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Abstract: Accurate multivariate load forecasting plays an important role in the planning management
and safe operation of integrated energy systems. In order to simultaneously reduce the prediction bias
and variance, a hybrid ensemble learning method for load forecasting of an integrated energy system
combining sequential ensemble learning and parallel ensemble learning is proposed. Firstly, the load
correlation and the maximum information coefficient (MIC) are used for feature selection. Then the
base learner uses the Boost algorithm of sequential ensemble learning and uses the Bagging algorithm
of parallel ensemble learning for hybrid ensemble learning prediction. The grid search algorithm
(GS) performs hyper-parameter optimization of hybrid ensemble learning. The comparative analysis
of the example verification shows that compared with different types of single ensemble learning,
hybrid ensemble learning can better balance the bias and variance and accurately predict multiple
loads such as electricity, cold, and heat in the integrated energy system.

Keywords: load forecasting of integrated energy system; maximum information coefficient; ensemble
learning; grid search

1. Introduction

Integrated Energy System (IES) is a system that closely combines various types of
energy to realize energy production, transmission, storage, and use, providing users
with services such as power supply, heating, and cooling. It plays an important role in
improving energy efficiency, reducing carbon emissions, and increasing the penetration
of renewable energy [1,2]. The traditional energy system load forecasting only needs to
consider one load, while the IES multi-load forecasting needs to consider various loads
such as electricity, cold, heat, and gas, and the difficulty of forecasting also increases. IES
multivariate load forecasting is an important basis for energy management and optimal
scheduling of integrated energy systems, which puts forward higher requirements for the
accuracy and reliability of forecasting [3].

1.1. Related Work

In recent years, the field of load forecasting has been widely studied by scholars,
mainly using three research methods: deep learning method, single machine learning algo-
rithm, and integrated learning algorithm. Deep learning is a multi-layer neural network: a
machine learning method. In terms of deep learning, Ref. [4] proposed a load forecasting
model based on Convolutional Neural Network (CNN) combined with a Bidirectional
Long Short-Term Memory (BiLSTM) neural network. The example of an integrated energy
system verifies that it has an excellent performance in terms of calculation time and predic-
tion accuracy. On the basis of ensemble learning, Ref. [5] proposed a power load forecasting
model based on BP neural network, support vector regression, random forest, and gradient
boosting decision tree. Through the experimental data verification of the Tempe campus
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of Arizona State University, the accuracy of power load forecasting of integrated energy
systems can be improved. In Ref. [6], a load forecasting model based on a convolutional
neural network (CNN) and long short-term memory (LSTM) is proposed. The results show
that the CNN-LSTM model proposed in this paper has higher prediction accuracy. In terms
of a single machine learning algorithm, Ref. [7] proposed the application of a support
vector machine (SVM) for real-time power load forecasting, which improved the accuracy
of prediction. Ref. [8] proposed a power load forecasting model based on a decision tree
algorithm, which reduced the operation risk value of the system. Refs. [9,10] proposed
a multivariate load forecasting model based on long short-term memory (LSTM) neural
network. Since the above uses a single machine learning algorithm, the single algorithm
mechanism weakens the prediction generalization performance, and the prediction result
accuracy is not high. In terms of ensemble learning algorithms, ensemble learning can
learn from others‘ strengths and combine the advantages of different prediction methods
to improve the generalization performance of the algorithm. Ensemble learning includes
sequential integration and parallel integration. In terms of sequential integration, the Ad-
aBoost algorithm is proposed in Ref. [11] to predict the load of the station area, and higher
prediction accuracy is obtained. Ref. [12] used the XGBoost algorithm for short-term load
forecasting, which further improved the prediction accuracy. Ref. [13] proposed the GBDT
algorithm for load forecasting and achieved good prediction results. In terms of parallel
integration, Ref. [14] proposed a heterogeneous integrated Stacking ensemble learning
method, which gave full play to the advantages of the model itself and achieved higher
prediction accuracy. Ref. [15] proposed an improved Bagging algorithm (RF) for load
forecasting and achieved good results. However, the above literature only uses a single
sequential integration or parallel integration. Because different integration methods have
different effects on the generalization error, it is impossible to reduce the prediction bias
and variance at the same time [16]. Based on the Extreme Gradient Boosting (XGBoost)
algorithm, Ref. [17] introduces the idea of Bagging to establish the extreme weather iden-
tification and short-term load forecasting model of the Bagging-XGBoost algorithm. In
this paper, the Bagging-XGBoost model is applied to the field of multi-load forecasting of
integrated energy systems. The maximal information coefficient method is introduced to
analyze the correlation between meteorological factors and electric, cooling, and hot loads.
The grid search method is used to optimize the parameters of the XGBoost model, which
can effectively improve the prediction accuracy of the model proposed in this paper.

By introducing the work of previous researchers, the current research in the field
of integrated energy system load forecasting is still insufficient. The deficiencies are
summarized as follows:

(1) Although deep learning is widely used in the field of integrated energy load fore-
casting and many researchers are studying deep learning methods, the network structure
of deep learning method is more complex, and the model training often requires a lot of
historical data as the basis. The operation is also more time-consuming and the hidden
layer and the number of nodes in the model architecture are easily over-fitted. These
characteristics limit its further play a huge role in load forecasting.

(2) The above part of the literature uses a single machine learning algorithm, such
as a support vector machine (SVM) and decision tree. The single algorithm mechanism
makes the prediction generalization performance weak, and the prediction accuracy is not
high. Other literature only uses a single serial or parallel integration. Because different
integration methods have different effects on generalization errors, they cannot reduce
prediction bias and variance at the same time.

(3) Most of the existing integrated energy system load forecasting studies use deep
learning algorithms, and ensemble learning does not seem to be the focus of researchers. It
is still necessary to analyze the sensitivity of the ensemble learning method to generalization
error and its application in load forecasting.

In order to further exert the advantages of ensemble learning, this paper proposes a
hybrid ensemble learning method for load forecasting of integrated energy systems com-
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bining sequential ensemble learning and parallel ensemble learning. Firstly, on the basis of
feature selection by IES, the prediction bias and variance of prediction are comprehensively
considered. Secondly, the sequential integration uses the XGBoost algorithm as the base
learner and then uses the Bagging method for parallel integration to construct a hybrid
ensemble learning IES load forecasting model. Then, the grid search method is used to
optimize the parameters. Finally, a numerical example is used to verify the effectiveness of
the model in IES multivariate load forecasting.

1.2. Contributions

The main contributions of this paper are reflected in the following four aspects:
(1) Previous scholars have studied the application of many ensemble learning meth-

ods in load forecasting of the single energy system, while the application in multi-load
forecasting of the integrated energy system is not very common. This paper verifies that the
ensemble learning method also has good performance in load forecasting of the integrated
energy system, which reflects the effectiveness and applicability of ensemble learning in
different forecasting scenarios.

(2) This paper proposes a combination model based on the serial ensemble learning
method (XGBoost) and parallel ensemble learning method (Bagging). This model can
effectively combine the two ensemble learning methods, give full play to their respective
advantages, improve the stability of the model and enhance the generalization ability of
the model.

(3) The maximum information coefficient (MIC) method is proposed. This method
defines the maximum information coefficient between two variables through mutual infor-
mation and deeply excavates the complex coupling relationship between the two variables.
It can measure the correlation between electric load and cooling load, electric load and
heating load, and cooling load and heating load. Finally, the feature selection of input
variables is carried out.

(4) Through the integrated energy system data set of the Tempe campus of Arizona
State University, the effectiveness of the proposed model is verified compared with the deep
learning method and the single integration method, which can well balance the prediction
accuracy and calculation time.

The contents of this paper are as follows: The second section introduces two different
ensemble learning methods and analyzes the bias and variance in the generalization error.
The third section proposes the maximum information coefficient (MIC) method and the
sequential-parallel integrated learning model. In the fourth section, the performance
evaluation index is used to evaluate the proposed model, which verifies its effectiveness of
the proposed model. The last section is the conclusion and future work plan.

2. Sequential-Parallel Hybrid Ensemble Learning
2.1. Ensemble Learning

Ensemble learning is formed by multiple base learners through a certain combination
strategy. According to the generation method of the base learner, ensemble learning is
divided into two categories. The base learner is sequentially generated and has a strong
dependence on sequential integration. Parallel integration is one where there is no strong
dependency between base learners. The base learner of the sequential ensemble is generally
homogeneous, the typical algorithm is the Boosting series algorithm based on a decision
tree, and the typical parallel ensemble is a Bagging series algorithm.

2.1.1. Typical Sequential Ensemble Learning Methods

Boosting is a class of algorithms that can upgrade weak learners to strong learners.
XGBoost is one of the most representative algorithms in the Boosting series. XGBoost
is based on the traditional Gradient Boosting Decision Tree (GBDT) [18]. XGBoost not
only supports the CART regression tree but also supports linear classifier. At the same
time, XGBoost adds regular terms to the objective function to avoid the overfitting of the
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model, and the second-order Taylor expansion of the loss function makes it more effective
in solving the optimal solution.

XGBoost is a linear addition model, and K CART trees are constructed by incremental
learning. The algorithm flow is shown in Figure 1. Suppose a given data set D = (xi, yi),
the mathematical model is as follows:

y = Φ(x) = ∑K
k=1 fk(xi), fk ∈ F (1)

where fk is the CART tree, xi is the feature vector of the ith data, and F is the hypothesis
space. There are:

F =
{

f (x) = ωq(x)

}(
q : Rm → T, ω ∈ RT

)
(2)

In the formula: ω represents the score of the leaf node; q(x) denotes the assignment of
sample x to leaf nodes; ωq(x) represents the predicted value of the sample; T is the number
of leaf nodes, which is used to represent the complexity of the tree.

The objective function of XGBoost is as follows:

L(Φ) = ∑i l(ŷi, yi) + ∑k Ω( fk) (3)

The right side is divided into two parts. The first part is the general loss function,
which represents the empirical risk minimization. The second part is the regularization
term, which represents structural risk minimization.

Figure 1. Sequential ensemble learning based on XGBoost.

2.1.2. Typical Parallel Ensemble Learning Methods

Bagging is a typical representative of parallel ensemble learning algorithms. It uses a
self-help sampling method to generate different base classifiers [19]. The algorithm process
is shown in Figure 2. The Bagging algorithm is divided into two steps.

The first step of sampling uses random sampling with a putback to expand the data
set; The second step uses the voting combination method to integrate each sub-model.
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Figure 2. Parallel ensemble learning based on Bagging.

2.2. Prediction Generalization Error

For the prediction problem, the error result of the prediction model for unknown data
is called generalization error, which includes the following three parts: Bias, Variance, and
Noise [20].

Bias refers to the gap between the expectation of the predicted value and the real value,
which reflects the fitting ability of the learning algorithm. The larger the bias is, the more the
predicted value deviates from the real data. The variance describes the range or dispersion
of the predicted value, the distance from the expected value, which shows the impact of
data disturbance. The larger the variance, the more dispersed the data distribution. Noise
is affected by factors other than the algorithm, and data quality determines the upper limit
of learning. Figure 3 shows the distribution of bias and variance with a prediction as an
example. It can be seen that the predicted value falling in the red area of the target center is
the ideal effect of multiple predictions, which is reflected in low bias and low variance.

Figure 3. Characteristics of the distribution of the bias and variance of the prediction problem.
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The XGBoost algorithm uses the residual of the weak classifier as the input of the
next classifier during training, which makes the bias gradually decrease. The strong
correlation between the base learners of the XGBoost algorithm does not significantly
reduce the variance. The Bagging algorithm can significantly reduce the variance, randomly
sample from the original training data, train each base learner separately and calculate
the average. This parallel set method effectively reduces the variance and avoids the
over-fitting effect of the model, thereby improving the generalization performance of the
model. The comparison between sequential and parallel integration algorithms is shown
in Table 1.

Table 1. Comparison of sequential -parallel ensemble learning.

Algorithm Integrated Methods Base Learner Correlation Error Type

Bagging Parallel Integration strong prediction model Weak Reduced
Variance

XGBoost Sequential Integration weak prediction model Strong Reduced Bias

3. Analysis of Load Forecasting Model Based on Sequential-Parallel Hybrid
Ensemble Learning
3.1. Sequential-Parallel Hybrid Ensemble Learning

XGBoost-Bagging hybrid ensemble learning is based on a decision tree, using random
sampling, applying XGBoost method to train each sub-sample set respectively, and then
using the mean voting strategy to combine the results of load forecasting of each XGBoost
model. The XGBoost-Bagging hybrid ensemble learning method gives full play to the
advantages of sequential and parallel models, and the hybrid ensemble model is more
stable and has better generalization performance. The hybrid ensemble learning structure
based on XGBoost-Bagging is shown in Figure 4.

Figure 4. Hybrid ensemble learning structure based on XGBoost-Bagging.
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3.2. Maximal Information Coefficient

MIC is used to measure the linear or nonlinear relationship between two variables, X
and Y [21], which has the advantages of high robustness, wide application range, and low
complexity. The MIC range is between 0 and 1, and the higher the value, the stronger the
correlation. The calculation formula is:

MIC[X; Y] = max
|X||Y|<B

I[X; Y]
log2(min(|X|, |Y|)) (4)

3.3. IES Model Framework Based on Sequential-Parallel Hybrid Ensemble Learning

The process of the overall framework of IES multiple load forecasting is shown in Figure 5.

Figure 5. Multivariate load forecasting based on sequential-parallel hybrid ensemble learning.

Step 1: Use the MIC method to analyze the correlation between multi-load and meteo-
rological factors, calendar rules, and other characteristics, and screen out the characteristics
with a strong correlation with each load.

Step 2: The grid search method is used to optimize the four hyperparameters in the
XGBoost algorithm. The four hyperparameters are the maximum depth of the tree (max
_depth), the number of trees (n _estimators), the learning rate and the minimum loss value
of node splitting (gamma), and the optimal hyperparameter set of the XGBoost algorithm
are obtained.

Step 3: The Bagging algorithm uses random sampling with a putback to form training samples.
Step 4: Train the corresponding XGBoost model for each training subset.
Step 5: For the load forecasting results of each sequential training, the mean vote is used

to combine the forecasting results of each model to obtain the final forecasting outcome.

4. Example Analysis

The example is the IES power, heat, and cooling load data of Arizona State University
from 1 January 2021 to 31 December 2021 [22], and their units are kW, mmBTU, and tons.
The sampling interval of the data set selected is 1 h. The load data is derived from the
CAMPUS METABOLISM database of the school, and the meteorological data is obtained
through the website of the National Renewable Energy Laboratory of the United States. In
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this paper, the data set is divided into a training set, verification set, and test set according
to 6:2:2, and the related programming and calculation are realized by Python3.7.

By analyzing Figures 6–8, it can be seen that the electric load is positively correlated
with the cooling load, the electric load is negatively correlated with the heat load, and the
cooling load is negatively correlated with the heat load. This shows that in the integrated
energy system, the three loads of electricity, heat, and cooling are closely related and have
a complex coupling relationship. In load forecasting, not only one load is considered, but
the three loads should be considered at the same time so as to ensure the accuracy of the
forecasting results.

4.1. Evaluating Indicator

In order to better verify the prediction performance of the model proposed in this
paper, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute
Percentage Error (MAPE) are selected as evaluation indicators. Among them, MAE can
better reflect the actual situation of the predicted value error, which is used to measure
the variance between the predicted value and the true value; RMSE describes a degree
of dispersion, which is used to measure the bias between the predicted value and the
true value; MAPE depicts the overall level of the model. The detailed expression of the
error-index is shown in Table 2.

Figure 6. Correlation between electrical load and heat load.

Figure 7. Correlation between electrical load and cooling load.
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Figure 8. Correlation between cooling load and heat load.

Table 2. Evaluation metrics.

Evaluation Index Error Definition Expression

MAE Mean Absolute Error MAE = 1
n

n
∑

i=1
|ŷi − yi|

RMSE Root Mean Square Error RMSE =

√
1
n

n
∑

i=1
(ŷi − yi)

2

MAPE Mean Absolute Percentage Error MAPE = 100%
n

n
∑

i=1

∣∣∣ ŷi−yi
yi

∣∣∣
Where: n represents the number of predicted points, ŷi represents the predicted value of the load, yi represents
the real value of the load.

4.2. Correlation Analysis Based on MIC

IES is an energy balance system with electric energy as the core, which can realize
the multi-energy complementarity of electricity, heat, cooling, and gas. There are different
forms of mutual conversion between different loads, indicating that there is a coupling
relationship between multiple loads. Multivariate load forecasting first needs to determine
the reasonable characteristic quantities corresponding to different types of loads, that is, to
determine the dependent variables through correlation analysis. The MIC method is used
to analyze the annual IES data and weather data of the Tempe campus of Arizona State
University in the United States. The calculation results are shown in Table 3.

In the integrated energy system, as shown in Figure 9, the correlation between cooling
load and heat load is the strongest, and the correlation coefficient reaches 0.726. The
correlation between cooling load and electric load and the correlation between heat load
and electric load is relatively weak, and the correlation coefficients are 0.481 and 0.413,
respectively. From the perspective of meteorological factors, the cooling and heat loads
are strongly correlated with temperature, and the correlation coefficients reach 0.853 and
0.653. The correlation between cooling load and pressure, and relative humidity is strong,
and the correlation coefficients reach 0.328 and 0.315. The correlation coefficients between
heat load and pressure, and rainfall also reached 0.363 and 0.315. The correlation between
electric load and other meteorological indexes, except temperature, is weak.

In summary, there are both strong correlations and weak correlations between multiple
loads, and the correlation between multiple loads and meteorological factors is not exactly
the same. Electric load is strongly correlated with heat load, cooling load, and temperature.
Cooling load is strongly correlated with electric load, heat load, pressure, temperature, and
relative humidity. Heat load is strongly correlated with electric load, cooling load, pressure,
temperature, and rainfall. Therefore, the influencing factors with a correlation coefficient
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greater than 0.3 (strong correlation) are selected as input features to train the model. The
main influencing factors are shown in Figure 10.

Table 3. Correlation analysis between multivariate load and characteristics.

Electric Loading Cooling Loading Heat Loading

Cloud Type 0.066 0.072 0.055
Dew Point 0.219 0.213 0.217

Surface Reflectance 0.112 0.192 0.191
Wind Speed 0.078 0.097 0.059

Precipitable Water Vapor 0.223 0.235 0.315
Wind Direction 0.078 0.097 0.059

Relative Humidity 0.139 0.315 0.251
Temperature 0.438 0.853 0.653

Pressure 0.217 0.328 0.363
Day Type 0.072 0.043 0.112

Electric Loading 1 0.481 0.413
Cooling Loading 0.481 1 0.726

Heat Loading 0.413 0.726 1

Figure 9. The correlation analysis results between electric, cooling and heat loads and characteristics.

Figure 10. Main influencing factors between multivariate load.
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4.3. XGBoost Parameter Tuning

Due to the differences between IES multi-loads, different parameters need to be
selected for different load types. Based on the training data set, the four hyperparameters
in the XGBoost model are optimized by using the grid search method [23] combined with
cross validation. After several debugging, the setting of hyperparameters is shown in
Table 4.

Table 4. Hyper parameter setting.

Max_ Depth n_ Estimators Learning_ Rate Gamma

Electric 4 200 0.1 100
Cooling 6 150 0.2 50

Heat 5 300 0.1 200

4.4. Comparative Analysis of Prediction Results
4.4.1. Comparison of Single Load Forecasting and Multiple Load Forecasting

In order to verify that the MIC method has obvious advantages in improving the
results of multiple load forecasting by analyzing the strong and weak correlation between
multiple loads and between multiple loads and meteorological factors, the results of single
load forecasting and electric cooling and heating multiple load forecasting are compared.
The comparison results are shown in Table 5.

Table 5. Single load forecasting and multivariate load forecasting results.

Model
MAPE/%

Electric/kW Cooling/Tons Heat/mmBTU

Single load forecasting 1.137 4.521 2.831
Multiple load forecasting 0.892 4.046 2.466

Because the multi-load forecasting takes into account the coupling characteristics of
the interaction between multi-loads, the prediction errors of electric load, cooling load, and
heat load of multi-load forecasting are reduced by 17.9%, 10.5%, and 12.9%, respectively.
There is a strong correlation between the electric cooling and heating loads, which reflects
the superiority of MIC in analyzing the coupling of multiple loads.

4.4.2. Comparison of Prediction Results of Different Models

In order to verify the effectiveness and reliability of the proposed method, the model is
compared with the LSTM model of deep learning, the XGBoost model of single sequential
integration of ensemble learning, the RF model of single parallel integration, and the
Bagging-GBDT model of ensemble learning. The load forecasting results are shown in
Figures 11–16.

Figure 11. Electric load forecast results. Electrical load forecasting results compared with LSTM.
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Figure 12. Cooling load forecast results. Cooling load forecasting results compared with LSTM.

Figure 13. Heat load forecast results. Heat load forecasting results compared with LSTM.

Figure 14. Electric load forecast results.

(1) Comparison between Bagging-XGBoost model and the LSTM model
The LSTM algorithm is called Long short-term memory, which was first proposed in

1997. It is a specific form of RNN (Recurrent neural network) and has been widely used in
the field of multi-load forecasting of integrated energy systems. Electric, cooling and heat
multivariate load forecasting is shown in the following figures.

From the comparison of load forecasting curves and load forecasting results, it can
be seen that the prediction accuracy of Bagging-XGBoost model is higher than that of
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the LSTM model. From the results of electric load forecasting, the MAPE% value of the
Bagging-XGBoost model is 1.169 lower than that of the LSTM model, the MAE value is
reduced by 145.908, and the RMSE value is reduced by 153.666. Based on the prediction
results of cooling load and heat load, the prediction performance index of the proposed
model is better than that of the LSTM model.

The structure of the LSTM model itself is relatively complex and the training is time-
consuming. In addition, the network structure characteristics determine that it cannot
process data in parallel. Taking the electric load as an example, when the prediction step
size is 24 h, the Bagging-XGBoost model takes 42.29 s, and the LSTM model takes 39.86 s.
Although the LSTM model takes less time, the speed advantage is not particularly obvious.
Considering the prediction accuracy and training time, the Bagging-XGBoost model better
achieves a good balance between prediction accuracy and training time.

Figure 15. Cooling load forecast results.

Figure 16. Heat load forecast results.

(2) Comparison of Bagging-XGBoost model with RF model and XGBoost model
From the overall prediction results, it can be seen that the prediction accuracy of the

sequential-parallel integration model (Bagging-XGBoost) is greatly improved compared
with the sequential integration model (XGBoost) and parallel integration model (RF).
Compared with the XGBoost model, the MAPE index of the electric, cooling, and heat
load forecasting results of the Bagging-XGBoost model is reduced by 74.8%, 35.7%, and
57.7%, respectively. Compared with the RF model, it decreased by 86.9%, 66.8%, and
34.2%. From the perspective of bias and variance, the prediction results of the Bagging-
XGBoost model also achieve the desired results. Taking the electrical load as an example,
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the MAE index and RMSE index of the Bagging-XGBoost model are reduced by 192.665 and
189.257 kW compared with the RF model. Compared with the XGBoost model, it is reduced
by 148.747 and 215.342 kW. It can be seen that sequential-parallel hybrid ensemble learning
can better balance bias and variance than single sequential ensemble learning or single
parallel ensemble learning to achieve the best prediction results.

(3) Comparison between the Bagging-XGBoost model and Bagging-GBDT model
Both XGBoost and GBDT are sequential ensemble learning algorithms. Because

XGBoost is an improved algorithm of GBDT, XGBoost performs second-order Taylor
expansion on the loss function and can apply first-order and second-order derivatives
at the same time. It can quickly find the splitting point so that it has a strong ability to
prevent overfitting. However, GBDT only applies first-order derivative information during
training, and the model training is not sufficient, resulting in lower prediction accuracy than
XGBoost. From Table 6 and Figure 7 to Figure 9, it can be seen that the overall prediction
effect of the Bagging-XGBoost model is better, and the prediction accuracy is higher than
that of the Bagging-GBDT model. Among them, the prediction accuracy of electric, cooling,
and heat load is increased by 28.6%, 6.9%, and 13.1%, respectively, and all three loads
achieve the ideal prediction effect.

Table 6. Comparison of Bagging-XGBoost model and LSTM model indicators.

Model
MAPE/% MAE RMSE

E C H E C H E C H

Bagging-
XGBoost 0.892 4.046 2.266 156.434 88.460 0.320 190.096 109.319 0.450

LSTM 2.061 4.624 3.608 302.342 127.347 0.451 343.762 134.758 0.556

From the load forecasting results, the Bagging-XGBoost model has the best effect
in the prediction of electric load and cooling load, and the heat load is slightly inferior
in the prediction effect, and the prediction accuracy is significantly improved. From the
load forecasting curve, the overall error fluctuation of the Bagging-XGBoost model is
relatively stable during the forecasting process, while the error fluctuation of the other three
forecasting models is more severe. In summary, the Bagging-XGBoost hybrid ensemble
learning model adopted in this paper can reduce the bias and variance, enhance the
generalization performance of the model, and greatly improve the multi-load forecasting
accuracy of the integrated energy system.

In order to verify the feasibility and effectiveness of the Bagging-XGBoost hybrid
integration algorithm, avoid too single training set to make the prediction result accidental.
Taking the electric load as an example, the data set is divided into a training set, verification
set and test set according to 6:2:2, and then the data with prediction steps of one week, one
month, and one quarter are tested. The average absolute percentage error and training time
of the prediction results are obtained, as shown in the following Table 7.

Table 7. Comparison of indicators of different forecasting models.

Model
MAPE/% MAE RMSE

E C H E C H E C H

Bagging-XGBoost 0.892 4.046 2.266 156.434 88.460 0.320 190.096 109.319 0.450
RF 1.761 4.714 2.608 349.099 109.467 0.443 379.353 142.328 0.483

Bagging-GBDT 1.25 4.347 2.503 251.246 105.962 0.317 350.701 121.146 0.443
XGBoost 1.64 4.403 2.843 305.181 119.926 0.366 405.438 139.408 0.513

From the data analysis in Table 8, with the increase in the prediction step size, the
data is more complex. While the prediction difficulty increases, the training time will also
increase, and the prediction accuracy of the model will generally decrease. This shows that
the more data, the more information it contains. Under the influence of various factors, the
full learning ability of the model is insufficient, and the generalization performance is not
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strong. The Bagging-XGBoost model not only has higher prediction accuracy than other
models but also has a more stable prediction performance. In terms of training time, the
representative RF model in parallel integration has a shorter training time than the typical
sequential integrated XGBoost model because the parallel integration algorithm is faster
than the sequential integration algorithm. While the Bagging-XGBoost model ensures
higher prediction accuracy, the training time is not much different from other models,
which reflects the superiority of the sequential-parallel hybrid integration algorithm and
has better application prospects in the field of load forecasting.

Table 8. Electrical load prediction errors of different models with different predicting step sizes.

Model Predictive Time Length/h MAPE/% Training Duration/min

Bagging-XGBoost
168 0.932 5
720 1.126 11
2160 1.058 20

RF
168 2.061 3
720 1.942 6
2160 2.193 11

Bagging-GBDT
168 1.45 4
720 1.926 9
2160 2.286 18

XGBoost
168 1.74 4
720 1.82 8
2160 2.213 17

LSTM
168 2.384 5
720 2.671 10
2160 3.032 18

5. Conclusions

Aiming at the coupling relationship between multiple loads of integrated energy
systems, this paper introduces MIC for correlation analysis and feature screening, analyzes
the mechanism of sequential ensemble learning and parallel ensemble learning, and pro-
poses a multiple-load forecasting method of an integrated energy system based on the
sequential-parallel hybrid ensemble. Through the example analysis, this paper mainly
draws the following conclusions:

(1) The sequential-parallel ensemble learning algorithm has the characteristics of high
accuracy and strong generalization. At the same time, the prediction results show that
the XGBoost (sequential integration) ensemble learning and Bagging (parallel integration)
hybrid ensemble learning methods have greatly improved the accuracy of IES multivariate
load forecasting. Taking the electric load as an example, the Bagging-XGBoost model has
improved the prediction accuracy by about 10% compared with other comparison models.

(2) In the field of integrated energy system load forecasting, many scholars are very
keen to study deep learning represented by the LSTM algorithm. Although the model
proposed in this paper is a combined model with a complex structure, it is still satisfactory in
terms of performance. The training time is about 3 s slower than LSTM, and the prediction
accuracy is 20% higher than the LSTM model, which reflects that the model proposed in
this paper maintains a balance between prediction accuracy and training time.

(3) Sequential ensemble learning and parallel ensemble learning can complement each
other, reduce the model bias, reduce the variance of the model, avoid the risk of model
over-fitting, improve the generalization performance of the model, and thus improve the
prediction accuracy.

In the future, load forecasting will be carried out further for different requirements of
integrated energy system planning and operation.
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