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Abstract: For high electron mobility transistors (HEMTs) power transistors based on AlGaN/GaN
heterojunction, p-GaN gate has been the gate topology commonly used to deplete the two dimensional
electron gas (2-DEG) and achieve a normally-OFF behavior. But fully recessed MIS gate GaN
power transistors or MOSc-HEMTs have gained interest as normally-OFF HEMTs thanks to the
wider voltage swing and reduced gate leakage current when compared to p-GaN gate HEMTs.
However the mandatory AlGaN barrier etching to deplete the 2-DEG combined with the nature of the
dielectric/GaN interface generates etching-related defects, traps, and roughness. As a consequence,
the threshold voltage (VTH) can be unstable, and the electron mobility is reduced, which presents a
challenge for the integration of a fully recessed MIS gate. Recent developments have been studied
to solve this challenge. In this paper, we discuss developments in gate recess with low impact
etching and atomic layer etching (ALE) alongside surface treatments such as wet cleaning, thermal or
plasma treatment, all in the scope of having a surface close to pristine. Finally, different interfacial
layers, such as AlN, and alternative dielectrics investigated to optimize the dielectric/GaN interface
are presented.

Keywords: MOSc-HEMT; GaN; MOS; Etching; surface preparation; insulator; interface

1. Introduction

The major challenge of power electronics today is dealing with the need for high
conversion efficiency and reliability, and at the same time, the constant pursuit of cost
and size reductions, with low environmental impacts. Replacing power devices made of
silicon semiconductor material by power devices made of wide bandgap semiconductor
materials such as gallium nitride (GaN) allows for smaller size, cost reduction, and higher
switching speed at the power system level, thanks to better GaN intrinsic physical param-
eters. Noticeably, the AlGaN/GaN heterojunction allows to get a high mobile electron
layer and to design GaN FETs such as HEMTs which offers high power density and high
switching frequency.

GaN transistors are faster and smaller than silicon MOSFETs thus leading to increased
power density in chargers and adapters as well as high efficiency due to reduced conduc-
tion and switching losses. At the moment, the market of GaN power transistors with a
positive threshold voltage (VTH), or normally-OFF, is completely dominated by p-GaN
gate architecture (proposed by EPC, GaN Systems, Panasonic for instance). Typical Mg
concentrations used in p-type GaN layer are around 1 × 1019 cm−3 [1], the Mg saturation
being as high as 8.9 × 1019 cm−3 [2]. However, since acceptor levels from Mg are in the
range of 150–200 mV from the valence band, ionization of Mg is limited to a fraction of its
concentration. However, the p-GaN gate architecture has intrinsic limits with respect to its
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silicon power MOSFET counterparts. Because of the p-GaN gate topology, VTH is generally
limited to 1.5 V and the typical recommended gate drive is in the range of 0 V to 6 V or
−3 V to 6 V for high current hard switching applications. Metal–insulator–semiconductor
gate (MIS Gate) GaN transistors could give greater freedom in terms of gate driving voltage
as a result of both increased threshold voltage and larger range in gate voltage swing.
Alongside power applications, MIS Gate GaN transistors can be implemented for RF [3],
gas sensing [4], and LiDAR [5]. Considering the benefits of a MIS Gate, the fully recessed
MIS (metal insulator semiconductor) gate stack has gained increasing interest during the
last few years for the development of normally-OFF lateral [6], pseudo-vertical [7], and
vertical GaN on Si [8] power transistors. This structure is described in the literature by
different names such as MOS-HEMT and MIS-FET which are also used to describe partially
recessed MIS gates that allow us to obtain a normally-OFF transistor as well. In order
to specifically describe the fully recessed MIS gate GaN HEMT, we chose to name it by
MOS-channel-HEMT or MOSc-HEMT. Combining the benefits of a MIS gate, its interest
comes from the fact that it allows to have a device with a positive threshold voltage by
cutting the 2-DEG, low gate leakage current and high gate voltage swing. The MOSc-HEMT
also enables a more stable VTH than partially recessed MIS gate since the latter suffers from
etching thickness variability affecting the VTH [9]. The mentioned topologies as well such
as the fluorine implanted gate and the cascode configuration are represented in Figure 1.

To get the full benefits of the fully recessed MIS gate, it is required to optimize the
insulator–semiconductor interface in order to achieve good mobility and low interface
trapping states. It is equally essential to tune the insulator properties in view of limiting or
controlling its charge. For this reason, several process steps have been studied showing
both the impact of AlGaN/GaN recess, cleaning, and dielectric deposition. The different
defects at the MIS gate are represented in Figure 2.
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Figure 1. Structure for (a) normally-ON GaN HEMT and different topologies of normally-ON GaN
HEMTs: (b) p-GaN gate; (c) Fluorine implanted gate; (d) Partially recessed MIS gate; (e) Fully
recessed MIS gate or MOSc-HEMT; (f) Cascode configuration (schematic inspired by [10]). Energy
band diagrams are represented alongside the structures.
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Figure 2. Different types of defects and impurities effectively or hypothetically encountered with
fully recessed MIS gate.

Overall, these studies have been carried on either transistors or simple planar capaci-
tors. In the case of transistors, parameters such as VTH, its hysteresis (∆VTH), and channel
mobility can be measured. But for simple planar capacitors, flat band voltage (VFB), its
hysteresis (∆VFB), and density of interface states (Dit) are usually studied to evaluate the
properties of the dielectric/GaN interface. If the correspondence between results from
transistors and planar capacitors can be established, with deeper recess depth, the impact
of sidewalls is no longer negligible and needs to be taken into account. Moreover, planar
capacitors will have an intentional n-doping in order to provide free carriers for positive
voltage swing of C–V measurements, whereas transistors will have an unintentional doped
(UID) GaN layer. Alongside electrical characterization, physical parameters such as rough-
ness, presence of impurities and defects, and oxidation have been measured using different
characterization techniques as AFM, XPS/HAXPES, and ToF-SIMS. Studying the physical
parameters allows us to better understand the critical dielectric/GaN interface. Hence,
combining both electrical and physical characterization has been proven important to better
investigate the MIS gate and improve it.

2. Manufacturing Processes from Gate Recess to Surface Preparation
2.1. Gate Recess by Dry Plasma Etching

Etching is necessary to achieve a fully recessed gate structure in order to remove the
passivation layers, the AlGaN barrier layer and a part of the GaN channel.
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2.1.1. Reactive Ion Etching ICP-RIE

Reactive ion etching (RIE) is a form of dry plasma etching involving a mixture of
different elements:

• Reactive and nonreactive ions;
• Reactive neutral species;
• Passivating species;
• Electrons;
• Photons.

The positively charged ions are guided towards the wafer surface through an applied
negative bias on the wafer, and their acceleration is normal to the wafer surface. Alongside
the neutral species present in the plasma, the positive ions work in unison to etch the
wafer surface.

For wide bandgap semiconductors, the application of high-density plasma in etching
processes such as electron cyclotron resonance (ECR), inductively coupled plasma (ICP),
and magnetron RIE was proven to achieve better etching characteristics than simple RIE.
The reason for this enhancement can be explained by the higher plasma density, which is
typically two orders of magnitude higher than RIE (1011–1012 cm−3 against 109–1010 cm−3).
This increased plasma density leads to a higher efficiency in breaking bonds for these
strongly bonded semiconductors and facilitates the removal by sputtering of etching
byproducts formed on the surface [11].

The use of inductively coupled plasma (ICP) reactors allows the separate control of
the plasma density (chemical part of the etching, controlled with inductance power) and
the bombardment energy (physical part of the etching, controlled with bias voltage); unlike
capacitance coupled plasma (CCP) reactors where the plasma density and bombardment
energy are controlled together.

GaN is usually etched using fluorine-based or chlorine-based plasmas. ICP-RIE
etching of GaN using these plasmas cannot be purely chemical at room temperature because
of the formation of nonvolatile etching byproducts such as GaFx (Teb = 1000 ◦C) with
fluorine-based chemistries (e.g., SF6) or AlCl3 (Teb = 183 ◦C) and GaCl3 (Teb = 201 ◦C) with
chlorine-based chemistries (e.g., Cl2) [11]. Therefore, the physical bombardment should
be sufficiently strong to remove these byproducts and to expose the surfaces for further
etching, for instance using Ar or N2 in combination with SF6 [12] or Ar in combination with
Cl2 [13]. Addition of noble gases and energetic-ion sputtering in ICP also improves the
etching both by initially breaking the stable Ga–N bond and by preferentially sputtering
the nitrogen atoms, which results in a Ga-rich GaN surface [14]. XPS measurements of
the GaN surfaces etched by SF6 and Cl2 indicate, respectively, the presence of F and Cl
on the etched GaN surface [15]. Worse on-state characteristics were observed with SF6
etching, assumed to be due to deterioration of the negative VTH with F [15]. Moreover,
since Cl-based byproducts are more volatile, the etching process is faster. Therefore, etching
of GaN using chlorine-based plasma is preferred to fluorine-based plasma.

Gallium oxide can be present at the GaN surface or may form during the etching
process since the etching chamber can contain small amounts of oxygen (chamber walls,
mask layers on the wafer). BCl3 is helpful for gallium oxide removal as BCl2+ ions dissoci-
ated from BCl3 are good Lewis acids with strong oxide affinity, leading to the formation
of BClxOy (g) [16]. Therefore, etching of GaN is usually performed using Cl2 and BCl3
chlorine-based plasma. By increasing the bias power, the physical component of the etch
process is enhanced, as confirmed by linear correlation between ICP bias power variation
and AlGaN, GaN, and AlN etch rate [17].

The use of other chemicals such as SiCl4 have been reported to tune the profile shape,
for instance SiCl4 passivates the sidewalls by formation of SiOx and SiNx, leading to a more
vertical profile [18].

Continuous dry etching on GaN has fast etch rates, but the surface damage as shown
in Figure 3 (composition/roughness), the high variability and the non-uniformities at wafer
and die level are, at present, the three main shortcomings [19,20].
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2.1.2. Plasma Induced Damage

The device’s performance can be seriously degraded due to the creation of plasma-
induced damage, which occurs as a result of ion bombardment and exposure to ultraviolet
(UV) photons during plasma assisted etching. Plasma-induced damage includes the fol-
lowing defects:

1. Lattice defects generated from energetic ions. These defects typically exhibit deep
level states behavior and thus produce compensation, trapping, or recombination in
the material. Due to channeling of the low energy ions that strike the sample, and
rapid diffusion of the defects created, the effects can be measured as deep as 1000 Å
from the surface, even though the projected range of the ions is only <10 Å [22];

2. Atomic hydrogen unintentional passivation of dopants. The hydrogen may be a
specific component of the plasma chemistry, or may be unintentionally present from
residual water vapor in the chamber or from sources such as photoresist mask erosion.
The effect of the hydrogen deactivation of the dopants is a strong function of substrate
temperature, but may occur to depths of several thousand angstroms [22];

3. Polymeric film deposition through plasma chemistries involving CHx species, or
through reaction of photoresist masks with Cl2-based plasma [22];

4. Nonstoichiometric induced surfaces by selective removal of specific lattice elements.
This can occur because of strong differences in the volatility of the respective etch
products, leading to enrichment of the less volatile species, or by preferential sputter-
ing of the lighter lattice element if there is a strong physical component to the etch
mechanism. Typical depths of this nonstoichiometry are <100 Å [22].

In the case of AlGaN/GaN etching, various studies have shown that higher ICP bias
power create ions with higher energy, ultimately leading to stronger ion bombardment dam-
age [23], several GaN material damage or degradation of the devices performance [20,23–29].
The characterizations methods for dry plasma induced damage in AlGaN/GaN materials
and devices are reported in Table 1.

Table 1. Characterizations methods for dry plasma induced damage in AlGaN/GaN materials or
degradation of devices performances.

Characterization Technique Material Damage or Degradation of the
Device Performance Ref.

AFM Roughness of AlGaN surface [30,31]

Photoluminescence Increase of photoluminescence intensity ratio
of YL/BE [24]

Cathodoluminescence Degradation of the AlGaN Near Band Edge
signal intensity [31]



Energies 2023, 16, 2978 6 of 28

Table 1. Cont.

Characterization Technique Material Damage or Degradation of the
Device Performance Ref.

Depth Resolved Cathodoluminescence
Spectroscopy (DRCLS) VN (@ EC −0.9 eV) and C defects in the p-GaN layer [32]

Electrochemical Impedance Spectroscopy Decrease in built-in potential (Vbi) at the
nGaN/electrolyte Interface [25,33]

Sheet resistance measurement (Rsheet) with 4-probe
equipment on GaN/AlN/AlGaN/GaN samples Increase of 2DEG sheet resistance [20,24,34–36]

Schottky diodes Decrease of Schottky barrier height ΦB [25]

MOS capacitors or transistors

Increase of interface state density (Dit) [26–28,30,37]
Lower electron mobility [27,37]

Increase of leakage current [26]
Lower threshold voltage [23,37]

Reported electrical damage depth ranges from >10–20 nm [20,25] to 40 nm [38] or
50–60 nm [22,25]. From the AES electron spectrum of oxygen profile, surface damage was
limited to the top few hundred angstroms [39].

One proposed explanation for the degradation of device performance is the introduc-
tion of donor levels, such as VN, caused by dry-etching. These donor levels results in a
n-GaN surface [32], which may contribute to the low VTH since applying negative gate
voltages is necessary to deplete the n-GaN surface donor layer and cut off the channel. As
a matter of fact, under threshold conditions, some of these n-type defects become ionized
and depleted, resulting the generation of positive ionized space charges. Therefore, the key
factor for achieving normally-OFF operation in a fully dry-recessed MIS gate HEMT is the
removal or recovery of the damaged layer (i.e., providing sufficient nitrogen to eliminate
the VN) [29].

Among the different approaches proposed to overcome the plasma induced damage
issues are:

1. Reduction or elimination of the source of damage through use of etching methods
without plasma or with low ICP bias power;

2. Recovery of the damaged layer;
3. Removal of the damaged layer.

The use of etching methods without plasma is a way to avoid damage. Photo-
electrochemical (PEC) etching through photo-assisted anodic oxidation is interesting for
nitride semiconductors since the high thermal and chemical stability hinders the use of
typical wet chemical etching. The necessary amount of photo-induced holes is regulated
by choosing the relevant wavelength λ and anodic bias [40]. The holes are generated at
the anode present at the GaN/electrolyte interface, specifically where electrons are given
off to the outside circuit. These holes then break down GaN into Ga3+ ions. The latter
reacts with the electrolyte and results in the formation of Ga2O3 which dissolves in acid or
base (H3PO4 and KOH [41] or H2SO4/H3PO4 mixture [42]). Finally, the etching depth is
proportional to the total etching current [43].

The use of etching methods with low bias plasma is another way to reduce the damage.
In that matter, atomic layer etching (ALE) is an interesting solution to reduce the

dry-etching surface damage, which mitigates device performance and electron mobility,
and to accurately control the etching depth. ALE, with low etching rates, can be used
directly to remove the AlGaN/GaN layers (full ALE) or after conventional ICP-RIE etching
with higher etching rate. The combination of ICP-RIE with ALE was reported to reduce
etching damage, evaluated by the reduction of the sheet resistance Rsheet in Figure 4.

However, it has also been reported that UV photon damage in ALE was larger than
in RIE owing to the longer plasma irradiation time [31]. It has been found that the ALE
photon-induced damage can be mitigated by a post etch anneal process at temperatures
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which are compatible with the overall thermal budget of a GaN power transistor process
flow [44].
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Figure 4. Rsheet measurements of the 2DEG after ICP-RIE etching or ICP-RIE with ALE etching [35].

In a similar approach and more recently, multistep etching with decreasing bias and
post-etching anneal has been proposed to reduce the damage [18,45].

Also, a neutral beam etching (NBE) system using the neutralization of negative ions
has been proposed by Lin and co-workers in order to eliminate UV photon irradiation [46].

2.1.3. GaN Atomic Layer Etching (ALE) or Digital Etching

The ALE mechanism consists of two sequential steps: surface modification (reaction
A) and the removal of the modified surface (reaction B). The modification step creates a
thin modified layer on surface with a specific thickness, which is easier to remove than
the unmodified material. This modified layer has a distinct change in physical structure
and/or in composition with a defined gradient.

The surface modification (reaction A) can occur through:

1. Chemisorption of species on the surface, which weakens the material bonds under-
neath (e.g., chlorination of GaN by Cl2);

2. Deposition of a reactive layer on the surface;
3. Conversion of first layers into another material (e.g., oxidation of GaN);
4. Selective extraction of a specific species.

During the removal step (reaction B), the modified layer is removed while maintaining
the integrity of the underlying substrate. This step allows the surface to be “reset” to a
pristine or almost pristine state for the subsequent ALE cycle [20]. The ALE mechanism is
represented in Figure 5:
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Figure 5. General concept of ALE with reaction A (chlorination of the GaN surface) and reaction B
(removal of the modified surface with Ar plasma).
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III-V and III-N materials are usually etched by directional ALE using a combina-
tion of chlorination and particle bombardment [20]. Chlorine mostly reacts with the
surface and metallic Ga atoms to form Ga chlorides [14]. The removal of the chlori-
nated layer has been investigated by the bombardment of Ar or He ions [35,36]. Several
teams have reported on Cl2/Ar based ALE for GaN etching, achieving etch rates from
0.13 to 0.50 nm/cycle [35,36,44,47–50] and surfaces as smooth as the as-grown sample. The
presumed etching by-products are GaCl3(g) and N2(g) [49].

Cl2/Ar ALE parameters such as DC bias voltage during the Ar step, duration of each
step, pressure during each step and gas ratio can be optimized in order to etch in the “ALE
window” where there is no background etching during reaction A and only the modified
layer by reaction A is removed by reaction B (no additional sputtering) [44,48,49]. A 2D
fluid model is useful to determine the flux of reactive species, radicals and ions included,
which arrive at the wafer surface. This flux can be calculated as a function of chlorine
content, gas pressure, and RF power, showing a strong correlation between the chemical
nature of the etching process and the rise in atomic chlorine flux [51]. Ar bombardment
leaves Ga atoms with dangling bonds, leading for a low energy bombardment of 100 eV to
a ~25Å amorphous layer enriched in Ga [52], for 400 eV to a Ga-rich surface layer [53,54],
for 1 keV to Ga nanodroplets [55], for a high-energy bombardment of 2.5 keV to a metallic
Ga layer [53,54]. Simultaneously, a portion of nitrogen is moved to interstitial position,
forming split-interstitial defects [54]. This Ga-rich surface was associated with lower Ga 3d
binding energy [55], increase in the downward band bending (nitrogen vacancies act as
donors), and pinning of the surface Fermi level closer to the conduction band [56].

An alternative to chlorination for the surface modification step is the use of a bromine-
based chemistry (HBr) that allows reduced Ar plasma power during the bombardment
step [44].

An alternative to particle bombardment for the removal step is the thermal desorption
of Ga chlorides at temperatures higher than 223 K [14].

Another ALE of III-V and III-N materials is a combination of oxidation of AlGaN/GaN
by oxygen-based plasmas or by wet chemistries followed by removal of oxide by chlo-
rine based plasma etching or wet etching, also called digital etching. This technique
can also be used to remove unwanted native oxide/contamination and disordered gal-
lium oxide/aluminum oxide residue. The oxidation step can be achieved by exposure
to a low power O2 plasma [19,57–63], to N2O plasma [64], or to wet solutions such as
H2SO4/H2O2 [65]. Increased GaN surface roughness has been reported, attributed to the
locally improved oxidation around the dislocations. The pinholes, which are likely caused
by dislocations, were significantly enlarged as the recess depth increases [66]. Removal
of the oxide layer can be achieved using a low-power BCl3 oxide etch step [67–69], which
resembles a self-limiting process, due to the fact that BCl3 etches the oxidized GaN layer
much faster than unoxidized regions. This difference in etch rate is explained by BxCly de-
posited layer on unoxidized GaN. After etching, this deposited layer can be easily removed
by a stripping process [69]. Removal of the oxide layer can also be achieved by submerging
the wafer into a wet HCl acid bath [19,20,57–59,61,64,65,70]. Thanks to the high oxidation
selectivity ratio of GaN and AlGaN [71–74], TMAH and KOH are reported for selective
etching of oxidized AlGaN and AlN, whereas GaN plays the role of etch stop layer [73–75].
GaN cap layer can be used as a recess mask [71].

In conclusion, etching of AlGaN/GaN is mandatory in order to obtain a recessed gate
architecture. However, traditional ICP-RIE processes creates damage, which can alter the
electrical performance. The following challenges arise:

1. Proper characterization of the damage, correlation with electrical damage (which
depends on the target device);

2. Developments of damage-free or reduced damage etching processes, compatible with
an industrial process (wafer size, throughput);

3. Process integration and choice of mask that enable the use of damage-free or reduced
damage etching processes;
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4. Adapted stripping that removes masks and etching residues.

Cyclic processes such as ALE show good repeatability and etch depth control with
lower electrical degradation than ICP-RIE processes, reducing the damage. Other ap-
proaches include recovery or removal of the damaged layer, which can be performed by
various GaN surface treatments.

2.2. Cleaning or Surface Preparation by Wet, Thermal or Plasma Treatments

The surfaces to clean are the GaN gate bottom, which is a polar (0001) Ga-face c-plane
and the gate cavity AlGaN and GaN sidewalls. If the gate cavity had 90◦ sidewall angles,
they could be non-polar m-planes and a-planes, depending on the orientation, due to the
Wurtzite GaN crystal structure (hexagonal symmetry), as shown in Figure 6.
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The contamination layer of air-exposed GaN is usually ~2–5 nm thick. About half
of this contamination consists of transparent inorganic and organic species. The rest is
presumed to be native oxide [76]. Wurtzite GaN surfaces are very active towards the
adsorption of oxygen. The presence of dangling bonds at the GaN surface makes the
surface reactive to a wide range of impurities, leading to higher impurity concentration on
GaN than on Si [77].

GaN surface preparation aims at:

• Reducing the surface contamination (particulate, metallic, and chemical: native oxides,
carbon and other);

• Not damaging the crystal structure nor introducing additional defect states;
• Removing the etch-induced damage;
• Smoothing the GaN surface;
• Improving the nucleation of the dielectric layer (for instance atomic layer deposited or

ALD Al2O3).

Ex-situ cleaning includes solvents, various acid and bases, as well as UV/O3. In situ
cleaning includes room temperature or high temperature plasma, sputtering and vacuum
or gas annealing [76]. A summary of all the treatments discussed in this paper can be found
in Table 2.
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Table 2. GaN surface treatments and their impact on contamination removal, etch-induced damage
removal. The abbreviation “Y” and “N” are for “Yes” and “No”, respectively.

Surface
Treatment

Anisotropic
Etching

(Y/N)

Oxide
Removal

(Y/N)

Carbon
Removal

(Y/N)

Dry Etching
Damage
Removal

(Y/N)

Impact on
Roughness and
Incorporation of

Impurities

Impact
on

Device

TMAH Y [78–80] Y (sidewall [81])
N (planar [26])

Removal of F [82]
Removal of plasma

damage [83]

Positive VTH
shift [84]

Improved
mobility [83]

KOH Y [85,86]

NaOH Y [37] Positive VTH
shift [37]

NH4OH Y [21,87–91] Y [90]
N [87,88,92] Y (100 ◦C [23]) Positive VTH

shift [23,91]

HCl Y [21,89,93–95] N [89,96,97] Y (70 ◦C [98])

Incorporation of
Cl [21,94,99]

Detrimental impact
on ALD

nucleation [100]

Large
hysteresis [100]

HF Y [97,101] Y [102]
N [96,97]

Incorporation of
F [97]

H2O2:H2SO4
Y [97]
N [96] Y [96,97,102] Smoothing [97,102]

Reduction of
hysteresis
[100,102]

H3PO4 Y [21,103] Y [21] Y [21] Y [21] Incorporation of
P [21,103]

(NH4)2S Y [21] N [97,102] Incorporation of
S [104]

Reduction of
hysteresis [105]

UV/O3 N [106] Y [107]

O2 plasma Y [99] Removal of Cl [99]

N2 annealing Y [38,45] Removal of Cl [99]

NH3
annealing Y [108,109]

H2S
annealing

Incorporation of
S [110]

Negative VTH
shift [110]

Ar plasma
Reduction of

hysteresis
[111,112]

NH3 plasma Y [87] Y [87] Reduction of
hysteresis [113]

N2 plasma Y [88,114,115] Y [23,24] Incorporation of N
[88,115]

H2 plasma Y [116] Y [116] Formation of Ga
droplets [116]

Various wet cleaning sequences have been reported in the literature. After oxygen
removing wet treatments, such as HF, the presence of a Ga–O bonds indicates the presence
of a native oxide. It suggests a reoxidation (estimated to 0.5 Å) forming a GaOx layer during
surface exposure to ambient air prior to XPS measurement or during wet treatments (HF
and/or DI water rinse) [101]. This further confirms the strong oxygen affinity of a clean
GaN surface. The presence of a GaOx layer is problematic, with increased hysteresis and
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interface states [117–119]. In situ NH3/Ar/N2 plasma sequence has been reported for the
removal of the surface native oxide [120] and formation of a nitridated inter-layer (NIL)
prior to the gate dielectric deposition as seen in Figure 7. This treatment is sometimes
labeled as remote plasma pretreatment (RPP). The NH3-Ar plasma is used as a cleaning step
to remove the native oxide. The subsequent N2 plasma allows to nitride the surface (Ga
dangling bonds passivated and possible VN compensated), resulting in a NIL on the III-N
surface [117,121,122]. Other plasma sequences such as H2/NH3 cycles [123], a sequence of
NH3 and N2 [124] or N2/H2 [125] have been reported before ALD of AlN, SiNx, or epitaxy,
leading to a decrease in hysteresis, a reduction of the ON resistance, and also a decrease in
VTH [124].
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Figure 7. XPS measurements of Ga3d and Al2p spectra from Al2O3/GaN interfaces (a) with opti-
mized RPP, (b) with RPP having insufficient nitridation, and (c) without RPP (© 2023 IEEE. Reprinted,
with permission, from [116]).

Thus, it seems that a combination or a sequence of different treatments is the most
suitable in order to achieve all the goals of the surface preparation [126]. Also, for a same
surface preparation process, the surface states depend on previous processing, such as
dry etching conditions, and therefore, the surface preparation should be adapted to the
specificities of the material and overall process flow. For instance it was found that the
Ga oxidation states at Al2O3/GaN interface were higher for etched samples than for non-
etched samples [91] or that increased trapping occurred for etched GaN [127]. The higher
oxidation state when reduced with the appropriate wet cleaning sequences was proven to
increase VTH (Figure 8)
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In addition, as stated in the Introduction, there is still a limited understanding of the
impact of the gate cavity morphology, since most of the studies reported here focus on
planar structures formed on the c-plane (corresponding to the bottom of the gate). We have
seen that anisotropic GaN etchants such as tetramethylammonium hydroxide (TMAH),
potassium hydroxide (KOH), or H3PO4 impact trench sidewall morphology [78,85,86,128].
For instance TMAH etches any plane of GaN, except for the (0001) c-plane, while it etches
m-plane at a considerably lower rate than other semi-polar planes allowing, for instance, it
to achieve rough a-plane oriented sidewall (composed of microscopic m-faces) and smooth
m-plane oriented ones [78,79]. In the few studies carried out on different non-polar planes,
it is clear that GaN crystallographic orientation impacts the effect of surface treatments
on electrical characteristics [79,112,129–131] or that sidewall formation has a significant
impact on device performance (in comparison with a planar etched structure) [127]. As a
consequence, is it crucial to improve the understanding of how the GaN crystal orientation
and 3D gate cavity with sidewalls formation impacts recessed gate devices’ performance.

Finally, selective area regrowth faces some similar challenges with the deposition
of a dielectric in a recessed GaN cavity (such as in MOSc-HEMTs): negative impact of
the dry etching [98], exposure to air, difference between trench bottom and sidewalls,
and incorporation and activation of the Mg dopant. Therefore, similar characterization
techniques can be applied to study these impacts [132]. But regrown GaN is still promising
to recover dry etching plasma-induced damage [133,134], and it can be combined with in
situ dielectric deposition which allows an increase in electron mobility (OG-FET device
reported in [135]).

3. Interface and Dielectric Materials
3.1. Interface

Since the growth of a thick native gallium oxide, similar to SiO2 from Si, is diffi-
cult [136], the deposition of a dielectric layer has been necessary to form a MIS gate. How-
ever, due to the defective interfacial GaOx and the lattice mismatch at the dielectric/GaN
interface, this interface needs to be controlled to have the desired device properties.

In the case of GaOx, reducing the low-quality interfacial oxide was presented in the
previous section with wet cleaning and plasma treatments, notably with the NIL plasma
treatment. This technique is important since, as stated before, GaOx is not reduced with
HF [101] nor after dielectric deposition such as Al2O3 [137]. Another solution is to create
a high-quality interfacial gallium oxide. Oxidation by exposing the surface to ozone was
found beneficial for AlGaN/GaN devices with reduced hysteresis [138]. More specifically,
oxidation by O2 plasma combined with a high temperature anneal under N2 and prior SiNx
deposition by low-pressure chemical vapor deposition (LPCVD) was studied [139–141].
The result is a GaON layer formed at the interface between SINx and the recessed GaN
surface. With the GaON layer, a VTH of 1.15 V and a reduced hysteresis of 0.2 V is
reported [139]. Reduced hole injection under negative stress is also observed, the high
valence band offset between GaON and GaN explaining this improvement [140,141]. GaON
can also be formed with a N2O plasma [142–144], reducing the damage from the LPCVD
SiNx deposition process [143] and increasing electron mobility [144]. With a non-recessed
gate structure, an AlGaON layer formed by controlled oxidation with N2O plasma through
a thin Al2O3 layer was reported in [145,146]. An increased VTH was observed with a small
hysteresis correlated to the oxidation step [145].

A thin interfacial AlN can be directly deposited before the dielectric to improve the
interface quality due to its lower lattice mismatch with GaN with respect to Al2O3 [147].
Moreover, AlN is known to form a passive oxide layer, when exposed to air. For this reason,
AlN deposition is typically followed by in situ dielectric deposition without air exposure.
When applied on both GaN’s c-plane (polar surface) and m-plane (non-polar surface)
before ALD Al2O3, AlN reduces the VFB hysteresis and the interface states, especially at the
non-polar surface [130]. Specifically for MOSc-HEMT, a reduction of VTH hysteresis from
800 mV to 65 mV is obtained with a 2 nm PEALD AlN interfacial layer at the Al2O3/GaN
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interface, as well as a lower density of interface states [148]. By combining the NIL process
and the AlN deposition, the improvement in terms of hysteresis is similar but a lower
density of interface states is observed and a greater separation between defects on Al2O3
and GaN is obtained [119,149]. With an AlSiO dielectric, AlN improves the electron mobility
by confining the electrons at the interface [150] and allows reduced Ga diffusion into the
dielectric after high temperature post-deposition annealing (PDA) at 950 ◦C [151].

In conclusion, two ways of treating the interfacial GaOX are possible; either reducing
it or improving/growing the interfacial oxide with fewer defects. Specific AlN interfacial
layer deposition before thicker dielectric deposition leads to increased mobility, lower
hysteresis, and lower density of states. Since the direct deposition of oxides on GaN
maintains the interfacial GaOx, combining its removal with an AlN layer represents a
promising solution to keep a low oxidation state at the interface, improve electron mobility,
and reduce VTH hysteresis.

3.2. Dielectric

Another essential aspect of the MIS gate is its dielectric. The considered properties
are [152]:

• Larger band gap than GaN in another to have a conduction offset higher than 1 eV;
• Layer without grain boundaries;
• High relative permittivity and high breakdown voltage.

A summary of dielectrics, their band lineup with GaN, and their dielectric constant
are represented in Figure 9. As the high-κ dielectric band gap tends to decrease with
the dielectric constant, there is a limitation in the choice of candidates. Frequently used
dielectrics are SiO2, SiNx, and Al2O3. Annealing after deposition or after metallization is
equally important to improve the dielectric/GaN stack.
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Figure 9. Band lineups of different dielectrics with GaN alongside their respective dielectric constant
(Refs. [153–156]).

SiO2 has a high gap (~9 eV) but a low relative permittivity (~3.9) [157,158]. Its large gap
strongly reduces leakage current, and its thermal stability allows the use of high thermal
budgets (>800 ◦C). However, Ga diffusion into SiO2 can lead to increased leakage current as
well as reduced breakdown voltage [132]. A negative shift of VFB at high PDA temperature
(800 ◦C) was also reported and attributed to the formation of VO after hydrogen reduction
with interfacial GaOx [133].

SiNx has a lower gap (~5.5 eV) and a higher relative permittivity (~7.5) [157,158]. The
VN passivation with SiNx leads to a lower reported density of interface states [134,135].
However, because of its small gap, gate leakage may be, in certain cases, too high [136].

Al2O3 has a high gap (~7 eV) and relative permittivity (8~10) [157,158]. Regarding the
interface, Dit values ranging from 1011 to 1013 cm–2·eV–1 are found in the literature depend-
ing on the deposition and treatment before or after Al2O3 formation [159–161]. However,
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amorphous Al2O3 has a lower thermal stability than SiNx and SiO2. Crystallization typ-
ically occurs at about 800 ◦C [160] on as-grown GaN and a beginning of crystallization
can be observed at 600 ◦C on etched GaN [162]. When PDA is applied, usually between
400 ◦C and 800 ◦C, a general increase of VTH/VFB is reported [163–166], VTH hysteresis is
reduced [167] and electron mobility is increased [137,163,166]. These improvements can be
related to the reduction of positive charges in both GaOx [152,166] and Al2O3 [165], or to
the reduction of interface states [164,167,168].

With the respective limitation of commonly used dielectrics, one approach is to develop
ternary alloys to benefit from their specific properties.

3.2.1. Al2O3 and AlN Alloys for Improved Thermal Stability and Lower Electron
Trapping: AlON

AlON is an example of such an alloy, consisting of a mixture between Al2O3 and
AlN, and having many advantages compared to Al2O3 and AlN. It can be deposited by
different techniques:

• Sputtering of an Al source with a flow of O2 and N2 [169];
• Nitriding ALD Al2O3 with N2 plasma [170,171];
• ALD with trimethylaluminium (TMA) and N2/O2 precursors [172];
• ALD nanolaminates of Al2O3 and AlN [173,174];
• Oxidation of ALD AlN with O3 [175,176].

In terms of advantages, the introduction of nitrogen into the Al2O3 matrix reduces cur-
rent leakage by both passivating VO defects [177] and increasing the electron barrier height
between AlON and GaN [171], although AlON’s band gap was reported to be smaller than
Al2O3 [169,175]. The passivation of these defects could explain the reduction in hysteresis
and electron injection reported for AlON in the literature [169,171,173,175,177,178]. Nozaki
and co-workers indeed reported a reduction in electron injection with increasing nitrogen
concentration, whereas Kang and co-workers reported a reduced VTH instability under
positive bias stress (Figure 10a). Furthermore, the presence of nitrogen induces the presence
of negative fixed charges allowing VFB to increase [170,173]. With a fully recessed MIS gate
HEMT, a similar VTH of ~2.25 V is found for AlON and Al2O3 [171]. According to an ab
initio study by Choi and co-workers, the introduction of nitrogen into crystalline Al2O3
induces negative fixed charges for n-type doped GaN [179]. However, according to Guo
and co-workers, these nitrogen defects are absent in the amorphous Al2O3 gap. Thus the
negative charges introduced by these defects are also absent [180].
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Figure 10. For both Al2O3 and AlON deposited in a MOSc-HEMT: (a) VTH shift with positive bias
stress at room temperature and at 150 ◦C (b) field effect mobility extracted for a VDS at 0.1 V [171]
(© IOP Publishing. Reproduced with permission. All rights reserved).

Regarding the interface, AlON reduces interface states mostly for defect energy level
from the conduction band or EC–ET higher than 0.35 eV, possibly through the reduction
of GaOx at the interface [169,171,173,178]. With a better interface than Al2O3/GaN, field
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effect mobility (µFE) for MOSc-HEMT with AlON increases by ~19% up to 235 cm2·V−1·s−1

(Figure 10b) [171].
However, while AlON has better immunity to electron injection, Hosoi and co-

workers [181] reported a hole injection which could be problematic in the case of negative
stress. These hole traps would be explained by the existence of defects in the N2p orbital
near the AlON’s valence band [182].

With the incorporation of nitrogen, AlON also benefits from a higher thermal stability
up to 800 ◦C in PDA [169]. As such, the high temperature PDA or post-metallization
annealing (PMA) allows increased VFB and reducing its hysteresis [170,178]. However, few
studies reported the impact of different PDA temperatures.

3.2.2. Al2O3 and SiO2 Alloys for Improved Thermal Stability and Lower Electron
Trapping: AlSiO

As well as AlON, AlSiO is a ternary alloy of Al2O3 and SiO2, combining the higher
relative permittivity of Al2O3 (~9) with the higher band gap of SiO2 (~9 eV). It can be
deposited by different techniques:

• Sputtering a silicon doped aluminum target [183,184];
• MOCVD [185–187];
• ALD nanolaminates of Al2O3 and SiO2 [151,188–191].

By increasing the silicon concentration, the conduction band offset between AlSiO and
GaN increases, reducing the leakage current [188,189]. The incorporation of silicon reduces
the hysteresis [184–187] with Sayed and co-workers reporting a reduction in hysteresis for
MOCVD AlSiO with increasing silicon percentage up to 46% [187]. However, they also
describe a negative hysteresis for a percentage equal to 76%, possibly originating from
mobile charges. Concerning VFB, the impact of silicon content differs in the literature.
Komatsu and co-workers reported an increase in VFB for a silicon content of 29% [184],
Gutpa and co-workers reported a reduction in VFB [186], and Kikuta and co-workers
reported a small correlation between VFB and silicon content [188]. These differences could
be due to the introduction of either positive or negative charges, or the different deposition
methods used. More recently, Smith and co-workers reported an increase of VTH with
increasing Si content, this effect magnified with AlN interfacial layer [150]. Furthermore,
by ab initio simulation, Chokawa and co-workers described a lower formation energy of
VO defects when the silicon concentration increases [192]. Unlike VO defects that would
be electrically active (VO

2+) in Al2O3 [193], these vacancies surrounded by silicon are
electrically inactive. However, the transition energy (2+/0) for VO defects is approximately
at 2.8~3.5 eV from the alumina’s valence band (1.9~2.6 eV from GaN’s valence band if the
valence band off-set is considered to be 0.9 eV) [193,194]. In the case of n-doped and UID
GaN, VO defects would already have a neutral charge state. For p-doped GaN, this defect
can be a source of hole leakage [194].

Finally, regarding the interface between AlSiO and GaN (0001) (or Ga-Face), the ab-
sence of dangling bonds is observed by ab initio simulation and explained by oxygen
migration from the dielectric to the interface [195]. Thus, a low Dit is observed when com-
pared to Al2O3/GaN (0001) interface [185,186]. In the case of p-MOSFET, the extracted µFE
was found to be around 27.7–36.2 cm2·V−1·s−1 [191]. Similar to AlON, the incorporation of
Si increases the thermal stability with respect to Al2O3 [185,190].

A study of PDA on AlSiO with Si content of 22% was carried out by Kikuta and
co-workers by annealing from 650 ◦C to 1050 ◦C under N2 for 10 min [190]. A reduction in
hysteresis and in VFB drift under positive stress for a PDA higher than 650 ◦C was observed
(Figure 11). For a PDA above 850 ◦C, a plateau on the I–V characteristic related to electron
trapping is reduced. Contrary to Al2O3, AlSiO presents no sign of crystallization for a PDA
at 850 ◦C. However, the same group observed the onset of crystallization for AlSiO at the
interface for a PDA at 950 ◦C. The proposed solution to reduce this crystallization was the
deposition of a thin SiO2 layer at the AlSiO/GaN interface. Moreover, the SiO2 interfacial
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layer improves µFE by 50% (i.e., 27.7–36.2 cm2·V−1·s−1), and it is explained by the possible
reduction of border traps [191].
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3.2.3. HfO2 and SiO2 Alloys for Improved Mobility: HfSiOx

Another interesting approach is the use of HfSiOx by mixing HfO2 and SiO2 by
ALD [69,196–199]. As AlSiO, HfSiOx is deposited by alternating ALD HfO2 and ALD
SiO2. Hf and Si composition is controlled by adjusting the ratio of HfO2 and SiO2 ALD
cycles [198,199]. HfO2 has a higher relative permittivity but suffers from low thermal
stability. In the same way with AlSiO, the introduction of Si increases the thermal stability.
In that matter, non-crystallized film after a PDA at 900 ◦C for 5 min is reported with a
silicon content of 43% [199]. Reported values of relative permittivity are on the order
of 13~18 with a high band gap around 6.5 eV, close to reported ALD Al2O3 band gap
of 6.8 eV [196,199,200]. Compared to HfO2, HfSiOx leads to lower hysteresis possibly
associated to fewer electron traps, but a lower VFB/VTH induced by possible positive
charges is also reported [197,198]. For an ALE fully recessed MIS gate HEMT, a positive
VTH of 2.1 V was reported [196].

In terms of interface quality with GaN or AlGaN, HfSiOx has lower Dit than HfO2
and Al2O3 (around 5 × 1011 cm−2·eV−1 at EC–ET ≈ 0.3 eV), possibly because of the high
temperature PDA applied (i.e., 800 ◦C). This highlights the higher interface quality of
GaN with HfSiOx than with HfO2 and Al2O3 [196,198,199]. Combined with the high
relative permittivity, transconductance is increased compared to Al2O3 in AlGaN/GaN
HEMTs [199]. With an ALE fully recessed MIS gate HEMT, a µFE of around 406 cm2·V−1·s–1

is obtained [196].

3.2.4. Al2O3 and TiO2 alloy for VTH Engineering: AlTiO

Finally, the use of AlTiO, a ternary alloy of Al2O3 and TiO2 obtained through the
deposition of ALD Al2O3 and TiO2 nanolaminates offers an interesting solution to increase
VTH [201,202]. Combining Al2O3 with TiO2 lead to finding a trade-off between TiO2
high relative permittivity but small band gap (60 and 3.5 eV, respectively) with Al2O3
lower relative permittivity and higher band gap (~9 and ~7 eV, respectively) [157,158].
The obtained band gap and relative permittivity are in the order of 5–6 eV and ~22,
respectively [201,202]. However, the major gain with AlTiO consists in the increase of
VFB/VTH. Indeed, on the one hand, Nguyen and Suzuki reported that with a decreasing Al
content from 100% to 35%, a reduction of positives charges at the AlTiO/AlGaN interface
is observed and explained by the reduction of O-Ga and O-Al at the surface by Ti [202].
Combined with partially recessed AlGaN barrier, further reduction of interfacial charges is
obtained as shown in Figure 12a, leading to a VTH of 1.7 V with an Al content of 73% and
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a remaining AlGaN barrier of 4 nm [203]. Nonetheless, gate voltage of −6 V is reported
to induce a VTH negative shift of −0.5 V [203]. On the other hand, Gupta and co-workers
reported a normally-OFF HEMT with a partially recessed AlGaN barrier (8 nm) and an
AlTiO layer after PDA [201]. With increasing Al content from 10% to 52%, an increase in
VTH is observed, allowing a VTH of 0.5 V. Compared to Al2O3 and TiO2 on HEMTs, higher
VTH is obtained with a Ti content of 50% as represented in Figure 12b. The increase of
VTH with Al content is explained and confirmed by the formation of p-type doping with
deep acceptors states close to AlTiO’s valence band [204]. These states are formed by Al
replacing Ti in TiO2. Hence with higher Al content up to 52%, more p-doping is obtained.
Concerning hysteresis, a low hysteresis of 40 mV for VDS of 15 V was reported. Finally, by
combining both results, it seems that an intermediate Al content is the optimal content to
have the highest VTH.
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characteristic for Al2O3, TiO2, Al0.2Ti0.8Oy, and Al0.5Ti0.5Oy on HEMTs. Decreasing Ti content up
to 52% increase VTH in comparison to Al2O3, TiO2, and Al0.2Ti0.8Oy (Reprinted from [204], with the
permission of AIP Publishing).

3.2.5. Summary

In conclusion, many dielectric candidates exist for MOSc-HEMT, from standard Al2O3
to alternative solution such as ternary alloys. Their implementation is beneficial for both
electrical (i.e., hysteresis and VTH) and material properties (i.e., crystallization temperature).
For high thermal stability, AlON, AlSiO, and HfSiOx are interesting, allowing higher ther-
mal budget in the fabrication process. Better interface and less defects are also commonly
reported for those dielectrics. Finally, AlTiO offers an interesting approach to increase the
threshold voltage. Since AlTiO in a fully recessed gate is not yet reported, it would be
reasonable to verify the possible VTH obtained from this gate stack. A summary of the
MOSCAPs discussed in this section is represented in Table 3.

Table 3. Summary of mentioned MOSCAPs.

Dielectric Substrate Wet
Cleaning

Deposition
Technique Annealing VFB (V) ∆VFB (mV) Dit (cm−2·eV−1) Ref.

6 nm Al2O3 n-GaN
(Si:5 × 1018 cm−3)

NH4OH

ALD PMA 400 ◦C N2/H2
15 min

~1.1 0 1012 (EC − ET = 0.5 eV) [170]5 nm AlON
(6.2% N) PEALD ~1.4 40 1013 (EC − ET = 0.5 eV)

11.5 nm AlON AlGaN/GaN
Acetone cleaning

PEALD
nanolaminates

PDA 600 ◦C N2 30 s
PMA 400 ◦C N2/H2

3 min

+1.5 compared
to Al2O3

/ 1013–1011

(EC − ET = 0.42–0.54 eV) [173]

10.5 nm AlON
(~8% N)

AlGaN/GaN
5 min of 5% HCl ALD PDA 800 ◦C N2 3 min

PMA 600 ◦C N2 3 min / / / [175]
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Table 3. Cont.

Dielectric Substrate Wet
Cleaning

Deposition
Technique Annealing VFB (V) ∆VFB (mV) Dit (cm−2·eV−1) Ref.

25 nm Al2O3 n-GaN
(2 × 1017 cm−3) MOCVD /

−1.2 10(after 10 min
at +4 V)

4.9 × 1012

(EC − ET = 0.15 to 2 eV) [185]
25 nm AlSiO

(~44% Si) −2.4 3 (after 10 min at
+4 V)

6.4 × 1011

(EC − ET = 0.15 to 2 eV)

25 nm Al2O3 n-GaN
(2 × 1017 cm−3) MOCVD /

0.28 / 5.3 × 1012

(EC − ET = 0.15 eV) [186]
25 nm AlSiO

(28% Si) −4.3 / 1.9 × 1012

(EC − ET = 0.15 eV)

24 nm AlSiO
(~46% Si)

N-face n-GaN
(2.5 × 1017 cm−3) MOCVD / / 45 / [187]

20 nm Al2O3 n-GaN
(Si:1 × 1017 cm−3)

1% HF

PEALD PDA 650 ◦C N2 1 hr
PMA 400 ◦C N2 5 min

−0.5 / 5.8 × 1011

(EC – ET = 0.7 eV) [188]
20 nm AlSiO

(21% Si)
PEALD

nanolaminates −0.3 / 7.8 × 1011

(EC – ET = 0.7 eV)

40 nm AlSiO
(22% Si)

n-GaN
(Si:1 × 1017 cm−3)

1% HF

PEALD
nanolaminates

PDA 950 ◦C N2 10
min

Negative shift
compared to
ideal curve

/ / [190]

20 nm HfO2
Etched GaN

HCl ALD
/

/ 200 2.5 × 1013

(EC − ET = 0.37 eV) [197]

20 nm HfSiOX
Etched GaN

HCl
ALD

nanolaminates / 150 1.6 × 1012

(EC -ET = 0.37 eV)

25.7 nm HfO2 n-GaN
(1.3 × 1018 cm−3)

Piranha +
buffered HF

PEALD PDA 800 ◦C N2 5 min 2.05 600 6 × 1013–4 × 1011

(EC − ET = 0.12–0.58 eV) [198]
23 nm HfSiOx

(43% Si)
PEALD

nanolaminates 0.63 70 8 × 1011–2 × 1011

(EC -ET = 0.15–0.6 eV)

4. Conclusions

The fully recessed MIS gate GaN HEMT (or MOSc-HEMT) is a promising solution for
normally-OFF GaN-based power devices thanks to its positive threshold voltage, reduced
leakage current, and higher allowed gate-voltage swing. Its development can be challenging
due to the impact of different process steps of the transistor. The main effect is the low
and unstable VTH, and the reduced mobility at the gate channel. In addition, the necessary
etching of the AlGaN barrier introduces a GaN surface far from pristine.

The main challenges are a proper characterization of the induced damage and a process
integration compatible with industrial requirements. Among the current developments,
ALE represents a useful tool to mitigate the damage caused by ICP-RIE. Its controlled
etching process associated to the removal of the damaged layer can reduce the roughness
and increase the electron mobility. In similar fashion, recent work on selective area growth
shows promising results but shares the same issues related to the dry etching step.

In addition to the etched surface, the GaN surface has a tendency to both contain more
impurities than semiconductors such as silicon and has difficulty removing native gallium
oxide (i.e., GaOx). This surface condition presents a challenge, specifically during air-break
transitions. A recovery towards a more pristine GaN surface is possible through optimized
etching (low impact etching and ALE) combined with specific surface treatments, from wet
cleanings (e.g., HF or NH4OH) to plasma treatment (e.g., remote plasma pretreatment).

Interface layer, such as AlN, seems mandatory to increase the electron mobility as well
as to protect the recessed surface from oxidation during dielectric deposition. The choice of
the dielectric is also important, both to optimize the dielectric/GaN interface and be suitable
with the integration process of the fully recessed MIS gate transistors. Al2O3 is frequently
used thanks to its high band gap and high relative permittivity. However, instable VTH, low
electron mobility and low thermal stability can limit its integration. Ternary alloys such as
AlON, AlSiO, and HfSiOx could improve the above mentioned electrical properties as well
as the thermal stability. As such, for AlON and AlSiO associated with high temperature
annealing, immunity to electron trapping increases, hence, opening a path to lower VTH
instability. Moreover, the possible introduction of negative charges in AlON could increase
VTH. Another alternative is HfSiOx which allows an increase in the electron mobility thanks
to both its good interface quality with GaN and its high relative permittivity. Combining
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HfSiOx with AlN interfacial layer could possibly further increase the electron mobility.
Specifically for VTH engineering, the implementation of an AlTiO gate dielectric with an
intermediary Ti content in fully recessed MIS Gate should further increase the VTH thanks
to its apparent p-type behavior. However, from the reviewed literature on MOSc-HEMT,
the process having the highest VTH is still in [166] with ICP-RIE and digital etching using
Al2O3 with a PDA at 400 ◦C.

To summarize, the combination of different process steps from etching to dielectric
deposition need to be well controlled in order to fit the desired final device properties. Such
developments are also important in the case of vertical GaN MOS trench-gate transistors.
A summary of the mentioned MOSc-HEMTs is reported in Table 4. Finally, a better under-
standing of gate–trench sidewall quality is needed in order to fully quantify their impact
on device properties.

Table 4. Summary of mentioned fully recessed MIS gate HEMTs.

Substrate Etching Surface
Preparation

Interfacial
Layer Dielectric

Annealing
After

Deposition

VTH
(V)

∆VTH
(mV)

Mobility µFE
(cm2·V−1·s−1)

Dit
(cm−2·eV−1) Ref.

Si/GaN/AlN/AlGaN ICP-RIE: Cl
based

NH4OH 0.6%
75 ◦C / Al2O3 / 0.6 a / / / [91]

Sapphire/GaN/
Al0.26Ga0.74N ICP-RIE TMAH 5%

90 ◦C 1 hr / Al2O3
Ohmic contact:
30 s 800 ◦C N2

3.5 b / / / [83]

Si/Al(Ga)N/GaN/
AlN/Al0.2Ga0.8N/GaN/
AlN/Al0.26Ga0.74/GaN

ALE:
Oxidation

+ KOH
/ / Al2O3

PDA: 10 min
400 ◦C O2

0.4 a 200 396 / [74]

Si/AlN/AlGaN/GaN/
Al0.2Ga0.8N

Selective
Area

Growth

UV treatment
+ acid

solution
/ Al2O3 PDA under N2 ~0.5 c ~0 / / [133]

Si/GaN/AlN/AlGaN
Selective

Area
Growth

HF/H2SO4/HCl / Al2O3
Ohmic contact:
30 s 850 ◦C N2

2.6 b / 80

Lowest =
9 × 1012

Highest =
1 × 1013

[134]

Sapphire/GaN/AlN/
Al0.25Ga0.75N/GaN

ICP-RIE:
BCl3/Cl2

NH3:H2O +
Oxidation

through thin
Al2O3 + HCl

wet etch

/ Al2O3
PMA: 5 min
450 ◦C O2

2.8 a 300 48 / [63]

Si/GaN/AlN/
Al0.25Ga0.75N/GaN

ICP-RIE +
digital
etching

/

ICP/RF
5/10W +

O2 plasma
+ NH3

annealing:
GaON

SiNx
Ohmic contact:
30 s 850 ◦C N2

1.15 a 200 150

Lowest =
3 × 1012

Highest =
1 × 1013

[139]

Sapphire/GaN/
Al0.23Ga0.77N/GaN

Wet
etching /

PECVD RF
200W N2O:

GaON
SiNx

Ohmic contact:
30 s 870 ◦C N2

1.2 a / /

Lowest =
~3 × 1012

Highest =
1 × 1013

[143]

SiC/GaN/AlN/
Al0.25Ga0.75N

ICP-RIE:
BCl3/Cl2

/ PECVD
300W: N2O Al2O3

Ohmic contact:
30 s 840 ◦C 1.5 b / 658

Lowest =
1.5 × 1011

Highest =
8 × 1012

[144]

Si/GaN/AlN/
Al0.25Ga0.75N

Digital
etching:

O2 plasma
+ HCl

RPP AlN Al2O3 PDA: 500 ◦C O2 0.3 a 900 165 1011 ~ 1012 [149]

Si/GaN/ALN/AlGaN

ICP-RIE:
BCl3/Cl2

Digital
etching:

O2 plasma
+ HCl

/ / Al2O3
PDA: 10 min

400 ◦C N2
5.2 a 400 70 / [166]

Si/GaN/AlN/AlGaN ICP-RIE:
BCl3/Cl2

/ / AlON

PDA: 10 min
500 ◦C N2

PMA: 10 min
400 ◦C N2/H2

2.25 c 180 235

Lowest =
3.5 × 1011

Highest =
1 × 1013

[171]

Si/GaN/Al0.25Ga0.75N
ICP-RIE:

SF6
BCl3/Cl2

/ AlN Al0.23Si0.77O PDA ~0.5 c / 1000 (µeff) / [150]
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Table 4. Cont.

Substrate Etching Surface
Preparation

Interfacial
Layer Dielectric

Annealing
After

Deposition

VTH
(V)

∆VTH
(mV)

Mobility µFE
(cm2·V−1·s−1)

Dit
(cm−2·eV−1) Ref.

Si/GaN/AlN/
Al0.25Ga0.75N

ALE: O2 +
BCl3

plasma
/ / HfSiOx / 2.1 b / 426

Lowest =
3 × 1011

Highest =
6 × 1012

[196]

VTH extracted by: a normalized fixed IDS current; b linear extrapolation; c extraction technique not mentioned.
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