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Abstract: This study investigates the global allocation of hydrogen and synfuels in order to achieve
the well below 2 ◦C, preferably 1.5 ◦C target set in the Paris Agreement. For this purpose, TIMES
Integrated Assessment Model (TIAM), a global energy system model is used. In order to investigate
global hydrogen and synfuel flows, cost potential curves are aggregated and implemented into TIAM,
as well as demand technologies for the end use sectors. Furthermore, hydrogen and synfuel trades
are established using liquid hydrogen transport (LH2), and both new and existing technologies for
synfuels are implemented. To represent a wide range of possible future events, four different scenarios
are considered with different characteristics of climate and security of supply policies. The results
show that in the case of climate policy, the renewable energies need tremendous expansion. The final
energy consumption is shifting towards the direct use of electricity, while certain demand technologies
(e.g., aviation and international shipping) require hydrogen and synfuels for full decarbonization.
Due to different security of supply policies, the global allocation of hydrogen and synfuel production
and exports is shifting, while the 1.5 ◦C target remains feasible in the different climate policy scenarios.
Considering climate policy, Middle East Asia is the preferred region for hydrogen export. For synfuel
production, several regions are competitive, including Middle East Asia, Mexico, Africa, South
America and Australia. In the case of security of supply policies, Middle East Asia is sharing the
export volume with Africa, while only minor changes can be seen in the synfuel supply.

Keywords: hydrogen; energy system; synfuels; E-fuels; ETSAP-TIAM; TIMES; LH2; PtL

1. Introduction

In the Paris Agreement [1], the states of the world agreed to limit global warming
well below 2 ◦C, preferably to 1.5 ◦C. The 2018 published IPCC report [2] advertised that
this would mean a net global CO2 budget of 420 Gt, with the best likelihood to prevent
exceeding the 1.5 ◦C target. Over the last decades, the global gross CO2 emissions were
rising continuously. In 2022, the global gross CO2 emissions were recorded at roughly
36 Gt [3]. Maintaining the status quo would lead to exceeding the Paris Agreement goals in
less than 15 years. To follow the agreement, more climate policy must be implemented and
innovative mitigation plans applied.

To achieve a tremendous reduction in CO2 emissions and reaching net zero all sectors
must be decarbonized. Decarbonizing the power sector is common practice. Renewable
energies have proven to be cost-competitive compared to fossil fuel power generation;
even countries without climate policy are installing renewable potentials [4]. Despite the
trend towards electrification in all sectors, there are certain technologies that still rely on
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fossil energy carriers. Fortunately, hydrogen and synfuels are suitable to fill this gap,
although both energy carriers are likely to be more expensive than the fossil competitors, if
externalities are not accounted for. To enter hydrogen and synfuels into energy systems,
climate policies like carbon price or subsidies need to be applied.

In 2019, the European Union (EU) announced the Green New Deal [5]. In addition to
the determination of carbon reduction goals and greenhouse gas neutrality by 2050, it was
also announced to boost the hydrogen economy. In parallel, Germany has set its own tight
goals with the agreement on net zero by 2045 [6]. As Germany’s gross domestic product
(GDP) heavily relies on its partly difficult to decarbonize industry, hydrogen and synfuels
will most likely play a crucial role to achieve this goal.

In 2022, the US passed the Inflation Reduction Act (IRA) [7], making the decision to
sustainably strengthen the hydrogen economy. In addition to the members of the EU and
the US, many other countries entered or already pursued the plan to build up a hydrogen
economy. Therefore, it is necessary to expand renewable energy generation technologies as
hydrogen and synfuels rely on electricity for electrolysis and the Fischer–Tropsch processes.

This analysis deals with the question of the available technology transformation
pathways of the global energy system in order to achieve the 1.5 ◦C target set in the Paris
Agreement. To fulfill that target, hydrogen and synfuels are required to fill the gap of
today’s oil and gas technologies and lead to a sustainable transformation within the energy
system. Furthermore, this analysis is questioning the exchanges of hydrogen and synfuels
across regions in a cost-optimal transformation pathway. Therefore, the global energy
system model TIAM is used. There are several conceivable ways to produce hydrogen,
for example, via fossil energy carriers (grey hydrogen). If carbon capture and storage
(CCS) is combined with fossil energy carriers, the hydrogen is labeled as blue hydrogen. If
the electricity comes from nuclear power, the hydrogen is considered pink. In this study,
only green hydrogen and synfuels resulting of green hydrogen are considered. Hydrogen
and synfuels are regionally aggregated and implemented into TIAM. Renewable energy
production is limited by the available potential, and therefore, the use of electricity for direct
electric use, hydrogen and synfuel production is investigated. Four different scenarios
are implemented to cover possible future events, including no climate policy, climate
policies and different characteristics of security of supply. Due to the different scenarios,
the results and possible pathways towards an emission-free energy system are concluded
and discussed.

2. Literature Review

Previous work was done in the analysis of the future production costs of synfuels and
hydrogen based on the generation technologies themselves, the availability of cheap vari-
able electricity generation costs based on the availability of renewable electricity generation
and the transport and worldwide trade of emission-free energy carriers.

The production costs of synfuels and hydrogen are discussed in Agora [8]. Therefore,
wind offshore is the most expensive option, whereas photovoltaics (PV) seems to be the
cheapest, especially in Africa and the Near East. Geothermal could also be an option, but
the global potentials are rather small. Hydrogen imports are cheaper than local production
in Europe, as the results show. In a total comparison of hydrogen production, Nikolaidis
and Poullikkas [9] have concluded that steam methane reforming (SMR) is the cheapest
option. Overall CO2 prices are not considered as well as a carbon budget. Schmidt et al. [10]
investigated the production route of synfuels by using renewable energies. According to
the results, the source of carbon has a huge impact on the costs. Using direct air capture
(DAC) technology, synfuels costs are reported at 42 EUR/GJ, whereas synfuels costs using
concentrated CO2 by using carbon capture use and storage (CCUS) are referred to as
31.3 EUR/GJ. High temperature electrolysis is applied for both routes. Fasihi et al. [11]
investigated the production chain of synfuels in several regions. Beneficial regions are
Africa, South America, Asia and Australia. Production costs start at 79 USD/barrel and
grow to a maximum of 135 USD/barrel. The costs are highly sensitive to certain factors,
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e.g., left-over oxygen for sale or waste heat recovery. Chapman et al. [12] investigated
the production in Australia in three different locations for the trade of hydrogen with
Japan, in order to replace remaining coal trades. Currently, hydrogen production with
coal gasification and CCS is cheapest, but in the long term renewable electricity and water
electrolysis could lead to lower costs of hydrogen production. Rosen et al. [13] discussed
the importance of hydrogen technologies in the energy system. They also considered rising
demand, and showed via the literature analysis that hydrogen could be supplied in the
future for as low as 1.7 USD/kg. In 2017, Fasihi et al. [14] published another study, which
calculated the production costs of synfuels considering the whole production chain in
the Maghreb states. The study resulted in diesel and kerosene prices of 88 EUR/MWh in
2030 and 83 EUR/MWh in 2040. Libya has the best potential in the Maghreb states. In
2021, Ueckerdt et al. [15] investigated the production of synfuels. Transport from Africa to
Germany was also considered. They concluded that mitigation costs could be in the range
of 19–267 EUR/tCO2 in 2050. In 2018, Blanco et al. [16] investigated the hydrogen demand
using the JRC, a European model. According to their findings, the hydrogen demand could
rise to 20–120 Mt/a. It would mostly be used for synfuel production and transport, as
well as for industry purposes. As far as CCS is not an option, electrolysis is the favored
production route for hydrogen. If policy-makers allow CCS, SMR would be the choice of
hydrogen production.

In addition to the costs of hydrogen and synfuels, the question of suitable suprare-
gional transport is essential. An analysis with the JRC model [17] indicated that for short
distances, pipelines are the best choice, and for distances between 3000 and 16,000 km, LH2
compared to the transport of hydrogen via LH2, ammonia and LOHC is the favored choice.
The report by IRENA [18] showed that LH2 is cheapest below 5000 km. Overall, it strongly
depends on the capacities transported in the long term.

Furthermore, there are studies that combine both aspects of the costs of hydrogen
and synfuels as well as transport options in one model. A report by EWI [19] compared
94 countries in 6 continents on producing hydrogen. Starting from 2030, hydrogen produc-
tion by electrolysis could become cost-competitive to SMR. The cheapest option is PV in
sun-rich countries, whereas wind offshore is reported as the most expensive route. In the
case of transport, LH2 is the favored choice for distances longer than 7000 km. In contrast,
Niemann et al. [20] came to a fairly different result. While LH2 is a good option, LOHC
was cheapest due to the reason of energy losses during transport and storage. However, a
report by the German Aerospace Center [21] showed, too, that LH2 transport is the cost-
minimal way of hydrogen transport starting in 2030 compared to LOHC and other carriers.
Gallardo et al. [22] investigated the production of hydrogen via concentrated solar power
(CSP) and PV, as well as the transport via ammonia or LH2. Production via PV resulted
in being the cheaper choice, while ammonia could have advantages if used as the end
product. In 2025, ammonia will have a production cost of 3.94 USD/kg whereas liquid
hydrogen is reported as 4.89 USD/kg. Wijayanta et al. [23] had a similar approach. They
also concluded that ammonia is cheapest if used as the end demand product. Other-
wise, LH2 could become cheaper in 2050 if hydrogen is demanded. Furthermore, LOHC
was investigated as well, which has shown to be the overall most expensive option.
Ishimoto et al. [24] studied the pathways of hydrogen production and hydrogen carrier
transport from Norway to Japan. Results show that hydrogen production via autother-
mal reforming (ATR) and ammonia production via SMR are the cheapest. As far as
hydrogen is demanded, LH2 is the best transport option. If ammonia is demanded as
an end use product, the transport of ammonia is cheaper in comparison to hydrogen.
In Stiller et al. [25], the route of hydrogen production in Norway was analyzed. The lev-
elized costs of electricity from wind energy are reported as 9.6–10.4 Ct/KWh. For the
transport of hydrogen to Germany, LH2 was proposed with costs starting at 11.4 Ct/KWh.
Kamiya et al. [26] analyzed the hydrogen pathway from Australia to Japan via LH2. The
production route was via lignite and CCS. Fraunhofer IWES [27] conducted an analysis of
the hydrogen production globally, based on the global wind atlas. It showed that Africa has
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a low cost of production and is exporting hydrogen to Europe, which has higher costs of
production. Teichmann et al. [28] share the same result. Furthermore, they concluded that
high voltage direct current (HVDC) could also be an option instead of hydrogen export.
Heuser et al. [29] discussed the production of hydrogen via onshore wind and PV with
liquid hydrogen transport pathways afterwards, and showed that Europe imports hydro-
gen from Africa. In a study by adelphi et al. [30], the political and economic frameworks
are discussed for hydrogen export to Europe. The study concluded that Norway and
Morocco are the best choices as they both offer hydrogen for low costs, while also being
politically stable.

Several studies discuss the state-of-the-art hydrogen technologies and purpose in
the emission-free energy system. Yue et al. [31] concluded that hydrogen systems are not
cost-optimal compared to today’s alternative systems. Staffel et al. [32] showed a huge
collection of hydrogen technologies for all relevant sectors including industry, residential
and transport and discussed mitigation options by using hydrogen. Another study by
Brandon et al. [33] in 2017 discussed the use of hydrogen in energy systems in different
sectors. Quarton et al. [34] also considered hydrogen in the energy system. They came to
the result that temporal resolution has an impact on the demand of hydrogen, and thus
hydrogen demand could be underestimated in today’s models. Dodds et al. [35] have
more focus on the heating sector as they investigated fuel cells for residential demand.
This study discussed the technology’s readiness and concluded that most results of energy
system models do not show hydrogen in residential applications, which veils the usability
of hydrogen for decision-makers. In the industrial sector, in accordance to IRENA [36],
hydrogen will be important for chemical industry, steel, international shipping, aviation
and high temperature heat generation.

Germany’s energy system was covered in several investigations known as “big 5” [37–41]
towards the transformation to net zero until 2045. In a study by BCG [38], hydrogen and
synfuels are used in transport, industry and the residential sector. A total demand of
240 TWh is reported, while 130 TWh need to be imported. In a study by dena [37], a final
energy demand of 226 TWh of hydrogen can be found, while 597 TWh need to be imported
overall. In a study [39] by the Ariadne project, the results show that hydrogen can play
a major role. Germany records a hydrogen demand of 40 TWh by 2030. To satisfy the
total energy demand, imports are necessary. The report shows up to 1500 TWh/a and
up to 900 TWh/a of foreign electricity production to satisfy the synfuel and hydrogen
demand. In Sensfuss et al. [40], either an import of 510 TWh of hydrogen or 750 TWh
of synfuels is necessary to decarbonize Germany’s energy system. Finally, in a study by
Öko-Institut et al. [41], 36% of the 265 TWh demanded hydrogen is supplied by domestic
production. All five studies rely on hydrogen and synfuel imports, while the demand for
direct electric use in the final energy consumption is also rising tremendously.

The literature review shows that there has been intensive scientific study of the pro-
duction and distribution of hydrogen or synfuels. However, little attention has been paid
to the global allocation. A study with a global view taking hydrogen and synfuels into
account in terms of import and export under consideration of the 1.5 ◦C target and the
security of supply policies of world regions is not discussed so far.

3. Methodology

To analyze the role of hydrogen and synfuel usage and trades across regions, the
global energy system model TIAM is used (see Section 3.1). To handle the technical and
economical availability of synfuels and hydrogen, the model is extended. In Section 3.2,
the implementation of the cost potential curves is discussed and shown on the example of
hydrogen. Sections 3.3 and 3.4 show details on the calculation of the hydrogen and synfuel
cost potential curves, as well as the underlying potentials for renewable energies. Lastly, in
Section 3.5 the sectors of TIAM and the implementations of end use demand technologies
for hydrogen and synfuels are covered.
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3.1. Global Energy System Model TIAM

Energy system models are used to measure the impact of climate policy and find path
dependencies when decarbonizing the energy system.

In this study, the global energy system TIAM [42] is used. TIAM is a technology-
rich bottom-up optimization model minimizing the total discounted system costs. On a
spatial level, TIAM considers 16 regions, in which some regions are their own countries
(e.g., the US) and others are aggregated (e.g., Africa); see Figure 1. Table A3 provides
further information about the TIAM regions.
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Figure 1. TIAM map with selected harbors (red dots) for each region.

As a starting point of the underlying methodology, commodities are provided by
domestic mining or imports as primary energy for further processing. Certain parameters
are exogenously set as energy prices or potentials for mining. The primary energy is
provided to be converted to the final energy sectors to satisfy the end use demand.

The end use sectors in TIAM are split into five different sectors (industry, transport,
households, commercial and agriculture) (see Figure 2). TIAM distinguishes between
processes and commodities. Processes are meant as all technologies that produce or
provide commodities, e.g., cars in the transport sector or heating technologies in the
household sector. All technologies have certain properties, such as their lifetime, investment
costs, operation and maintenance costs and availability. The whole procedure is based
on investment decisions. These properties ensure that there is a competition of all the
technologies and a cost-optimal path can be found. Commodities are defined as all energy
carriers (e.g., coal, oil, hydrogen, etc.) or materials (e.g., steel, cement, etc.) and can be
produced out of technology processes, as well as emissions.
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The time horizon TIAM considers starts in 2015 and ends in 2100. The demand is
based on the statistics of the base year in 2015, and it is projected via drivers such as GDP
or changes in population. Furthermore, TIAM distinguishes between twelve time slices.
There are four for each season and three for day, night and the peak hour.

3.2. Modeling of the Supply Curves in TIAM

Energy system models can only make limited statements with regard to high geo-
graphic resolution. To implement hydrogen and synfuels geographically well in TIAM,
the approach of discrete cost supply curves was chosen. Therefore, different steps were
derived based on GIS data, as explained in the next section. The specific implementation
of the supply curves in TIAM is shown in Figure 3. H2SupplyLOC and H2SupplyEXP
represent the cost curves for both local and export hydrogen with full costs (full production
of hydrogen, storage and transport). Inputs and outputs of the hydrogen production are
both integrated in TIAM, in order to evaluate the expansion of renewable energies, too.
Furthermore, capacities are represented to ensure that the overall technical potentials of
renewable energies are not exceeded and that the competition of all sectors using the
mentioned capacities is given. The techno–economic data for hydrogen and synfuel pro-
duction is provided in Table 1 Hydrogen and synfuels can then be used for local or export
demands. Shipping technologies are provided for oversea transport; compare Table A1.
Local distribution technologies are implemented to map the transport and distribution
costs of hydrogen and synfuels within one region.
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3.3. Supply Curve Hydrogen

Based on the methodology and results described in Franzmann et al. [44] for each of
the 16 world regions in TIAM, at least one country with beneficial renewable wind or solar
conditions was selected to serve as the green hydrogen hub of the respective region. The
regionally and spatially resolved renewable energy potentials serve as the input for the
electrolysis for hydrogen production, as well as an input for the liquefaction of hydrogen
in the export harbor. The water supply for the electrolysis is considered as an additional
cost factor. Competing demand for the renewable electricity is not considered in the export
cost potentials of liquid hydrogen. Hence, at this step, the full renewable energy potentials
of wind turbines and open-field photovoltaic are assumed to be available for hydrogen
production and liquefaction. The hydrogen export energy system is holistically optimized
within FINE [45] using the optimal combination of curtailment, storages, wind and PV
combination and grid expansions. In a postprocessing step, the local grid connection costs
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are considered by modelling the electric grid connections of the location-specific turbines
and PV parks from the optimization via a minimum spanning tree approach.

Table 1. Techno-economic assumptions for wind onshore, solar PV and biomass in TIAM. Source: [46–48].

CAPEX [EUR/KW] OPEX [% of CAPEX] Lifetime [y]

2020 2030 2040 2050

wind onshore 1.257 1.137 987 923 3.0% 25

solar PV 703 395 340 326 1.0% 25

biomass 2.000 2.000 2.000 2.000 2.0% 40

electrolyser 900 700 575 450 1.5% 19

To implement the detailed cost potential curves into TIAM (see Figure 3), each step is
used as a separate technology in TIAM representing a specific amount of the liquid green
hydrogen at the harbor and its respective costs. In this study, we have chosen 8 evenly-
spaced hydrogen costs steps to maintain a sufficient level of detail, while avoiding too
big an increase in calculation time for TIAM as each step increases the model size. This
aggregation is repeated for different years starting from 2020 until 2050, in 10 year steps.
For the range of 2050–2100, the values of 2050 are used. The obtained cost for each liquid
hydrogen potential part contains the whole system cost across the full process chain from
renewable energy technologies to the ready to export liquid hydrogen in the harbor.

A brief overview of the total liquid green hydrogen export potentials is given in
Table 2. As expected, the results indicate that the size of the region and the size of the
hydrogen potential depend on one another. Regarding the export cost, a clear pattern
with a lower hydrogen cost in regions with beneficial solar conditions can be identified as
already discussed in Franzmann et al. [44].

Table 2. Liquid green hydrogen export potentials and costs per region in 2050 [44].

AFR AUS CAN CHI CSA GER EEU FSU IND JPN SKO MEA MEX ODA USA WEU

Potential
[TWh] 188 433 76.9 155 154 0.5 1.1 104 21.8 0.7 0.1 196 53.6 24.5 128 3.8

Minimal Costs
[EUR/MWh] 58.5 71.6 117 99.4 62.4 94 93 76.2 70.8 89 85 53.9 103 63.8 79.4 84.7

3.4. Supply Curve Synthetic Fuels

It is assumed that all available renewable energies are not competing and available
just for synfuel production. In other words, the local and competing demand of renewable
energy is neglected.

The synthetic fuels’ potentials and costs are determined by aggregating a decentralized
cost-minimal energy system based on the open-source tool urbs [49]. The production of
synfuels is basically a hydrogen production with intermediate storage and a subsequent
Fischer–Tropsch process. The needed carbon for the Fischer–Tropsch process stems from
either biomass or the atmosphere by the DAC process. The water supply for the electrolysis
is described by a fixed-cost factor equal to the one for the hydrogen supply. The transport
costs are estimated by the distance to the nearest maritime port; all ports can be found
in Table A2.

Table 3 shows the exemplary results of the analysis for the year 2050. The potentials as
well as the costs follow the regions with high solar potential, because of its low levelized
cost of electricity (Buchenberg et al. [50]).
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Table 3. Synfuels’ export potentials and costs per TIAM regions in 2050 [50].

AFR AUS CAN CHI CSA GER EEU FSU IND JPN SKO MEA MEX ODA USA WEU

Potential [TWh] 139,463 321,855 54,953 113,924 113,060 436 873 83,303 16,120 482 112 145,219 39,621 18,158 95,650 2839

Minimal Costs
[EUR/MWh] 80.3 81.6 117.9 82.4 80.8 97.8 94.1 100.9 88.8 108.9 94.6 81.1 85.0 79.9 90.3 85.0

3.5. Sector Modeling

In the power sector, hydrogen can be used as fuel input for combined cycle tur-
bines [51]. The capex is slightly higher compared to gas turbines, but it can also contribute
to peak load. Furthermore, hydrogen combined heat and power (CHP) plants are included
that can take the power output for the power sector [52].

In the residential and commercial sector, hydrogen burners for room heating are
modelled and included. The outgoing heat from CHP processes can also be used via the
district heating network for households [53,54].

The transport sector provides mostly fossil-fueled technologies based on the 2015 start-
ing year of the model. The technologies that use diesel can switch to synthetic diesel
without reinvesting. The same works for all existing aviation technologies based on fossil
jet fuel. Technologies for future investment also have the possibility to switch between fossil
and synthetic fuel during their whole lifetime. In addition to the fuel switching option of
fossil-fueled technologies, hydrogen-based technologies are also taken into consideration,
especially for heavy load trucks, buses, shipping and aviation (cf. [55–57]).

In industry, hydrogen can be used for direct reduced iron (DRI). It can also be used as
feedstock for ammonia production via a Haber–Bosch process, as well as a feedstock for
methanol production. As well as the non-energy use of hydrogen, it can also be used for
processing heat and steam [36].

4. Results
4.1. Scenario Definitions

To evaluate the transformation of the global energy system, four scenarios are com-
pared (see Table 4). In the BAU scenario, no climate policy is implemented. This is used
as a reference scenario to evaluate the transformation. In the 1_5D scenario, a climate
budget is specified according to IPCC, which may be consumed over the model horizon of
2015–2100. In this scenario, there are no trade restrictions or minimum production levels
of hydrogen and synfuels. In order to study energy security and transformation impacts,
the SoS1 scenario assumes 50% domestic production of hydrogen and synfuels, with no
minimum number of trading partners. In scenario SoS2, a minimum local production
of 33% per region is provided. In order to ensure energy security despite reduced own
production, trade is only possible with at least two independent regions, where none of the
trading regions may cover more than 33% of the total demand.

Table 4. Scenario description.

No. Scenario Name Description

1 BAU No climate policy.

2 1_5D 1.5 ◦C conform scenario based on given CO2 budget for
2015–2100 (cf. [2]).

3 SoS1
Security of Supply scenario, based on 1_5D scenario. Further
implementation: at least 50% of hydrogen and synfuels must be
out of domestic production. No restriction for trading.

4 SoS2

Security of Supply scenario, based on 1_5D scenario. Further
implementation: at least 33% of hydrogen and synfuels must be
out of domestic production. At least two trading partners. Each
trading partner can satisfy a maximum share of 33% of the local
demand.
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4.2. CO2 Reduction Measures

In order to achieve the 1.5 ◦C target, the global net emissions need to decline drastically.
Starting in 2015, over 30 Gt of CO2 net emissions were emitted (cf. [3]). This is due to
the reason of massive shares of fossil fuels in both electricity generation and final energy
consumption in 2015. In order to keep the carbon budget for the 1.5 ◦C target, a massive
transformation to net zero is necessary (see Figure 4). This is firstly done by phasing out
coal in 2030, which already has a massive effect in CO2 mitigation and leads to a reduction
of over 10 Gt of CO2. In 2040, the possible use of CCS leads to a shift towards biomass CCS
(BECCS) as well as gas CCS in the climate mitigation scenarios (1_5D, SoS1 and SoS2). This
makes net zero possible in 2050, whereas CO2 emissions of the BAU scenario show only a
little difference.
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The share of CCS in 2050 is quite high, as over five Gt of CO2 must be sequestrated,
because of emissions which cannot be set to zero, such as those in the agriculture sector.
Even in transport and industry, the shift in technologies is slow as some technologies,
especially in the industry, have lifetimes of more than 30 years. Therefore, BECCS is used
to have negative emissions in order to achieve net zero in 2050; see Figure 5.

As the expansion of renewable energies as well as the transformation in the end use
sectors is ongoing, the amount of CO2 is declining over the years for the scenarios with
climate policy. The differences in these scenarios are not huge, because the transformation
pathway within the regions is almost identical even if there are security of supply scenarios
applied to the production and trading of hydrogen and synfuels. No application of climate
policies leads to remaining emissions of roughly 30 Gt in 2100, as coal and gas are still used
in the final energy consumption as well as in electricity generation.

The electricity generation mix based on [4] is recorded as 24,292 TWh (cf. Figure 5).
With over 40% of coal and 21% of natural gas share in 2015, the global electricity generation
needs a huge transformation towards renewable energies to decarbonize the sector. In
addition to the fact that the electricity generation is mostly fossil-based in 2015, even more
electricity is needed to decarbonize the other sectors as well as dealing with economic
growth, which will also lead to a rising demand in energy.
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In 2030, the transformation process can be seen already. While in the BAU scenario
the rising total demand is satisfied by adding more fossil fuels, the scenarios with climate
policies (1_5D, SoS1 and SoS2) show more generation by renewable energies. The amount
of hydropower is expanded to its maximum, while gas and coal are both decreasing. The
scenarios with climate policies applied show 24% more electricity generation compared
to BAU.

In 2050, most of the electricity sector is already fossil-free in the climate policy scenarios.
Coal as an energy carrier is almost faded out, with only 108, 62 and 102 TWh remaining
for 1_5D, SoS1 and SoS2, respectively. However, the biggest difference can be seen in
the amount of generation by PV and wind onshore. In comparison, 75% more electricity
generation is needed for climate action, compared to BAU.

This trend is continued until 2100. In 2070, the electricity sector becomes fully carbon
neutral while gas and biomass plants with CCS are applied to satisfy the peak residual load
demand. The demand for hydrogen and synfuels can also be seen in Figure 5, as hydrogen
needs roughly 1.7× and synfuels 2.1×–2.5× of their energy content as input, while the
overall electricity demand is rising, too. This leads to a total demand of 120,000 TWh in
2100 in order to achieve the 1.5 ◦C target. Compared to this, in the case of no climate
protection the total amount of electricity still rises to 67,000 TWh. Overall, the electricity
demand rises to 6× the amount in 2015 considering climate action and additionally does
more than triple in the case of BAU. Even though there is no climate policy implemented
in BAU, a transformation towards renewable energies can also be seen, while peak load
demand is satisfied with gas and coal plants.

The comparison of 1_5D, SoS1 and SoS2 shows that through all those years the
electricity generation profiles do not show huge differences. This means that the feasible
renewable potentials are high enough for each region to achieve the 1.5 ◦C target, and
trading regions can be substituted (compare SoS1 and SoS2) without an appreciable increase
of the production intensity of hydrogen or synfuels.

4.3. Final Energy Demand

The global final energy demand was close to 96,000 TWh in 2015. Coal, gas and
petroleum products have a total share of over 50% (see Figure 6). In 2030, the amount of
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electricity in the final energy consumption mix is rising. In all sectors, electric technologies
mostly have efficiency advantages. The first steps towards a renewable energy system
can be seen. In the BAU scenario, the amount of coal is rising, whereas in 1_5D, SoS1 and
So2 coal phase-out is already starting. Compared to 2015, the remaining share of coal is
only 10% for all scenarios with the 1.5 ◦C target.
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In 2050, most of the energy system, considering climate action, is decarbonized. The
residential and commercial sector both switch fuel for heat demand mostly to electricity
by using heat pumps for all regions with a cold winter. District heating also plays its role.
All regions with a higher average temperature also have a rise in electricity demand for
room cooling. The transport sector is transforming towards direct electric usage. Passenger
cars use electricity as input, while domestic and international aviation and shipping move
to a split share of hydrogen and synfuels. In the 1_5D scenario, the hydrogen demand is
2776 TWh; for SoS1 it is 2055 TWh and for SoS2 it accounts for 2688 TWh. The synfuel
demand is 5761 TWh, 5745 TWh and 5572 TWh. There are two reasons for this effect. First,
the security of supply policies of domestic production in SoS1 (minimum of 50%) and
SoS2 (minimum of 33%) lead to exceeding the feasible technical potentials of renewable
energies for some regions, so direct electric use is favored. Secondly, in SoS2, demand must
be fulfilled by at least two different export regions, if it is not possible to produce 100%
domestically. This exogenously required flexibility leads to more total usage of hydrogen
and synfuels in SoS2 in 2050. As SoS1 has the lowest absolute demand in hydrogen and
synfuels in 2050, the demand for electricity is therefore higher. Without climate policies,
the demand in coal is rising; see BAU. Nevertheless, the share of electricity is also rising,
which shows that direct electric technologies are also economically without CO2 pricing.

Towards 2100, the energy system is fully decarbonized in the climate policy scenarios,
mostly fueled by electricity, whereas BAU still has an over 30% share in fossil fuels. The
effect of 2050 with the climate action scenarios can also be seen in 2100. With a total
demand of 20,182 TWh of synfuels and hydrogen, the 1_5D scenario has the highest
demand compared to SoS1 with 19,559 TWh and SoS2 with 19,615 TWh. Even if the results
do not differ much, it can be seen that there is at least a minimal impact on the demand
considering security of supply policies on production and trading.
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As both international and domestic aviation and shipping as well as some processes in
the industrial sector cannot switch towards direct electric use, hydrogen and synfuels are
necessary to fully decarbonize the energy system, which is only applied by climate policy.

4.4. Global Hydrogen and Synfuel Production

One of the key questions of transforming the energy system towards carbon neutrality
is the allocation structure of the hydrogen production. As some regions are limited in
adding additional capacities for PV and wind onshore, this could be the limiting factor
when trying to keep the carbon budget until 2100. Considering the BAU scenario, the
results show that hydrogen is used in the final energy consumption, as seen in Figure 6,
and therefore is locally produced. There is no export of hydrogen in 2100, while synfuels
are neither produced nor exported; see Figures 7–9. The detail value information is found
in Table A4.
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The structure of production is starting to change as more and more renewable energy
capacities are required to satisfy the overall electricity demand; compare Figure 5. Without
security of supply applied to trading and production, India has the highest amount of
domestic production in the 1_5D scenario with 3153 TWh; see Figure 6. Furthermore,
there are certain regions where hydrogen is not produced at all, especially in the whole of
Europe and Canada. By applying security of supply to have a minimum production of 50%
in each region, there is already a shift visible. While the overall synfuels and hydrogen
amount is shrinking in SoS1 compared to 1_5D, it can be seen that hydrogen production is
boosting in comparison to synfuels; compare Figures 7 and 9. As a minimum of 50% of
domestic production for synfuels and hydrogen is mandatory, the shift is going onwards
to hydrogen production; see SoS1 in Figure 7. This is due to the reason that hydrogen
production is less energy-intense, and some regions have fewer potentials for PV and wind
onshore to produce hydrogen and synfuels. It also depends on the overall structure. Given
the case of India, without security of supply in the 1_5D case, the hydrogen production
is the highest of all regions while there is no production of synfuels at all (see Figure 9).
Synfuels are 100% imported in that case. By adding security of supply with a minimum of
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50% domestic production, India is shrinking its hydrogen production while boosting the
synfuels production. The residual demand is satisfied by imports of other regions.

Energies 2023, 16, x FOR PEER REVIEW 14 of 20 
 

 

 

  

Figure 8. Hydrogen Export along all scenarios in 2100. BAU is top left, 1_5D is top right, SoS1 is 
bottom left and SoS2 is bottom right. 

 

  

Figure 9. Synfuel production along all scenarios in 2100. BAU is top left, 1_5D is top right, SoS1 is 
bottom left and SoS2 is bottom right. 

In 1_5D, it can be seen that the import demand for synfuels is highest; compare Figure 
10. Middle East Asia, Africa and Australia are the main exporters and share more or less 
the same amount of synfuel exports. Mexico also exports some synfuels, especially to Can-
ada and the US.  

Figure 8. Hydrogen Export along all scenarios in 2100. BAU is top left, 1_5D is top right, SoS1 is
bottom left and SoS2 is bottom right.

Energies 2023, 16, x FOR PEER REVIEW 14 of 20 
 

 

 

  

Figure 8. Hydrogen Export along all scenarios in 2100. BAU is top left, 1_5D is top right, SoS1 is 
bottom left and SoS2 is bottom right. 

 

  

Figure 9. Synfuel production along all scenarios in 2100. BAU is top left, 1_5D is top right, SoS1 is 
bottom left and SoS2 is bottom right. 

In 1_5D, it can be seen that the import demand for synfuels is highest; compare Figure 
10. Middle East Asia, Africa and Australia are the main exporters and share more or less 
the same amount of synfuel exports. Mexico also exports some synfuels, especially to Can-
ada and the US.  

Figure 9. Synfuel production along all scenarios in 2100. BAU is top left, 1_5D is top right, SoS1 is
bottom left and SoS2 is bottom right.

Given the case of a minimum of 33% in domestic production and at least two inde-
pendent trading regions, there is another shift in hydrogen and synfuels allocation visible.
Middle East Asia and Africa are starting to boost the hydrogen production in SoS2 as they
become the main global exporters; compare Figure 8. As the domestic production share of
synfuels and hydrogen on the total demand is less than in SoS1, many regions can use the
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feasible renewable potentials to produce more local hydrogen as synfuels can be imported
to a maximum share of 66%.

The export allocation structure for hydrogen in Figure 8 shows clearly that Middle
East Asia has the lowest levelized costs on hydrogen production globally. Furthermore,
the location is predestined for LH2 transport to Europe as the distance is relatively short,
and transport costs have a huge impact on the total costs of hydrogen. As far as there is no
security of supply scenario applied to trading (1_5D and SoS1), Middle East Asia remains
the main global exporter of hydrogen.

By adding security of supply to trading in the case of SoS2, Middle East Asia is no
longer allowed to satisfy the export demand as one region. This results in Africa and
Middle East Asia sharing the export demand, as they both have huge technical potentials
as well as being a short distance to Europe, which is the main importer.

In 1_5D, it can be seen that the import demand for synfuels is highest; compare
Figure 10. Middle East Asia, Africa and Australia are the main exporters and share more or
less the same amount of synfuel exports. Mexico also exports some synfuels, especially to
Canada and the US.
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Considering the SoS1 scenario, the demand of synfuels export is shrinking, especially
in the regions of Middle East Asia and Australia, while the regional allocation structure is
still the same. The lowest export demand is observed in the case of SoS2. A switch in export
allocation can be seen as Mexico is replaced by Central and South America. Australia,
Middle East Asia and Africa still remain the main exporter of synfuels.

5. Conclusions and Outlook

The scenario analysis with the energy system TIAM shows that CO2 mitigation due
to technological transformation, electrification and a new allocation of energy carriers,
especially hydrogen and synfuels, is necessary.

To achieve the 1.5 ◦C target, the transformation of the power sector is crucial. On
the one hand, a large share of the final energy consumption is covered by direct electric
use. On the other hand, it must be ensured that hydrogen and synfuels can be produced
despite the high use of electricity to replace those technologies that cannot switch to direct
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electric, such as aviation, shipping and some high temperature process heat processes in
the industrial sector.

The scenario analysis also shows, independently of the import structure and require-
ments related to security of supply or the diversity of energy imports, that the electricity
sector and the end use sectors decarbonize in a fairly similar way. Electricity is the preferred
energy source. The share of hydrogen and synfuels depends on the difference in the security
of supply policies exogenously applied to the scenarios, but both play an important role in
global markets.

In the only scenario with climate action and no security of supply policy, it shows that
not all regions start the production of hydrogen and synfuels, because the renewable energy
potentials for this are not sufficient and competitive compared to direct electricity usage.
This is particularly evident in Europe. Preference in those regions is given to importing
hydrogen from Middle East Asia. Synfuels show a higher degree of diversification and
therefore a different allocation in terms of export. Africa, Middle East Asia and Australia
have similar export shares.

To conclude this investigation, it can be said that the technical renewable potentials
are high enough to decarbonize the global energy system. The structure of hydrogen and
synfuel allocation is fairly different in the case of security of supply policies on production
and trading. Shifts can be observed as sun-rich regions are more predestined to produce
hydrogen and synfuels. Furthermore, the transformation process will not only be influenced
by the availability of renewable electricity generation, but also by the infrastructure costs,
which are included in the supply curves that TIAM is using as an input. This does also
have an impact on the energy carrier allocation regarding the final energy consumption,
but it does not necessarily threaten the 1.5 ◦C target.

The energy system model TIAM has a high degree of technology richness. Never-
theless, mitigation strategies are required as material efficiency and circular economy will
have a huge impact on the overall energy supply as well as on the hydrogen and synfuel
demand. By using secondary routes for material production, direct electric usage could
become the leader in certain sectors, e.g., the steel or chemical industries. There are also
uncertainties in supply technologies that could lead to a shift towards direct electric use,
for example, molten oxide electrolysis for primary steel production. A diffusion with such
a technology could potentially set hydrogen demand in primary steel production to almost
zero. This example shows the uncertainty related with future hydrogen demands.

It is also unclear how states will behave on boosting the hydrogen economy. As the
results show, little changes already have impact on the allocation structure. Moreover, the
model results fully rely on levelized costs of hydrogen and synfuels. Tax subsidies such
as those in the IRA could lead to a shift in hydrogen production, expansion of renewable
energies and therefore, a total new global allocation of energy carriers.
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Appendix A 

Table A1. Distance matrix for shipping based on [58]. 

km CAN USA MEX CSA EEU GER AFR FSU MEA ODA IND CHI SKO JPN AUS WEU 
CAN   13,187 4820 17,600 7327 6493 9587 8313 13,836 15,420 16,407 22,781 21,292 18,851 23,658 5820 
USA 13,187   7200 16,051 16,337 16,727 16,776 19,076 22,646 21,843 20,577 10,648 9834 9182 18,534 17,852 
MEX 4820 7200   13,296 14,546 11,147 14,904 12,464 15,554 24,272 18,997 13,105 12,323 11,521 22,000 12,284 
CSA 17,600 16,051 13,296   13,865 12,562 13,546 14,691 21,161 24,261 19,466 23,022 23,853 24,264 21,366 14,433 
EEU 7327 16,337 14,546 13,865   819 6986 1191 9167 16,044 12,836 21,483 22,348 22,232 20,772 1393 
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Appendix A

Table A1. Distance matrix for shipping based on [58].

km CAN USA MEX CSA EEU GER AFR FSU MEA ODA IND CHI SKO JPN AUS WEU

CAN 13,187 4820 17,600 7327 6493 9587 8313 13,836 15,420 16,407 22,781 21,292 18,851 23,658 5820

USA 13,187 7200 16,051 16,337 16,727 16,776 19,076 22,646 21,843 20,577 10,648 9834 9182 18,534 17,852

MEX 4820 7200 13,296 14,546 11,147 14,904 12,464 15,554 24,272 18,997 13,105 12,323 11,521 22,000 12,284

CSA 17,600 16,051 13,296 13,865 12,562 13,546 14,691 21,161 24,261 19,466 23,022 23,853 24,264 21,366 14,433

EEU 7327 16,337 14,546 13,865 819 6986 1191 9167 16,044 12,836 21,483 22,348 22,232 20,772 1393

GER 6493 16,727 11,147 12,562 819 6722 1637 8130 12,834 12,329 20,235 21,591 21,484 21,156 917

AFR 9587 16,776 14,904 13,546 6986 6722 11,349 4257 8847 11,755 25,177 26,677 16,500 16,686 6412

FSU 8313 19,076 12,464 14,691 1191 1637 11,349 9852 17,188 13,854 21,903 22,888 23,430 22,641 2461

MEA 13,836 22,646 15,554 21,161 9167 8130 4257 9852 4758 4254 12,530 13,119 13,497 12,895 7745

ODA 15,420 21,843 24,272 24,261 16,044 12,834 8847 17,188 4758 513 10,249 10,802 12,436 9598 11,804

IND 16,407 20,577 18,997 19,466 12,836 12,329 11,755 13,854 4254 513 9539 10,308 11,100 9342 11,917

CHI 22,781 10,648 13,105 23,022 21,483 20,235 25,177 21,903 12,530 10,249 9539 838 1850 8048 19,939

SKO 21,292 9834 12,323 23,853 22,348 21,591 26,677 22,888 13,119 10,802 10,308 838 1662 8792 25,557

JPN 18,851 9182 11,521 24,264 22,232 21,484 16,500 23,430 13,497 12,436 11,100 1850 1662 9542 23,037

AUS 23,658 18,534 22,000 21,366 20,772 21,156 16,686 22,641 12,895 9598 9342 8048 8792 9542 20,010

WEU 5820 17,852 12,284 14,433 1393 917 6412 2461 7745 11,804 11,917 19,939 25,557 23,037 20,010

Appendix B

Table A2. Ports in TIAM for hydrogen and synfuel import and export. This is our own research.

Region Port Name Lat Lon

AFR Port of Walvis Bay −2,294,438,616 1,448,237,595

SKO Port of Busan 3,510,370,188 1,290,414,886

CSA Port of Buenos Aires −3,456,909,495 −5,838,273,273

AUS Fremantle Ports −320,529,628 1,157,408,536

CAN Port of Quebec 4,682,265,707 −7,120,249,041

CHI Port of Shanghai 3,063,068,515 1220,847,303

GER Port of Hamburg 535,410,807 9,986,766,343

WEU Port of Birmingham 5,363,207,459 −185,406,508

IND Mundra Port 2,274,104,731 697,157,146

JPN Port of Keihin 3,542,669,641 1,396,843,441

AFR Port of Benghazi 3,211,470,309 200,423,606

MEX Puerto De Manzanillo 197,070,599 −71,744,7426

ODA Port of Karachi 2,483,708,206 6,698,086,793

EEU Port of Gdynia 545,360,318 1,853,554,754

FSU Port of Saint Petersburg 5,988,860,049 3,018,117,919

MEA Port of Jeddah 2,149,503,622 391,551,345

USA Port of Los Angeles 3,372,839,414 −1,182,402,335
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Appendix C

Table A3. Description of TIAM regions; compare [59].

TIAM Region Region Name Further Description

AFR Africa Full African continent

AUS Australia Australia, New Zealand

CAN Canada -

CHI China -

CSA Central and South America Full South America and North America except
Canada, USA and Mexico

EEU Eastern European Union
Albania, Bosnia–Herzegovina, Bulgaria, Croatia,
Czech Republic, Hungary, Macedonia, Poland,

Romania, Slovakia, Slovenia, Yugoslavia

FSU Former Soviet Union Russia and old Soviet states

GER Germany -

IND India -

JPN Japan -

MEX Mexico -

MEA Middle East Asia Near East except Africa

ODA Other Developing Asia Asia except China, India, Japan and South Korea

SKO South Korea -

USA United States of America -

WEU Western European Union Portugal, Spain, France, Great Britain, Sweden,
Norway, Finland, Italy, Greece, Switzerland, Austria

Appendix D

Table A4. Production and export amounts of hydrogen and synfuels. All values in TWh.

Hydrogen Production Hydrogen Export Synfuel Production Synfuel Export
BAU 1_5D SoS1 SoS2 BAU 1_5D SoS1 SoS2 BAU 1_5D SoS1 SoS2 BAU 1_5D SoS1 SoS2

AFR 125 1154 1276 2593 0 13 18 866 0 1959 1941 984 0 1835 1629 672

AUS 15 13 39 59 0 0 0 32 0 1873 939 984 0 1873 852 922

CAN 11 2 4 2 0 0 0 0 0 0 8 5 0 0 0 0

CHI 826 734 734 1050 0 0 0 0 0 0 487 318 0 0 0 92

CSA 247 972 871 894 0 0 0 0 0 184 21 217 0 41 0 152

EEU 4 8 10 6 0 0 0 0 0 0 6 4 0 0 0 0

FSU 180 1577 1416 1477 0 0 0 0 0 0 121 75 0 0 0 0

GER 18 0 8 5 0 0 0 0 0 0 30 20 0 0 0 0

IND 59 3153 2962 3035 0 0 0 0 0 0 139 86 0 0 0 0

JPN 53 31 49 25 0 0 0 0 0 0 46 36 0 0 0 0

MEA 589 2480 3736 2431 0 1236 2202 898 0 2187 957 976 0 1764 220 650

MEX 27 10 7 5 0 0 0 0 0 838 585 91 0 811 501 7

ODA 875 1485 1227 1205 0 0 0 0 0 0 334 228 0 0 0 0

SKO 102 14 41 25 0 0 0 0 0 0 23 25 0 0 0 0

USA 189 850 850 817 0 0 0 0 0 0 318 807 0 0 0 0

WEU 323 36 146 93 0 0 0 0 0 0 180 112 0 0 0 0
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