 4.69

Bis-tetryl-CH2 2.041 1.800 11.80
Bis-tetryl-CH2CH2 1.973 1.775 10.03

Bis-tetryl-CH2CH2CH2 1.913 1.751 8.4
Bis-tetryl-CH2CH2CH2CH2 1.859 1.728 7.04

Bis-tetryl-CH2CH2CH2CH2CH2 1.765 1.669 5.45
3-Amino-tetryl 1.870 1.782 4.69

3-Amino-N-ethyltetryl 1.776 1.737 2.17
3-Amino-N-propyltetryl 1.697 1.696 0.03
3-Amino-N-butyltetryl 1.631 1.659 −1.70
3-Amino-N-amyltetryl 1.765 1.669 5.45

Appendix B

Table A2. The view of the molecules belonging to (a) Homologous aromatic N-nitramines, tetryl
derivatives [(2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 0–5]. (b) Bis-aromatic homologs of chain
length variation (CH2)n of [(2,4,6-trinitrophenyl-N(NO2)]2, (CH2)n (n = 1–5)]. (c) 3-Amino deriva-
tives of tetryl with chain length variation [(3-amino-2,4,6-trinitrophenyl-(O2N)N(CH2)n H, n = 1–5]
homologs. their names, structures, chemical compositions and molecular weights (g/mol).
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C11H14N6O8 358.27 

C 36.88% 
H 3.94% 
N 23.46% 

O 35.73% 

C9H10N6O8 330.22

C 32.74%

H 3.05%

N 25.45%

O 38.76%

4. 3-Amino-N-butyltetryl
n = 4
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N

O2N
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NO2
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n = 5
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