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Abstract: Establishing a wind-solar-hydro hybrid generation system is an effective way of ensuring
the smooth passage of clean energy into the grid, and its related scheduling research is a complex
and real-time optimization problem. Compared with the traditional scheduling method, this research
investigates and improves the accuracy of the scheduling model and the flexibility of the scheduling
strategy. The paper innovatively introduces a sand-table deduction model and designs a real-
time adaptive scheduling algorithm to evaluate the source-load matching capability of the hybrid
wind-solar-hydro system at ultra-short-term scales, and verifies it through arithmetic examples.
The results show that the proposed adaptive sand-table scheduling model can reflect the actual
output characteristics of the hybrid wind-solar-hydro system, track the load curve, and suppress the
fluctuation of wind and solar energy, with good source-load matching capability.

Keywords: hybrid system; source-load matching; scheduling; load curve; ultra-short-term; self-adaptive

1. Introduction

The development and utilization of clean energy such as hydro, wind, and solar
power are considered key solutions to solve the climate problem [1] and achieving carbon
neutrality because of their renewable and non-polluting characteristics [2]. However, wind
and solar power generation are random in nature, its transient fluctuations are strong,
causing a significant impact on the grid [3], so multi-energy complementary development
is needed to suppress the fluctuation of wind and solar power output and ensure the
stability of feed-in power [4]. Hydraulic turbines can regulate runoff, and the sensitivity
of the unit to stop and start, increase or decrease load is high, making them the optimal
complementary energy source for wind and solar multi-energy development [5]. Therefore,
establishing a wind-solar-hydro hybrid renewable energy system (HRES) is an effective
way of ensuring the smooth passage of clean energy into the grid [6].

Global electricity demand has grown rapidly in recent decades, on the power demand
side, the load peak-to-valley differential grows rapidly during peak periods, posing a
whole new challenge to the peak-regulation capability of the grid; on the power supply
side, as wind and solar enter the grid in large quantities, their inherent volatility, anti-peak
regulation, and fluctuation exacerbate the uncertainty of power supply [7]. Therefore, grid
security during peak periods has become the main conflict in HRES operation [8]. In HRES,
hydropower is responsible for tracking the load curve and regulating the fluctuation of
solar and wind power, so the research of source-load matching scheduling for hydropower
has become a key issue for the smooth passage of HRES into the network [9].
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Previous scholars have conducted extensive research on source-load matching schedul-
ing strategies for HRES. Uddin et al. [10] enumerated different techniques for a hybrid
system scheduling method and discussed their operation and control methods in detail.
Li et al. [11] constructed a hybrid clean energy microgrid and a two-tier dispatch model
for use in a scheduling study from an economic perspective. Ma et al. [12] adopted the
Mixed Integer Linear Program algorithm in the scheduling research, phased calculating the
HRES short-term scheduling strategy. Li et al. [13] proposed an implicit optimal schedul-
ing research framework, which differs from the traditional algorithm-based scheduling
research model, and undertook short-term scheduling research in the form of building a
library of operational rules. Wang [14] considered the study of scheduling strategy for co-
operative wind, and photovoltaic operation with a dual hydraulic turbine, and verified its
source-load matching capability with arithmetic examples. Further, some scholars consider
the stochastic and fluctuating nature of wind and solar power in the HRES scheduling
strategy. Diana et al. [15] discussed the influences of the uncertainty of wind and solar
energy on an isolated microgrid. Liao et al. [16] modeled the uncertainty of wind and
solar output, proposed the HRES short-term scheduling model considering wind and solar
risk deviation, and verified the validity of the model using arithmetic examples. Chen
et al. [17] solved the problem concerning wind and solar output uncertainty by establishing
wind and solar confidence intervals in the scheduling research. Liu et al. [18] analyzed the
wind and solar prediction error distribution with kernel density estimation, considering
the prediction error as a constraint in the scheduling study.

1.1. Gaps in the Research

Traditional HRES source-load matching scheduling research is usually based on a
short-term scheduling model, which calculates the next-day scheduling strategy for hy-
dropower according to certain objective functions and constraints based on the day-ahead
forecasts parameter of wind, solar, and load; however, engineers using the short-term
scheduling research model face difficulties when trying to solve the following problems:

1. Model input: The HRES scheduling models input parameters such as wind speed
and solar radiation intensity are usually based on short-term prediction models,
which type of model has some error due to the long prediction time, resulting in
errors between the scheduling model and the actual peak-shaving demand, and the
reference of hydropower scheduling strategy seeking results is weak.

2. Model construction: the wind, solar, and hydro power output in the short-term
scheduling model is usually measured by empirical formulae, which is difficult to
apply to all types of wind and solar power units, and cannot describe the process
of unit output, which may lead to errors in the measured values of wind, solar and
hydro output.

3. Scheduling method: in the HRES short-term scheduling model, hydropower operates
on an hourly scale peaking on the following day according to the previous day’s
scheduling-seeking strategy, while wind, solar power, and load actually show minute-
scale fluctuations, and the lack of flexibility in hydropower peaking leads to the
scheduling model’s inability to achieve source-load matching.

1.2. Motivation and Contribution

According to the aforementioned gaps in the research, in the HRES short-term schedul-
ing study, there are problems of insufficient accuracy of scheduling models and poor
flexibility of scheduling strategies in the HRES short-term scheduling study. In the present
HRES scheduling research, the method of hybrid system scheduling under the ultra-short-
term scale is proposed. The ultra-short-term scheduling is characterized by capturing
peaking demand in real-time based on ultra-short-term forecasts of wind, solar, and load
with short forecast time and high accuracy, and giving hydropower a quick-peaking sig-
nal to ensure that the hybrid system tracks the load curve in real-time. Ultra-short-term
scheduling differs from short-term planning scheduling research, which is a complex, real-
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time, unscheduled, stochastic optimization problem that uses a more accurate scheduling
model and shortens the scheduling decision time to facilitate source-load matching by
HRES. Short-term scheduling models and strategies are inapplicable to ultra-short-term
research.

As for the scheduling model, the electricity sand-table deduction model draws on the
military-style sand-table simulation, based on the electricity modular simulation model,
deducing whether a scheduling method or regulation measures (which can be deemed
analogous to war scenarios) is correct, the safe and stable operation of power system is
simulated by sand-table deduction model. The model realizes real-time adaptive scheduling
of hybrid systems by constructing a power simulation model, making real-time decisions,
simulating and evaluating various scheduling schemes according to peak-shaving demand,
and finding out feasible hydropower operation strategies. Here, the sand-table deduction
model is introduced into the HRES ultra-short-term scheduling study to guide the source-
load matching scheduling operation at the ultra-short-term scale.

As for the scheduling strategy, the ultra-short-term scheduling research place higher
demands on the timeliness and effectiveness of the scheduling strategy. Therefore, this
paper introduces the ultra-short-term real-time adaptive scheduling strategy, which takes
source-load matching as the target, automatically detects HRES output in the scheduling
model, analyzes peaking demand in real-time, gives rapid peaking signals to hydropower,
and guarantees HRES has the ability to track the load curve in real-time at the ultra-short-
term scheduling scale. The sand table deduction model and adaptive scheduling algorithm
proposed in this paper can solve the following problems:

1. Model input: for the wind speed and solar radiation in the input parameters of the
scheduling model, replacing short-term forecasts with ultra-short-term forecasts of
shorter prediction time and higher accuracy as input, to reduce scheduling model
input errors.

2. Model construction: building HRES electricity sand-table deduction model to obtain
wind, solar, and hydro power output, instead of obtaining output by traditional
empirical formulae, effectively reflecting the actual output and change process of each
type of energy in HRES.

3. Scheduling method: constructing ultra-short-term real-time adaptive scheduling
strategy instead of the traditional short-term planned model to give full play to
the hydropower peak regulation potential and increase the source-load matching
capability of the scheduling model.

The structure of the paper is as follows: Section 1 introduces the overview and method-
ology of the ultra-short-term scheduling research, Section 2 constructs the ultra-short-term
sand-table deduction model and real-time adaptive scheduling strategy, Section 3 summa-
rizes the analysis of some examples, and the conclusions are summarized in Section 4.

2. Methodology

The sand-table deduction model is used to guide the ultra-short-term scheduling
operation of HRES, and the constructed sand-table model should reflect the actual output
of HRES as far as possible. The sand-table model is shown in Figure 1, including the
input model, deduction model, deduction method, and evaluation indicator. Among them,
the input model includes the wind, solar, and load ultra-short-term forecast parameters
required for the scheduling; the deduction model takes the actual output of the HRES as
the modeling target, modular modeling the electric power simulation model of wind, solar,
and hydropower. The deduction method is the real-time adaptive scheduling process of
the hybrid system, including state analysis, decision adjustment, real-time deduction, and
dynamic evaluation. The evaluation indicator is used to assess the results of the HRES
deduction output.
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Figure 1. Sand-table deduction methodology.

The HRES sand-table model-related parameters are listed in Table 1.

Table 1. Sand-table model-related parameters.

Parameters Description S Solar Radiation Intensity

Wind power U Voltage of PV array
PWT Wind power output I Current of PV array
Pr Wind turbine mechanical power output Hydro power
Cp Wind energy utilization PHT Hydropower output
ρ Air density YPID Output of the governor
R Wind wheel radius Y Output of the guide vane opening value
V Wind speed Ty Response time constant of the servo-motor
λ Leaf tip speed ratio H Head of water
β Pitch angle Q Flow through the hydraulic turbine
W Wind wheel rotational speed hw Characteristic coefficient of the penstock
Tβ Time constant (0.2) Tr Time constant of the elastic water hammer
τ Time delay (0.2 s) Mt Mechanical torque

βr Pitch angle setting value ey
Transfer coefficient of the mechanical torque
Mt to the guide vane opening Y.

λopt Optimal leaf tip speed ratio eh
Transfer coefficient of the mechanical torque
Mt to the water head H

Solar power eqh
Transfer coefficient of the water flow Q to
the head of water H

PPV Solar power output X Rotation speed of the hydraulic turbine

Isc Short-circuit current (4.75 A) M Difference in mechanical torque input by the
hydraulic turbine

Voc Open-circuit voltage (21.75 V) Ta Inertia time constant
Im Current in maximum power point (4.515 A) en Comprehensive self-adjusting coefficient
Vm Voltage in maximum power point (17.25 V) Evaluation indicator
Tref Operating temperature I Source-load matching indicator

Sref Solar radiation reference value (1000 W/m2) mi Rate of change of the output of the HRES
within sampling time i

C1, C2, T1, S1 Intermediate variables mi
L

Rate of change of the load demands within
sampling time i

a, b Compensation factor
(a = 0.0054, b = 0.21)

T Air temperature

2.1. Input Model

The input model consists of the ultra-short-term predictive external parameters re-
quired for deduction, including solar radiation intensity, air temperature, surface wind
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speed, and load demand curve. The forecast data can be obtained from the power plant
operating data.

2.2. Deduction Model

The sand-table deduction model is shown in Figure 2, including the electricity simula-
tion model of a wind power generation system, a solar power generation system, and a
hydropower generation system, with the goal of reflecting the power output characteristics
of each power source for modular modeling.
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Figure 2. Sand-table deduction model.

2.2.1. Wind Power System Model

The wind power system model includes multiple turbine units, each consisting of a
wind turbine module, a controller module, a pitch module, and a generator module. The
input to the wind power system is the ultra-short-term predicted external wind speed and
the output is the wind power output PWT.

(1) Wind wheel module

The wind wheel module receives wind at speed and converts wind energy into
mechanical power output. The relationship between the mechanical power output by the
wind wheel and the wind speed is expressed as follows [19]:

Pr = Cp(λ, β)0.5ρπR2V3 (1)

The following equation is used to calculate the wind energy utilization coefficient
Cp [20]:

Cp = Cp(β, λ) = 0.22[ 116
λi

− 0.4β − 5]e−
12.5
λi

1
λi

= 1
λ+0.08β − 0.035

β3+1

(2)

To calculate the wind energy utilization rate Cp, the leaf tip speed ratio λ is introduced.

λ =
WR
V

(3)

(2) Controller module
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The controller module controls the wind turbine status and the amount of mechanical
energy output. Due to the non-linearity of wind turbines, the wind speed affects the output
of each unit. In accordance with different wind speeds, the controller has two control
mechanisms: a variable rotor and a variable pitch angle. The controller modeling process is
shown in Appendix A.

(3) Variable pitch module

A hydraulic driving system in the variable pitch model of large-scale wind turbines
is simulated with an inertial system with delay. The transfer coefficient is expressed as
follows:

β(s)
βr(s)

=
1

Tβs + 1
e−τs (4)

(4) Generator module

The generator can convert mechanical energy into electrical output, usually a perma-
nent magnet synchronous generator. Since the permanent magnet synchronous turbine has
no gearbox, the turbine drive shaft is connected to the generator rotor, and the transmission
loss is negligible.

2.2.2. Solar Power System Model

The solar power system model consists of a PV array: a practical PV array model is
therefore adopted in the present research. The solar power system input is the ultra-short-
term predicted solar radiation intensity and temperature, and its output is PPV.

(1) PV array module

In this section, the mathematical expressions of the simulation model of a PV array
are obtained as follows (Equation (5)) [21]:

C1 =
(

1 − Im
Isc

)
exp

(
− Vm

C2Voc

)
C2 =

(
Vm
Voc

− 1
)

/In
(

1 − Im
Isc

)
T1 = T − Tre f
S1 = S

Sre f
− 1

D = IscS1 + aT1(1 + S1)
dv = bT1 + DRs

I = Isc

{
1 − C1

[
1 − exp

(
V+dv
C2Voc

)]}
+ D

Ppv = UI

(5)

(2) Maximum power capture module

The maximum power capture module ensures that the PV achieves maximum power
capture, usually using the constant voltage tracking method. When the solar radiation is
greater than a certain value and the temperature does not change much, the maximum
power point of the PV array is almost distributed near the two sides of a vertical line, and
the PV array output voltage is controlled at a certain voltage near its maximum power
point, the PV array will obtain the approximate maximum power output.

2.2.3. Hydropower System Model

A hydropower system is usually a mixed-flow hydraulic turbine, including a governor,
an electro-hydraulic servo system, a pressure penstock, and a hydraulic turbine. The
hydraulic turbine is used to adjust the output PHT according to the peak-shaving signal
value.

(1) Governing system module

The governor is the core of the stable operation of the hydro turbine, which receives
the peak shaving signal and converts it into a suitable output power setting to realize peak
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regulation operation. The PID-type microcomputer-based controller is usually adopted
and its principle of operation is shown in Figure 3 [22]. The controller inputs the output
power setting value and outputs the appropriate guide vane opening angle y.
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(2) Electro-hydraulic servo system module

In the dynamic process of large fluctuations in engineering practice, the transfer
function of the linear part of the hydraulic turbine servo-motor system is expressed in
Equation (6) [23].

G(s) =
Y(s)

YPID(s)
=

1
Tys + 1

(6)

(3) Pressure penstock and hydraulic turbine module

The transfer function of the pressure penstock system considering the effect of the
elastic water hammer is given by Equation (7) [24].

Gh(s) =
H(s)
Q(s)

= −hw
Trs + 1

24 Tr
3s3

1 + 1
8 Tr2s2

(7)

The transfer function of hydro-turbine can be written as Equation (8) [25].

Gt(s) =
Mt(s)
Y(s)

= ey
1 + ehGh(s)
1 − eqhGh(s)

(8)

According to Equations (7) and (8), the hydraulic turbine is modeled by considering
the effect of the elastic water hammer on the pressure penstock, as follows:

Gt(s) = ey
24 − 24ehhwTrs + 3T2

r s2 − ehhwT3
r s3

24 + 24eqhhwTrs + 3T2
r s2 + eqhhwT3

r s3
(9)

2.3. Scheduling Method

The scheduling method takes real-time source-load matching as the target, which
enables HRES to achieve adaptive peaking capability according to the output and load
demand deduced from the ultra-short-term scheduling model in real-time, and the schedul-
ing strategy method is shown in Figure 4. During any sampling interval, in the t1 period
detecting the peaking demand in real-time, and generating the hydropower peaking strat-
egy automatically; in the t2 period adopting the hydropower peaking strategy within the
sand table model for rapid deduction, obtain the HRES output, in the t3 period performing
dynamic evaluation for HRES output; then repeating steps t1, t2, and t3 and adjust the
hydropower peaking strategy, until the hybrid system model output meets the peaking
demand, and then outputs the hydropower peaking strategy.
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real-time adaptive scheduling algorithm is illustrated in Figure 5.
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The ultra-short-term real-time adaptive scheduling method proceeds as follows:
Step 1: The source-load matching degree of the HRES at sampling time I is analyzed

and the difference between HRES output and load demand at time i is calculated. If the
difference satisfies the maximum allowable power supply difference α of the grid, the
source load matches, wait until time (i + 1) to sample and analyze the data again; otherwise,
the source load does not match, so then, the maximum peaking capacity of hydropower is
evaluated at this time, and prepared for the deduction;

Step 2: the hydropower peaking strategy is determined according to the hydropower
peaking capacity and the actual peaking demand at time i and the peaking signal Y to
hydropower is delivered in the deduction model. Then the time Ts used for stabilizing the
hydropower output to the power value set in the peaking strategy is evaluated. The wind
speed, solar radiation, temperature, and load demand ultra-short-term prediction values
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during Ts are read and the sand-table model is used to deduce and measure the wind, solar,
and hydropower output during Ts.

Step 3: the load demand and HRES output during Ts are determined according to
the previous deduction and the source-load matching degree of HRES is dynamically
evaluated, and if the evaluation requirements are satisfied, then jump out of the loop in the
deduction model and output the hydropower peak-shaving signal Y; if not, the peaking
signal Y is adjusted and the sand-table deduction and dynamic evaluation are conducted
again.

2.4. Evaluation Indicator

The dynamic evaluation indicator considers the HRES source-load matching capability.
The time taken to stabilize the hydropower output to the power value set by the peak-
shaving strategy in the scheduling model is assumed to be Ts. The source-load matching
indicator is expressed as follows:

minI =
1

Ts

Ts

∑
i=1

∣∣∣mi − mi
L

∣∣∣ (10)

3. A Case Study
3.1. Model Input

Taking the clean-energy base in the upper Yellow River Basin of China as the research
object, the region is rich in wind, solar, and hydropower resources, providing favorable
conditions for the construction of a large hybrid clean-energy base, with 2000 MW of wind
power, 4000 MW of solar power, and 4160 MW of hydropower planned therein. In the
present research, a wind farm (100 MW), a photovoltaic plant (50 MW), and a hydro turbine
(250 MW under planning) in the region with similar distances between them are taken as
an example to build an HRES sand-table deduction model and conduct an ultra-short-term
source-load matching scheduling study; the key parameters of the HRES model are listed
in Table 2 (wherein the required parameters and operating data were obtained from China
Hua’neng Dingbian Renewable Energy Power Generation Company).

Table 2. Parameters of HRES model in the examples.

Type Parameter Unit Value

Wind power

Total installed capacity MW 100
Installed capacity of

turbine MW 2.5

Number set 40
Hub height m 90

Rotor diameter m 121
Vcut-in m/s 3
Vcut-out m/s 22
Vrated m/s 10

Rated generator speed rpm 13.5

Solar power

Total installed capacity MW 50
Short-circuit current A 4.75
Open-circuit voltage V 21.75

Current at the maximum
power point A 4.515

Voltage at the maximum
power point V 17.25

Hydropower

Installed capacity
(design) MW 250

Normal water level
(design) m 645

Usable storage (design) 108 m3 4.776

Herein, the HRES sand-table deduction model includes a wind power plant, a pho-
tovoltaic station, and a hydraulic turbine. The total installed capacity of the wind power
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plant is 100 MW, including 40 wind turbines with 2.5-MW permanent magnet synchronous
turbines; the total installed capacity of the photovoltaic plant is 50 MW, using monocrys-
talline silicon photovoltaic modules; and the hydraulic turbine is a 250 MW mixed-flow
turbine.

To guarantee the diversity of scheduling deduction results, the HRES ultra-short-term
source-load matching scheduling study is carried out on typical days of summer and winter
in the example area respectively. The ultra-short-term forecast input parameters required
for the deduction include air temperature, solar radiation intensity, surface wind speed,
and load demand curve (Figure 6).
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As illustrated in Figure 6, the example area is rich in photovoltaic resources in summer
and poorer in wind-energy resources; rich in wind-energy resources in winter and poorer
in photovoltaic resources; the load demand in summer is greater than that in winter, and
the load curves all show three peaks and three valleys.

3.2. Model Construction

To guarantee that the sand-table deduction model proposed herein, as an ultra-short-
term scheduling research model, can reflect the real output characteristics of HRES, the
validity of the constructed wind, solar, and hydropower models are verified respectively.

3.2.1. Validity Verification of the Solar Model

Air temperature and solar radiation intensity ultra-short-term prediction parameters
of the example area are input into the solar sand-table model, the deduced ultra-short-term
prediction output PPV is shown in Figure 7. The deduction results are compared with the
traditional short-term predicted output and the actual output of solar power.

According to Figure 7, comparing the proposed solar sand-table model (the PVst
model) with the traditional short-term scheduling model, the PVst model can reflect the
fluctuations in solar power due to cloud shading and describe the solar output process
more accurately. Since solar models in traditional scheduling studies are usually based on
short-term predicted values as inputs and use empirical formulas to calculate photovoltaic
output, the proposed method uses ultra-short-term predicted values with shorter prediction
time and higher prediction accuracy as inputs and extrapolates photovoltaic output with a
more accurate solar sand table model, so the PVst model better expounds the real output
characteristics of solar power.
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3.2.2. Validity Verification of Wind Model

Surface wind speed ultra-short-term prediction parameters of the example area are
input into the wind sand-table model, the deduced ultra-short-term prediction output PWT
is as shown in Figure 8: the deduced results are compared with the traditional short-term
predicted output and the actual output of wind power.

Energies 2023, 16, x FOR PEER REVIEW 12 of 20 
 

 

more accurately. Since solar models in traditional scheduling studies are usually based on 

short-term predicted values as inputs and use empirical formulas to calculate photovoltaic 

output, the proposed method uses ultra-short-term predicted values with shorter predic-

tion time and higher prediction accuracy as inputs and extrapolates photovoltaic output 

with a more accurate solar sand table model, so the PVst model better expounds the real 

output characteristics of solar power. 

3.2.2. Validity Verification of Wind Model 

Surface wind speed ultra-short-term prediction parameters of the example area are 

input into the wind sand-table model, the deduced ultra-short-term prediction output PWT 

is as shown in Figure 8: the deduced results are compared with the traditional short-term 

predicted output and the actual output of wind power. 

(a) (b) 
 

(a) (b) 

Figure 8. The deduced ultra-short-term predicted output of the wind power model: (a) typical sum-

mer day; (b) typical winter day. 

According to Figure 8, comparing the proposed wind sand-table model (WTst model) 

with the traditional short-term prediction model, the WTst model can reflect the fluctua-

tions in wind power and describe the wind power output more accurately. Since the wind 

models in traditional scheduling studies are usually based on short-term predicted values 

as inputs and use empirical formulas to calculate wind power output, the proposed 

method uses ultra-short-term predicted values with shorter prediction time and higher 

prediction accuracy as inputs and extrapolates wind power output with a more accurate 

wind sand table model, so the WTst model can better reflect the real output characteristics 

of wind power. 

3.2.3. Validity Verification of Hydro Model 

To test the power output characteristics of the hydro sand-table model, when the 

hydro model runs at the rated power of 200 MW, signals of increasing and decreasing 

load (using an increment of 10 MW) are input to the governor: Figure 9 shows the change 

in hydro model output. 

Time[s]  

Figure 9. The deduced output of the hydropower model. 

Under the action of the controller of the hydropower model, after receiving the signal 

changing the load by 10 MW, the hydro model rapidly performs a load transition, and its 

Figure 8. The deduced ultra-short-term predicted output of the wind power model: (a) typical
summer day; (b) typical winter day.

According to Figure 8, comparing the proposed wind sand-table model (WTst model)
with the traditional short-term prediction model, the WTst model can reflect the fluctuations
in wind power and describe the wind power output more accurately. Since the wind
models in traditional scheduling studies are usually based on short-term predicted values
as inputs and use empirical formulas to calculate wind power output, the proposed method
uses ultra-short-term predicted values with shorter prediction time and higher prediction
accuracy as inputs and extrapolates wind power output with a more accurate wind sand
table model, so the WTst model can better reflect the real output characteristics of wind
power.

3.2.3. Validity Verification of Hydro Model

To test the power output characteristics of the hydro sand-table model, when the
hydro model runs at the rated power of 200 MW, signals of increasing and decreasing load
(using an increment of 10 MW) are input to the governor: Figure 9 shows the change in
hydro model output.

Under the action of the controller of the hydropower model, after receiving the signal
changing the load by 10 MW, the hydro model rapidly performs a load transition, and its
output reaches the pre-set value after fluctuation, only exceeding the scheduled output for
a short time, which reflects the highly sensitive power output changes in hydropower load.
Therefore, the wind, solar and hydro sand-table model constructed in the present research
can reflect the real power output characteristics, and the proposed HRES sand-table model
is used as the subsequent ultra-short-term scheduling research model.
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3.3. Deduction Results

The ultra-short-term prediction parameters: air temperature, solar radiation intensity,
surface wind speed, and load demand curve are input into the HRES sand-table model,
and the HRES real-time adaptive scheduling algorithm is used to simulate and deduce
the source-load matching capability of HRES on a typical day in summer and winter
respectively. The deduced results are shown in Figure 10.
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According to the deduction results in Figure 10, the HRES in the calculation example
area has good source-load matching capability, during which there is no long-term mis-
match between HRES output and load demand. Among them, hydropower can perform
adaptive peaking according to load demand and fluctuation of wind and solar, while wind
and solar take up certain generation tasks. When the load fluctuation is large, hydropower
can quickly increase or decrease the load several times and adjust its output according to
the wind and solar fluctuation; when the load fluctuation is small, hydropower increases or
decreases the load correspondingly less often. The peak-shaving pressure on hydropower
during a typical day in winter is greater than that in summer.

The HRES model in summer and winter has typical daily output characteristics that
are similar, and can be unified in any analysis: at 06:00 a load valley occurs; wind power
output reached the maximum, the photovoltaic output is 0, the load demand fluctuation
in this period of time is small, therefore, the frequency of peak-shaving regulation of
hydropower is decreased; at 07:00 to 10:00 and 14:00 to 16:00, the electricity load grows
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rapidly, the wind power output decreases, the solar output increases and then decreases
and reaches the maximum value at around 13:00; hydraulic turbine delivers several load
increases for peak regulation. Between 11:00 and 13:00 and 21:00 and 24:00, the electricity
load decreases rapidly, the wind power output increases, and the solar output decreases
from its maximum value and drops to 0 at around 18:00; the hydraulic turbine performs
multiple load-shedding operations for peak regulation. From 17:00 to 20:00, the load
demand increases, solar output gradually drops to 0, the wind power output is lower, and
hydropower output reaches its maximum.

4. Discussion

According to the ultra-short-term adaptive scheduling algorithm constructed in the
present research, the parameter α is the maximum allowable power supply difference,
when the difference between HRES output and load demand is greater than α, hydropower
must be adjusted to allow ultra-short-term adaptive peaking. The above research only
discusses the case where α is 15 MW. It is still necessary to analyze the effects of different
values of α on the HRES source-load matching output and find the optimal scheduling
value. For typical summer and winter days in the example area, the HRES source-load
matching capability for 16 scheduling scenarios with α values ranging from 5 MW to 20
MW is considered (results are shown in Figure 11).
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Figure 11 shows that the smaller the value of α in the adaptive scheduling algorithm,
the stronger the overlap between the HRES sand-table model output and the load curve,
and the stronger the source-load matching ability; the source-load matching ability of HRES
is weaker in winter than in summer. When the value of α is less than 8 MW, the HRES
output almost coincides with the load curve; when α is 20 MW, the HRES source-load
matching ability is insufficient. Here, considering different values of α, the following
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indicators are applied to evaluate the source-load matching ability of HRES on typical days
in summer and winter in the area of interest (the results of such evaluations are listed in
Tables 3 and 4).

Table 3. Evaluation results of system output under some α values on a typical summer day.

α Reliability Indicator (%) Traceability Indicator Number of Load
Transitions of Hydropower

5 99.45 0.0139 99
8 99.20 0.0134 54

11 98.88 0.0131 34
14 98.48 0.0130 28
17 98.49 0.0119 16
20 98.19 0.0117 14

Table 4. Evaluation results of system output under some α values on a typical winter day.

α Reliability Indicator (%) Traceability Indicator Number of Hydro
Turbine Load Transitions

5 99.46 0.0165 122
8 99.16 0.0156 66
11 98.91 0.0144 38
14 98.62 0.0142 30
17 98.45 0.0139 22
20 98.23 0.0138 18

(1) Reliability indicator

K = 1 −
n

∑
i=1

[Pload(i)− PWT(i)− PPV(i)− PHT(i)] ∗
100%

n
(11)

where K is the reliability of the system power supply, the larger it is, the stronger the
reliability of HRES power output. Pload(i), PWT(i), PPV(i), and PHT(i) indicate the power
demand on the load side, wind power output, solar power output, and hydropower output
all at time i, respectively; n is the total number of sampling points.

(2) Traceability indicator

I =
1

n − 1

n−1

∑
i=1

∣∣∣mi − mi
L

∣∣∣ (12)

where I is the traceability indicator, the smaller it is, the better HRES is able to track the
load curve. mi represents the rate of change of HRES output at sampling time i, and mi

L is
the rate of change of load demand in sampling time i.

(3) Number of load transitions of hydropower

min T =
n

∑
i=1

TH (13)

where T and TH represent the number of load transitions of hydropower within one day
and the cumulative number of load transitions of hydropower, respectively.

From the above result, it can be seen that the reliability of HRES becomes weaker after
increasing the value of α in the adaptive scheduling algorithm; in terms of traceability indi-
cator, increasing α makes HRES stronger in tracking load, the source-load matching ability
increases; in terms of the number of load changes of hydropower, increasing α reduces the
number of load changes of hydropower in a given day, the pressure of hydropower peak
regulation decreases.
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Here, a fuzzy affiliation function is used to calculate the degree of satisfaction for
different values of α. That α corresponding to the highest value of satisfaction is the optimal
scheduling strategy value, and the satisfaction formula is defined thus:

γj =


0 f j(x) = f min

j
f max
j − f j(x)

f max
j − f min

j
f min
j ≤ f j(x) ≤ f max

j

1 f j(x) = f max
j

(14)

where γj denotes the degree of satisfaction of the jth objective function; f max
j and f min

j
represent the upper and lower limits of the jth objective, respectively.

The standardized degree of satisfaction is obtained based on Equation (15), and the
solution with the largest degree of satisfaction is selected as the optimal scheduling scheme.

γ =
∑ M

j=1λjγj

∑ M
j=1λj

(15)

where, γ and λj denote the standardized degree of satisfaction and weight of satisfaction of
the jth objective, respectively. There are three objective functions in this study, so M = 3.
The weights of satisfaction of the three objective functions are equal, that is, λ1 = λ2 = λ3 =
1. Based on the above method, the typical daily γ-values in the interval 5 MW < α < 20 MW
for summer and winter are calculated respectively, with 16 values, of which the maximum
value is the optimal α value (Figure 12).
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As shown in Table 3, for a typical summer day, γ1 is maximized when α is set to
17 MW in the scheduling algorithm; for a typical winter day, γ2 is maximized when α is set
to 11 MW in the scheduling algorithm, so the reliability of HRES output in summer and
winter is optimal when α is set to 17 MW and 11 MW respectively in the area of interest.

5. Conclusions

The present research breaks through the traditional short-term hybrid system schedul-
ing research framework, and examines HRES source-load matching scheduling in terms
of reducing scheduling model output errors and enhancing scheduling strategy flexibility,
proposing a scheduling research method based on the sand-table deduction model in the
ultra-short-term scale, and exploring the scheduling strategy and output characteristics
of HRES with hydropower regulation capacity in the ultra-short-term scale, adaptively
smoothing wind and solar power fluctuations and tracking load curves. The conclusions
are drawn as follows:

1. When constructing the wind and solar output prediction model, compared with the
traditional short-term prediction model, the accuracy of wind and solar model output
prediction can be improved by inputting ultra-short-term prediction parameters and
modular modeling of the wind and solar units;
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2. Based on the proposed real-time adaptive scheduling algorithm, the HRES sand-table
model can track the load curve within the ultra-short-term scheduling scale, suppress
wind and solar fluctuations, with good source-load matching capability;

3. The parameter α is the maximum allowable power supply difference set in the adap-
tive scheduling algorithm. Increasing α will lead to lower system output reliability,
enhanced load tracking ability, and a fewer number of load transitions of hydropower.
The reliability of HRES output in summer and winter in the example area is optimal
when α is set to 17 MW and 11 MW, respectively.
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Appendix A

Variable pitch angle: as the wind speed is higher than the rated wind speed and lower
than the cut-out wind speed, it is necessary to reduce wind energy captured by the wind
wheel to avoid damage to the wind turbine. The variable pitch system can increase the pitch
angle of the wind turbine to reduce wind energy captured by the wind turbine, maintain
the rated rotation speed, and output at the rated power of the system.

Variable rotor: when the wind speed is higher than the cut-in wind speed and lower
than the rated wind speed, it is necessary to adjust the rotation speed of the wind turbine,
so that the tip speed ratio remains unchanged to maintain the system at the maximum
utilization of wind energy.

(1) Variable pitch controller

When the wind speed is below the cut-out wind speed and above the rated wind
speed, the wind turbine is controlled by a variable pitch angle controller. Pitch Angle also
called installation angle or pitch angle, is the installation angle of the rotor blade, the acute
angle between the blade chord and the horizontal reference plane. When the wind speed is
lower than the rated wind speed, in order to achieve the maximum wind energy capture
rate, the paddle pitch angle is controlled at about 0 degrees. When the wind speed exceeds
the rated wind speed, the wind energy captured by the wind wheel must be reduced to
avoid excessive wind speed and damage to the wheel, the variable pitch controller will
increase the pitch angle, so that the wheel, absorbs less wind energy to maintain the rated
rotor speed of the system, the rated power output.

The permanent magnet synchronous motor used in this paper ignores electromagnetic
losses and mechanical losses, then according to Equation (1) we can get:

PWT = Pr = f (V, β) (A1)

According to Equation (A1), taking the actual wind speed V as the input variable and
the pitch angle β as the output variable, we get:

V = g[PWT , β] = g[Pr, β] (A2)
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According to the Formula (A2), we can obtain the required pitch angle for each wind
speed value in order to make the turbine maintain constant power and speed operation,
the calculation results are shown in Figure A1. The pitch controller designed based on
the fitted curve can control the pitch angle to reach the calculated value of the fitted curve
according to the external wind speed, so that the turbine can maintain the rated power and
rated speed.
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Figure A1. Wind speed-Pitch Angle curve.

(2) Variable rotor controller

When the wind speed is below the rated wind speed, the turbine rotor speed needs
to be adjusted so that the ratio of the blade tip linear speed to the wind speed λ remains
constant and meets λ = λopt, during which the system is maintained at maximum wind
energy utilization Cpmax. When the wind speed reaches a certain point under the rated
wind speed, in order to make the wind power system reach the maximum power point
output, the wind speed and blade tip linear speed need to meet the following equation.

V =
WR
λopt

(A3)

At this time, the wind turbine output power is:

PWT opt = Cpmax0.5ρπR2(
WR
λopt

)
3

(A4)

According to the above formula, the wind turbine output power and speed curves
at different wind speeds are shown in Figure A2, the fitted curve is the power-speed
characteristic curve. The wind turbine variable rotor controller can be designed based on
the power-speed characteristic curve. For any point of wind speed under the rated wind
speed, when the wind turbine runs at the speed value WR specified in the characteristic
curve, the wind power generation system can achieve the maximum wind energy utilization
Cpmax and the optimal power output PWT opt.

Energies 2023, 16, x FOR PEER REVIEW 18 of 20 
 

 

   , ,WT rV g P g P  
 

(A2)

According to the Formula (A2), we can obtain the required pitch angle for each wind 

speed value in order to make the turbine maintain constant power and speed operation, 

the calculation results are shown in Figure A1. The pitch controller designed based on the 

fitted curve can control the pitch angle to reach the calculated value of the fitted curve 

according to the external wind speed, so that the turbine can maintain the rated power 

and rated speed. 

 

Figure A1. Wind speed-Pitch Angle curve. 

(2) Variable rotor controller 

When the wind speed is below the rated wind speed, the turbine rotor speed needs 

to be adjusted so that the ratio of the blade tip linear speed to the wind speed  remains 

constant and meets 
opt  , during which the system is maintained at maximum wind 

energy utilization maxCp . When the wind speed reaches a certain point under the rated 

wind speed, in order to make the wind power system reach the maximum power point 

output, the wind speed and blade tip linear speed need to meet the following equation. 

opt

WR
V




 
(A3)

At this time, the wind turbine output power is: 

2 3
 max 0.5 ( )WT opt

opt

WR
P Cp R




 
(A4)

According to the above formula, the wind turbine output power and speed curves at 

different wind speeds are shown in Figure A2, the fitted curve is the power-speed char-

acteristic curve. The wind turbine variable rotor controller can be designed based on the 

power-speed characteristic curve. For any point of wind speed under the rated wind 

speed, when the wind turbine runs at the speed value WR specified in the characteristic 

curve, the wind power generation system can achieve the maximum wind energy utiliza-

tion Cpmax and the optimal power output PWT opt. 

 

0

10

20

30

40

5 10 15 20 25

P
it

ch
 a

ng
le

 β

Wind speed (m/s)

Figure A2. Power-Rotor Speed curve.



Energies 2023, 16, 3280 18 of 18

References
1. Watson, D.; Binnie, Y.; Duncan, K.; Dorville, J.-F. Photurgen: The open source software for the analysis and design of hybrid

solar wind energy systems in the Caribbean region: A brief introduction to its development policy. Energy Rep. 2017, 3, 61–69.
[CrossRef]

2. Lorestani, A.; Ardehali, M. Optimization of autonomous combined heat and power system including PVT, WT, storages, and
electric heat utilizing novel evolutionary particle swarm optimization algorithm. Renew. Energy 2018, 119, 490–503. [CrossRef]

3. Sovacool, B.K.; Andersen, R.; Sorensen, S.; Sorensen, K.; Tienda, V.; Vainorius, A.; Schirach, O.M.; Bjørn-Thygesen, F. Balancing
safety with sustainability: Assessing the risk of accidents for modern low-carbon energy systems. J. Clean. Prod. 2016, 112,
3952–3965. [CrossRef]

4. Chen, Y.; Chen, C.; Ma, J.; Qiu, W.; Liu, S.; Lin, Z.; Qian, M.; Zhu, L.; Zhao, D. Multi-objective optimization strategy of multi-
sources power system operation based on fuzzy chance constraint programming and improved analytic hierarchy process. Energy
Rep. 2021, 7, 268–274. [CrossRef]

5. Liu, Z.; Zhang, Z.; Zhuo, R.; Wang, X. Optimal operation of independent regional power grid with multiple wind-solar-hydro-
battery power. Appl. Energy 2019, 235, 1541–1550. [CrossRef]

6. Pandey, M.; Winkler, D.; Sharma, R.; Lie, B. Using MPC to Balance Intermittent Wind and Solar Power with Hydro Power in
Microgrids. Energies 2021, 14, 874. [CrossRef]

7. Jurasz, J.; Mikulik, J.; Krzywda, M.; Ciapała, B.; Janowski, M. Integrating a wind- and solar-powered hybrid to the power system
by coupling it with a hydroelectric power station with pumping installation. Energy 2018, 144, 549–563. [CrossRef]

8. Serem, N.; Letting, L.; Munda, J. Voltage Profile and Sensitivity Analysis for a Grid Connected Solar, Wind and Small Hydro
Hybrid System. Energies 2021, 14, 3555. [CrossRef]

9. Sun, K.; Li, K.J.; Pan, J.; Liu, Y.; Liu, Y. An optimal combined operation scheme for pumped storage and hybrid wind-photovoltaic
complementary power generation system. Appl. Energy 2019, 242, 1155–1163. [CrossRef]

10. Uddin, M.; Romlie, M.F.; Abdullah, M.F.; Abd Halim, S.; Kwang, T.C. A review on peak load shaving strategies. Renew. Sustain.
Energy Rev. 2018, 82, 3323–3332. [CrossRef]

11. Li, Y.; Li, K.; Yang, Z.; Yu, Y.; Xu, R.; Yang, M. Stochastic optimal scheduling of demand response-enabled microgrids with
renewable generations: An analytical-heuristic approach. J. Clean. Prod. 2022, 330, 129840. [CrossRef]

12. Wei, H.; Hongxuan, Z.; Yu, D.; Yiting, W.; Ling, D.; Ming, X. Short-term optimal operation of hydro-wind-solar hybrid system
with improved generative adversarial networks. Appl. Energy 2019, 250 Pt 1, 389–403. [CrossRef]

13. Li, Y.; Ming, B.; Huang, Q.; Wang, Y.; Liu, P.; Guo, P. Identifying effective operating rules for large hydro–solar–wind hybrid
systems based on an implicit stochastic optimization framework. Energy 2022, 245, 123260. [CrossRef]

14. Wang, X.; Virguez, E.; Mei, Y.; Yao, H.; Patiño-Echeverri, D. Integrating wind and photovoltaic power with dual hydro-reservoir
systems. Energy Convers. Manag. 2022, 257, 115425. [CrossRef]

15. Neves, D.; Brito, M.C.; Silva, C.A. Impact of solar and wind forecast uncertainties on demand response of isolated microgrids.
Renew. Energy 2016, 87, 1003–1015. [CrossRef]

16. Liao, S.; Liu, H.; Liu, B.; Zhao, H.; Wang, M. An information gap decision theory-based decision-making model for complementary
operation of hydro-wind-solar system considering wind and solar output uncertainties. J. Clean. Prod. 2022, 348, 131382.
[CrossRef]

17. Chen, J.; Zhao, Y.; Peng, K.; Wu, P. Optimal trade-off planning for wind-solar power day-ahead scheduling under uncertainties.
Energy 2017, 141, 1969–1981. [CrossRef]

18. Liu, B.; Lund, J.R.; Liao, S.; Jin, X.; Liu, L.; Cheng, C. Optimal power peak shaving using hydropower to complement wind and
solar power uncertainty. Energy Convers. Manag. 2020, 209, 1112628. [CrossRef]

19. Tapia, A.; Tapia, G.; Ostolaza, J.; Saenz, J. Modeling and control of a wind turbine driven doubly fed induction generator. IEEE
Trans. Energy Convers. 2003, 18, 194–204. [CrossRef]

20. Guo, P. Variable pitch control of wind turbine generator combined with fuzzy feed forward and fuzzy PID controller. Proc. Chin.
Soc. Electr. Eng. 2010, 30, 123–128. (In Chinese)

21. Zhang, T.; Chen, D.; Liu, J.; Xu, B. A Feasibility Analysis of Controlling a Hybrid Power System over Short Time Intervals. Energies
2020, 13, 5682. [CrossRef]

22. Zhang, H.; Chen, D.; Xu, B.; Wu, C.; Wang, X. The slow-fast dynamical behaviors of a hydro-turbine governing system under
periodic excitations. Nonlinear Dyn. 2017, 87, 2519–2528. [CrossRef]

23. Wang, F.; Chen, D.; Xu, B.; Zhang, H. Nonlinear dynamics of a novel fractional-order Francis hydro-turbine governing system
with time delay. Chaos Solitons Fractals 2016, 91, 329–338. [CrossRef]

24. Li, H.; Chen, D.; Zhang, H.; Wang, F.; Ba, D. Nonlinear modeling and dynamic analysis of a hydro-turbine governing system in
the process of sudden load increase transient. Mech. Syst. Signal Process. 2016, 80, 414–428. [CrossRef]

25. Zhang, M.; Xie, T.; Zhang, C.; Chen, D.; Mao, C.; Shen, C. Dynamic model and impact on power quality of large hydro-photovoltaic
power complementary plant. Int. J. Energy Res. 2019, 43, 4436–4448. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.egyr.2017.03.001
http://doi.org/10.1016/j.renene.2017.12.037
http://doi.org/10.1016/j.jclepro.2015.07.059
http://doi.org/10.1016/j.egyr.2021.01.070
http://doi.org/10.1016/j.apenergy.2018.11.072
http://doi.org/10.3390/en14040874
http://doi.org/10.1016/j.energy.2017.12.011
http://doi.org/10.3390/en14123555
http://doi.org/10.1016/j.apenergy.2019.03.171
http://doi.org/10.1016/j.rser.2017.10.056
http://doi.org/10.1016/j.jclepro.2021.129840
http://doi.org/10.1016/j.apenergy.2019.04.090
http://doi.org/10.1016/j.energy.2022.123260
http://doi.org/10.1016/j.enconman.2022.115425
http://doi.org/10.1016/j.renene.2015.08.075
http://doi.org/10.1016/j.jclepro.2022.131382
http://doi.org/10.1016/j.energy.2017.11.125
http://doi.org/10.1016/j.enconman.2020.112628
http://doi.org/10.1109/TEC.2003.811727
http://doi.org/10.3390/en13215682
http://doi.org/10.1007/s11071-016-3208-0
http://doi.org/10.1016/j.chaos.2016.06.018
http://doi.org/10.1016/j.ymssp.2016.04.006
http://doi.org/10.1002/er.4569

	Introduction 
	Gaps in the Research 
	Motivation and Contribution 

	Methodology 
	Input Model 
	Deduction Model 
	Wind Power System Model 
	Solar Power System Model 
	Hydropower System Model 

	Scheduling Method 
	Evaluation Indicator 

	A Case Study 
	Model Input 
	Model Construction 
	Validity Verification of the Solar Model 
	Validity Verification of Wind Model 
	Validity Verification of Hydro Model 

	Deduction Results 

	Discussion 
	Conclusions 
	Appendix A
	References

