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Abstract: The underground coal gasification (UCG) process represents a modern and effective coal
mining technology that enables coal energy extraction through thermic decomposition. The coal
is transformed into syngas by oxidizers (e.g., air, technical oxygen, or water steam) and is injected
into a georeactor. The produced syngas is exhausted on the surface, where it is transformed into the
desired form of energy. This paper presents an experimental study of two experiments performed
in ex-situ reactors. The paper describes the equipment for the UCG process, the physical models of
the coal seam, and the analysis of coal. The obtained results from the experiments are presented as
the behavior of the temperatures in the coal during the experiment, the syngas composition, and its
calorific value. The material balance and effective gasification time of the UCG process were also
identified for the individual experiments. The aim was to evaluate the impact of the coal seam model
on the gasification process efficiency. Calculating the material balance during the gasification appears
to be an effective tool for assessing leaks in the reactor while measuring the flow and concentration of
the oxidizers and produced gas. The material balance data are make it possible to propose methods
for controlling the input oxidizers. To increase the efficiency of the gasification in an ex-situ reactor, it
is necessary to ensure the impermeable or poorly permeable surrounding layers of the coal seam.

Keywords: underground coal gasification; ex-situ reactor; syngas; experiment; material balance; efficiency

1. Introduction

Underground coal gasification (i.e., UCG) is a technique used for extracting coal energy
through the conversion of coal into combustible gas primarily composed of hydrogen,
methane, and carbon monoxide. The processes, such as drying, pyrolysis, gasification,
and combustion, occur during this procedure. In addition, liquid tar products are also
obtained, depending on the process conditions. UCG research is still a current topic. Since
the realization of UCG trials is costly and complex, mathematical and experimental models
are essential for UCG studies to predict the effects of various physical and operating
parameters on the process performance. Some experimental studies based on a model
experiment were realized to improve this process. For example, the impact of the oxygen–
steam gasification, pure oxygen gasification, and moving-point gasification methods on
the gas quality was tested using a model experiment [1]. The results showed that it was
possible to effectively improve the changes in the coal seams cavity or the roof inbreak
effects on the gas quality using moving-point gasification. The concepts, assumptions, and
limitations of the packed bed models, the channel model, and the coal slab model were also
experimentally modeled [2]. The results of these models demonstrated the applicability
of the packed bed models for use in highly permeable porous media only, the suitability
of a permeable channel between the injection and the production holes in the channels
models, and the successful demonstration of the drying and devolatilization behavior of
large coal particles in the coal slab models. An ex-situ surface reactor was constructed to
assess the feasibility of applying underground hard coal gasification in hydrogen-rich gas
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production [3]. The steam and oxygen were supplied to the reaction zone separately in
alternate stages for the experiments realized in this reactor. This approach increased the
concentration and the amounts of hydrogen in the product gas during the steam gasification
stage. A lab-scale hydrogen-oriented experiment in an ex-situ reactor for the Turkish lignite
gasification process was also performed [4]. Subsequently, these experimental data were
used for a two-dimensional UCG computational fluid dynamic (i.e., CFD) model proposal.
The proposed model visualized the distribution of the chemical species and reaction zones
inside the reactor. In another study, gas chromatography–mass spectrometry was used to
analyze the properties of the tar created during gasification in an experimental reactor [5].
The results showed the differences in the tar behaviors from the reaction zone and outlet,
e.g., a smaller percentage of the high boiling point content and a higher percentage of H
for the tar from the outlet. The methane-oriented UCG process was realized in a large-
scale laboratory experimental reactor [6]. Two coal types, i.e., semi-anthracite and hard
coal stored in this reactor, were used in the oxygen and steam-blown experiments. The
mathematical and experimental models are essential for UCG studies to predict the effect
of the various physical and operating parameters on the process performance since the
realization of the UCG trials is costly and complex. An increase in the formed CH4 and
H2 and a decrease in the CO2 concentration were recorded at the water injection site.
The study described in [7] discussed the application of a coaxial UCG system with a
horizontal hole during the UCG experiments in the experimental reactor. The experiments
used two types of coal and oxygen-enriched air. The results showed that the coal quality
affecting the expansion area of the gasification moving an injection pipe was likely improve
the quality of the product gas, and the calorific value of the product gas was improved
corresponding to an increase in the oxygen supply. Coal specimens of different ranks were
used during the experiments in an ex-situ reactor to characterize the inorganic constitutions
generated at the various operating conditions [8]. The experiments were realized at various
gaseous oxidant ratios, pressures, and temperatures. The decreasing cationic elements and
increasing concentrations of anionic species were caused by increasing the amount of water
in the oxidants. In addition, the high-pressure experiments at a temperature of 750 ◦C
significantly reduced the cationic element generation, while the anionic species production
was high.

Numerical models are used as a tool for modeling processes and optimizing tech-
nologies. Due to this, the material balance calculations and energy balance calculations
are an integral part of the information acquisition about the efficiency of the processes.
The effects of the gasification agent ratio on the product gas composition and calorific
value were researched during the UCG laboratory experiments under different oxygen
concentrations [9]. In addition, the energy recovery rate and coal consumption were evalu-
ated using an energy recovery evaluation method. This method was based on the carbon
balance. The results showed a positive effect for increasing the oxygen concentration on the
increasing calorific value of the produced gas. Furthermore, it was possible to determine
an estimate of the coal consumption for the UCG experiments using the carbon balance
method. The material balance equations were also used to propose combustible gas equiv-
alents [10]. Stoichiometry and the material balance converted the generated gas product
into a combustible gas equivalent. Subsequently, the gradient formula was used to obtain
the trends in the equivalents. The results from this procedure were used to propose a
dual-source extended short-term memory prediction model for predicting the UCG state.
The regularities of the heat and mass balance changes in the faulting zones of thin coal
seams were also researched [11]. This research analyzed the influence usage of the air and
the oxygen-enriched blast. The mass balance proved to be a convenient tool for predicting
the output parameters and indicators (i.e., quantitative and qualitative). A coupled seepage-
thermodynamics-transport model was proposed to examine the impact of contaminants on
groundwater [12]. This model was based on mass and energy conservation. The results
showed that the contaminants’ migration velocity depended on the heat, seepage, stress,
physicochemical reactions, etc. The modified energy balance equation was used to simulate
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the coal-burning process and create a thermal-mechanical numerical model [13]. This
model was used to evaluate the ground subsidence caused by the worst-case scenario
regarding the potential size of a formed cavity. The heat and mass balance was also used
to study the UCG parameters and the rock mass of the stress-deformed state around the
gas gasifiers [14]. The calculations showed a maximum length for the gasification pillar
and recommendations for the use of the gasifiers’ construction through drill-injected blast
activators. Furthermore, non-linear partial and differential equations were used to describe
the energy and mass balances for the coal and char [15]. The proposed model simulated the
temperature profiles in the coal seam, mass and heat transport, and the chemical reactions
during the gasification process. The calculation for the one-dimensional (1D) model was
realized using the Galerkin finite element method and was compared to the finite difference
method. The equations of the mass and energy balances were also used to describe the
solid and gaseous phases in the UCG process [16]. In this study, the effect of the coal seam
dimensions and the applied pressure gradient on the energy content of the output gas was
demonstrated. The heat and mass balance calculations based on a mathematical model of
the physical and chemical processes in the individual phases (i.e., solid, liquid, and gaseous
phases) were used for the thin coal seams in the faulting zones of the coal basin [17].

The aim of this article is to provide an experimental study and assessment of the
influence of the physical model of a coal seam on the efficiency of the gasification process
using mathematical modeling tools. As mentioned above, the experimental modeling
and numerical models (e.g., in the form of a material balance) were an integral part of
the study and the modeling of the UCG process [18]; for example, a mathematical model
that considered the effective modification of the active zones for heat transfer during the
underground coal gasification [19]. As a result, two experiments were carried out in two
different generators with different coal bed constructions to assess the gasification efficiency
using the material balance and the effective gasification time. The efficiency of the material
balance was evaluated regarding the minor environmental losses and converted the input
components, such as coal, air, and oxygen, into heating gas and liquid products. Two types
of the material balance were used for the assessment, namely the total material balance
(i.e., the balance of the weights of the input and output components of gasification) and
the elementary material balance (i.e., the balance of the elemental components that were
dominant in the overall material balance).

2. Materials and Methods

The gasification efficiency of the selected coal models was examined using the exper-
iments in the ex-situ reactors. These were evaluated using the material balance and the
efficiency time of the UCG process.

2.1. Experiments

The two experiments for identifying the UCG process were realized in two laboratory
reactors (Figure 1). The first reactor was in the shape of a multi-part steel container
designated as G1, and the second with a removable top was designated as G2. The G1
reactor had the shape of a large steel container (5 m long, 1.5 m wide, and 0.5 m high),
while on its upper side, there was an opening lid composed of several parts. The G2
generator had the shape of a truncated cylinder with a length of 3 m and allowed for the
insertion of the steel tube probes. Tubular probes were used for the process analysis along
the length of the generator, i.e., the gas concentration measurement, temperature, and
pressure measurement. The G2 generator had a compact one-piece lid, which required an
electric lifting device to move. Except for the used reactor, these experiments differed in
the physical model of the coal seam.
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Figure 1. The scheme of the laboratory reactors G1 (top) and G2 (bottom).

2.1.1. The Analysis of the Coal

The coal composition obtained from a technical analysis of the coal sample at an
accredited Slovak laboratory is shown in Table 1. In addition, the oxygen percentage
was calculated.

Table 1. The analysis of the coal with the help of Slovak testing standards used by an ac-
credited laboratory (Abbreviations: r—received, d—dry, daf —dry ash-free, a—analytical, G—
gravimetry, EA—elementary analysis with conductive heat detector, K—calorimetry, RFS—X-ray
fluorescence spectrometry).

Parameter Value Uncertainty Method Standard

Total moisture Wr
t (%) 13.8 5 G PN 16.3

Ash Ad (%) 12.0 2 G PN 16.4
Volatile Vda f (%) 46.4 4 G PN 16.2
Carbon Cda f (%) 76.4 2 EA PN 16.7
Hydrogen Hda f (%) 5.60 3 EA PN 16.7
Nitrogen Nda f (%) 1.34 10 EA PN 16.7
Calorific value Qda f

i (MJ/kg) 29.9 2 K PN 16.2
Calorific value Qd

i (MJ/kg) 26.3 2 K PN 16.1
Calorific value Qr

i (MJ/kg) 22.3 2 K PN 16.1
Ash Ar (%) 10.3 2 G PN 16.4
Carbon Cr (%) 58.0 2 EA PN 16.7
Hydrogen Hr (%) 4.25 5 EA PN 16.7
Nitrogen Nr (%) 1.02 10 EA PN 16.7
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Table 1. Cont.

Parameter Value Uncertainty Method Standard

CaO (%) 2.02 5 RFS PN 3.1
MgO (%) 0.38 10 RFS PN 3.1
SiO2 (%) 4.10 5 RFS PN 3.1
Al2O3 (%) 2.59 5 RFS PN 3.1
Fe2O3 (%) 1.09 10 RFS PN 3.1
Na2O (%) <0.2 RFS PN 3.1
P2O5 (%) <0.02 RFS PN 3.1
TiO2 (%) 0.08 10 RFS PN 3.1
K2O (%) 0.07 10 RFS PN 3.1
Volatiles Vr (%) 35.2 4 G PN 16.2
Analytical moisture Wa (%) 9.52 5 G PN 16.3
Total sulphur Sr

t (%) 0.71 15 G PN 16.5
Sulphate sulphur Sr

s (%) <0.01 20 G PN 16.5
Sulphite sulphur Sr

p (%) 0.29 20 G PN 16.5
Organic sulphur Sr

o (%) 0.42 20 G PN 16.5
Oxygen Oda f (%) 15.95
Oxygen Od (%) 10.25

2.1.2. The Physical Model of the Coal Seam

The scheme of the cross-section for the physical model of the coal seam for the first
experiment (i.e., realized in the first reactor) is shown in Figure 2. The cross-section for the
second experiment (i.e., realized in the second reactor) is shown in Figure 3. The weight of
the used coal for the first experiment was 576 kg and 201 kg in the second.
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2.1.3. Measurement of the Temperature in Ex-Situ Reactor

The distribution of the thermocouples in the G1 reactor is shown in Figure 4. There
were seven thermocouples (1–7) in the gasification channel and ten thermocouples in the
coal, of which five were on the left side of the gasifier inlet (8–12) and five were on the right
side (13–17). Additional thermocouples were placed below and above the insulating layer
of the sibral. There were a total of five cuts along the gasifier. In the insulating layer, there
were eight thermocouples in each cross-section of the gasifier. Not all the insulating layers
of the gasification device are shown in the figure [20,21].

The thermocouples were placed in the G2 reactor according to the diagram in Figure 5.
The thermocouple T1 was placed at the ignition head’s junction and the angular model’s
front face from the input side of the generator. There were eighteen thermocouples placed
in the coal, of which nine thermocouples were in the longitudinal axis of the generator–
central thermocouples (2–9), five on the left side of the generator from its entrance (10–14),
and five on the right side (15–19). Additional thermocouples were placed below and above
the insulating layer of the sibral. Similarly, in each section, the thermocouples were placed
on the outer surface (twenty thermocouples) [22].
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In addition to the mentioned thermocouples located in the reactors, two were located
outside in both experiments. The first thermocouple was used to measure the temperature
of the surrounding air, and the second to measure the temperature of the syngas.

2.2. Material Balance Method

A material balance was derived from the principle of the mass conservation of the
UCG process realized in the laboratory reactors. In this process, the input materials were
the coal and the oxidizers (i.e., a mixture of air and oxygen). The output materials were
the syngas, unburned coal, ash, and condensate (Figure 6). The total mass of the input
materials must equal the total output mass.
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A general mass balance of the UCG process is described by the following equation.

Gcoal + Gair + Goxygen = Gcoal,unburned + Gash + Ggas + Gcondensate, (1)

where Gcoal is the mass of the coal, i.e., at the beginning of the process (kg); Gair is the mass
of the used air (kg); Goxygen is the mass of the used oxygen (kg); Gcoal,unburned is the mass of
the unburned coal, i.e., at the end of the process (kg); Gash is the mass of the ash (kg); Ggas
is the mass of the syngas (kg); and Gcondensate is the mass of the condensate leaked during
the process (kg).

In the UCG process, a higher temperature is needed to realize the chemical reactions
and, subsequently, for the produced gas creation. The general mass balance can be rewritten
using the conservation principle of the atoms as the elements. An atomic species balance
assumes that the atomic species can neither be generated nor consumed in chemical
reactions [23,24]. The atomic species balances for the considered elements of carbon C,
hydrogen H, nitrogen N, oxygen O, and sulfur S have the following equations.

Gcoal,C = Gcoal,unburned,C + Ggas,C (2)

Gcoal,H = Gcoal,unburned,H + Ggas,H + Gcondensate,H (3)

Gcoal,N + Gair,N = Gcoal,unburned,N + Ggas,N , (4)

Gcoal,O + Gair,O + Goxygen,O = Gcoal,unburned,O + Ggas,O + Gcondensate,O, (5)

Gcoal,S = Gcoal,unburned,S + Ggas,S, (6)

where Gcoal,C, Gcoal,unburned,C, and Ggas,C are the mass of the carbon in the coal and the
produced gas (kg); Gcoal,H , Gcoal,unburned,H , Ggas,H , and Gcondensate,H are the mass of hydrogen
in the coal, the produced gas, and the condensate (kg); Gcoal,N , Gair,N , Gcoal,unburned,N , and
Ggas,N are the mass of the nitrogen in the coal, air, and produced gas (kg); Gcoal,O, Gair,O,
Goxygen,O, Gcoal,unburned,O, Ggas,O, and Gcondensate,O are the mass of the oxygen in the coal, air,
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oxygen, produced gas, and condensate (kg); and Gcoal,S, Gcoal,unburned,S, and Ggas,S are the
mass of the sulfur in the coal and produced gas (kg).

The individually measured chemical compounds (i.e., CO, CO2, CH4, H2, N2, O2,
and SO2) were used to determine the chemical element mass in the produced gas. The
C chemical element mass from the chemical compounds of the produced gas was deter-
mined according to

Ggas,C = Vgas,CO·ρCO·
MC

MCO
+ Vgas,CO2 ·ρCO2 ·

MC
MCO2

+ Vgas,CH4 ·ρCH4 ·
MC

MCH4

, (7)

where Ggas,C is the C chemical element mass in the produced gas (kg), Vgas,CO is the CO
chemical compound volume (m3), Vgas,CO2 is the CO2 chemical compound volume (m3),
Vgas,CH4 is the CH4 chemical compound volume (m3), ρCO is the CO chemical compound
density (kg·m−3), ρCO2 is the CO2 chemical compound density (kg·m−3), ρCH4 is the
CH4 chemical compound density (kg·m−3), MCO is the CO chemical compound molar
mass (g·mol−1), MCO2 is the CO2 chemical compound molar mass (g·mol−1), MCH4 is the
CH4 chemical compound molar mass (g·mol−1), and MC is the C chemical element molar
mass (g·mol−1).

2.3. The Effective Gasification Time

The effective gasification time depends on the end use of the syngas and the conditions
of the potential buyer of the syngas. For example, suppose the syngas will be used as fuel
in thermal power plants, and the customer sets the condition of taking the syngas with
a minimum calorific value of 3 MJ/Nm3. In that case, this will also affect the effective
gasification time.

Based on the effective gasification time, it is possible to calculate the percentage success
of the experiment (i.e., %ESR) from the point of view of the achieved calorific value (7).

%ESR =
timee f f

timetotal
× 100, (8)

where timeeff is the effective gasification time of the UCG process and timetotal is the total
time of the UCG process.

3. Results

The results from the two UCG process experiments are presented from the following
points of view.

• The temperatures in the gasification channel
• The volume flow of the input oxidizers
• The syngas composition and calorific value
• The material balance
• The efficiency of the gasification process

3.1. The Temperature in the Gasification Channel

The course of the temperatures in the gasification channel during the first experiment
is shown in Figure 7. Looking at the beginning of the gasification, one can see the increase
in the temperature T1 above 1200 ◦C and its gradual decrease. Subsequently, an increase
in the temperatures T2, T3, and T4, can be seen. Finally, the temperatures T5, T6, and T7
reached maximum values at the end of the gasification, up to 800 ◦C. The temperatures
increased gradually as the gasification front moved along the length of the generator.
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Figure 7. Temperature course in the gasification channel during the first experiment.

Figure 8 shows a 3D graph of the temperature trends in the channel. The x-axis is
the thermocouple’s position along the generator’s length, the y-axis is represented by the
time in minutes, and the z-axis is the temperature. The temperature is displayed in a color
spectrum according to the legend. With this chosen presentation of the temperature course,
it is logical that the gasification front moves diagonally from the lower left corner to the
upper right corner.
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for the first experiment.

The course of the temperatures in the center of the coal seam during the gasification
for the second experiment is shown in Figure 9. From the start of the gasification, a
gradual increase in the temperatures can be seen along the length of the generator. First,
the temperature T2 increased to a temperature of 1000 ◦C. When it decreased from this
temperature, the temperature T3 already increased to a temperature of 1000 ◦C. Such a
sequence of temperature increases along the length of the generator can be followed up to
temperature T8, whose thermocouple was located before the end of the generator. It can be
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stated that the temperatures increased gradually as the gasification front moved along the
length of the generator. Figure 10 shows a 3D view of the temperatures along the length of
the generator.
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Figure 10. Time profile of the temperatures in the gasification channel along the length of the
generator for the second experiment.

Figure 11 shows the maximum values of the temperatures in the gasification channel
during both experiments. In the first experiment (Figure 11a), the temperature reached a
value of 1000 ◦C in the second half of the experiment in contrast to the second experiment
(Figure 11b), where the temperature fluctuated around the value of 1000 ◦C throughout
most of the experiment.
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3.2. Inputs Oxidizers

Figure 12 shows the course of the volume flows of the input oxidizers during the first
experiment. The air, regarded as the primary oxidizer, was blown into the generator during
the experiment from 0 to 40 Nm3/h. The secondary oxidizer was technical oxygen, used
in two time periods during the gasification. The first section was from 56 to 67 h, and the
second was from 107 to 112 h of the experiment.

Energies 2023, 16, x FOR PEER REVIEW 12 of 19 
 

 

(a) (b) 

  

Figure 11. The maximal temperature course in the gasification channel (a) the first experiment (b) 

the second experiment. 

3.2. Inputs Oxidizers 

Figure 12 shows the course of the volume flows of the input oxidizers during the first 

experiment. The air, regarded as the primary oxidizer, was blown into the generator dur-

ing the experiment from 0 to 40 Nm3/h. The secondary oxidizer was technical oxygen, 

used in two time periods during the gasification. The first section was from 56 to 67 h, and 

the second was from 107 to 112 h of the experiment. 

Figure 13 shows the course of the volume flows of the input oxidizers for the second 

experiment. The air volume flow was almost consistent throughout the experiment be-

tween 0 and 15 Nm3/h except at the end of the process, where increased to 20 to 35 Nm3/h. 

With this short-term increase in the volume flow, an a�empt was made to restart the gas-

ification process, which failed (i.e., the reactor temperatures dropped and the calorific 

value was low). The technical oxygen was regarded as the secondary oxidizer used in the 

second half of the experiment at the interval from 0 to 4 Nm3/h. 

 

Figure 12. The volume flow of the oxidizers course during the first experiment. Figure 12. The volume flow of the oxidizers course during the first experiment.

Figure 13 shows the course of the volume flows of the input oxidizers for the second
experiment. The air volume flow was almost consistent throughout the experiment between
0 and 15 Nm3/h except at the end of the process, where increased to 20 to 35 Nm3/h. With
this short-term increase in the volume flow, an attempt was made to restart the gasification
process, which failed (i.e., the reactor temperatures dropped and the calorific value was
low). The technical oxygen was regarded as the secondary oxidizer used in the second half
of the experiment at the interval from 0 to 4 Nm3/h.
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3.3. The Syngas Composition and Calorific Value

Figure 14 shows the course of the syngas composition (i.e., CO2, CO, CH4, H2) during
the first experiment. The maximum concentration values of the individual components
of the syngas were 50%. In two time periods, the gasification measured the highest
concentrations of the heating components of the syngas, namely when using the oxidizer
mixture of oxygen and air. The maximum temperature in the reactor in the first period was
approximately 1310 ◦C (Figure 7), and the concentration of the heating components of the
syngas were 49% CO and 36% H2, respectively. In the second period, the temperature was
approximately 1380 ◦C (Figure 7), the concentration was 49% CO and 33% H2.
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Figure 15 shows the calorific value of the syngas during the first experiment. The
highest calorific value of the syngas was measured approximately at the 117th hour of
the experiment at 22.7 MJ/Nm3. Relatively higher calorific values were recorded at the
58–67th hour of the experiment and at the 108–110th hour, at approx. 16.3 MJ/Nm3. These
periods corresponded to the part of the experiment where a mixture of air and oxygen was
used as the input oxidizer. The average calorific value during the entire experiment was
4.01 MJ/Nm3.
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Figure 15. The calorific value of the syngas during the first experiment.

The course in the concentration of the heating components of the syngas in the second
experiment is shown in Figure 16. The highest concentrations of the CO and H2 components
were measured in three periods during the gasification process, namely between the
27–28th hours, where the CO value was 49.7% and H2 was 14.7%; between the 30th–31st
hours, when the CO value was above 40% and H2 was approx. 19%; and between the
52nd–53rd hours, where the value of CO was above 49.7% and H2 was 15.8%. The highest
calorific value of the syngas (Figure 17) was 11.6 MJ/Nm3 and was measured during
the 39–40th hour period. The average calorific value during the second experiment was
4.12 MJ/Nm3.
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3.4. Results of the Model of Material Balance

The measured components, such as the flow of air, oxygen, and gas, their composition,
and the mass of the condensate and coal, were used for the mass balance calculations.
The calculated mass balance values for the first experiment are shown in Table 2, and the
values for the second experiment are shown in Table 3. In addition, a loss component was
determined as the difference between the inputs and outputs of the individual mass balance
components. The loss component percentages in the individual experiments are shown in
Figure 18a. The average loss percentage of the atoms (i.e., between the first and the second
experiments) is shown in Figure 18b. The percentage of the atom losses obtained from the
first experiment is shown in Figure 19a, and the percentage from the second experiment is
shown in Figure 19b.

Table 2. The general and atomic balance values obtained from the first experiment calculations.

Balance Input Materials (kg) Output Materials (kg) Losses
Coal Air Oxygen Unburned Coal Ash Gas Condensate

General 576 2221.49 5.74 75.5 80.22 2222.57 13.46 411.48

C 282.81 0 0 45.83 0 206.79 0 30.20
H 32.95 0 0 3.36 0 24.16 1.49 3.94
N 4.96 1703.86 0 0.80 0 1413.41 0 294.61
O 156.83 517.63 5.74 9.57 0 576.15 11.96 82.52
S 2.62 0 0 0.43 0 2.07 0 0.13

Table 3. The general and atomic balance values obtained from the second experiment calculations.

Balance Input Materials (kg) Output Materials (kg) Losses
Coal Air Oxygen Unburned Coal Ash Gas Condensate

General 216 724.49 16.911 27 30.35 773.61 17.23 109.22

C 106.05 0 0 16.39 0 84.89 0 4.77
H 12.36 0 0 1.20 0 9.04 1.91 0.20
N 1.86 555.68 0 0.29 0 461.28 0 95.97
O 58.81 168.81 16.91 3.42 0 217.61 15.31 8.19
S 0.99 0 0 0.15 0 0.78 0 0.05
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The causes for the input and output materials difference were the air and oxygen
leaks (i.e., atoms N and O) at the input side of the laboratory reactor and the produced
gas leaks (i.e., atoms C, H, N, O, and S) at the output side of the laboratory reactor. The
different perlite with a water glass layer between the experiments, i.e., the overburden
in the first experiment and the overburden plus the left and right sides of the coal seam
insulation in the second experiment, could be the cause of the higher losses in the first
experiment. The perlite with a water glass layer formed a continuous impermeable layer
in the initial stages of the experiment. Subsequently, its damage only occurred due to the
effect of the increased temperature. The atoms O (i.e., 7.74%) and N (i.e., 17.23%) showed
the highest losses during the atom loss average percentage calculation (Figure 18b). It
follows that the most significant losses were on the pipeline at the input of the laboratory
reactor. Figure 19 shows that the losses for element N were approximately the same, i.e.,
17.24% and 17.21%. However, the losses for elements H, O, and C were significantly higher
in the first experiment.

3.5. Results of the Effective Gasification Time

The effective gasification time was calculated for the condition of selecting the syngas
with a minimum calorific value of 2.5 and 3 MJ/Nm3. Tables 4 and 5 show the effective
gasification time for setting the minimum calorific value condition of 2.5 and 3 MJ/Nm3 in
both experiments.
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Table 4. The efficiency of the UCG process for the first experiment.

Cal. Val.
Condition
[MJ/Nm3]

Effective
Gasification

Time [h]

Air Consum.
[m3]

O2 Consum.
[m3]

Average Cal.
Val. [MJ/Nm3] ESR [%]

>0 163.3 1935 29 4.01

>2.5 93.7 1006 27 6.09 57.36

>3 77.5 737 26 6.78 47.48

Table 5. The efficiency of the UCG process for the second experiment.

Cal. Val.
Condition
[MJ/Nm3]

Effective
Gasification

Time [h]

Air Consum.
[m3]

O2 Consum.
[m3]

Average Cal.
Val. [MJ/Nm3] ESR [%]

>0 64.5 340 38 4.12

>2.5 37.3 204 15 5.81 57.89

>3 34.9 193 14 5.98 54.14

For the condition of a minimum calorific value of 2.5 MJ/Nm3, the effective gasifica-
tion time was 93.7 h, representing a 57.36% success rate in the first experiment. For the
same condition of a minimum calorific value, the success rate in the second experiment was
almost the same (57.89%). For the condition of a minimum calorific value of 3 MJ/Nm3,
the effective gasification time was 77.5 h (the first experiment) and 34.9 h (the second
experiment), respectively, representing a 47.48% success rate (ESR) in the first experiment
and 54.14% in the second experiment. From this point of view, the second experiment
was more effective, despite the fact that the maximum calorific values were lower than
in the first experiment. A higher ESR value means that a higher amount of heat energy
is produced in the UCG process for the same minimum calorific value of the produced
syngas. It was assumed that lower losses of the oxidizer to the surroundings of the ex-situ
reactor caused a higher value for the effective gasification time. Subsequently, it caused a
higher effect of the oxidizer on the gasification process. The higher amounts of the oxidizer
(i.e., mainly air) in the first experiment were insufficient to support the gasification process
due to the higher environmental losses to the environment. This fact reflects the perme-
ability of the surrounding layers of the underground generator during the gasification in
actual conditions.

In Tables 4 and 5, in addition to the effective gasification time, the air and oxy-
gen consumption and the average calorific value for the given minimum calorific value
are listed.

4. Conclusions

The paper described two experiments of the UCG process in laboratory conditions.
The analyzed experiments were performed on two laboratory reactors. The experiments
were analyzed regarding the achieved temperature and produced syngas composition and
its calorific value. The second part of the paper analyzed the heat output of the produced
gas using the material balance and efficiency of the UCG process.

The temperature was a significant variable for the UCG process. To create an oxidation
zone, it was necessary to reach a temperature above 900 ◦C. The desired syngas was
generated by the gasification reactions in the reduction zone at temperatures ranging
from 550 to 900 ◦C. The maximal temperature in the gasification channel was around
1000 ◦C in both experiments. The highest calorific value of the syngas was measured
at approximately 20 MJ/Nm3 for the first experiment and 10 MJ/Nm3 for the second
experiment. These periods corresponded to the part of the experiment where a mixture
of air and oxygen was used as the input oxidizer. Despite the difference in the maximal
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values, the average calorific value was approx. the same in both experiments (i.e., the first
experiment—4.01 MJ/Nm3 and the second experiment—4.12 MJ/Nm3).

The measured components, such as the flow of air, oxygen, and gas, their composition,
and the mass of the condensate and coal, were used for the mass balance calculations. The
causes of the difference between the input and output materials were the air and oxygen
leaks (i.e., atoms N and O) at the input side of the ex-situ reactor and the produced gas
leaks (i.e., atoms C, H, N, O, and S) at the output side of the ex-situ reactor. The percentage
of losses in the first experiment was 14.68% and 11.41% in the second experiment. The
experiment period was considered for the effective gasification time if the minimum
value of the produced syngas was 2.5 and 3 MJ/Nm3. The effective gasification time was
better from the point of view of the achieved calorific value above 3 MJ/Nm3 for the
second experiment (i.e., 54.14%) than for the first experiment (i.e., 47.48%). Therefore, the
second experiment was more efficient from the view of the material balance and effective
gasification time.

Considering the achieved experimental results, it is possible to state the following.

• The calculation of the material balance during the gasification appears to be an ef-
fective tool for assessing the leaks from the reactor while measuring the flow and
concentration of the oxidizers and produced gas.

• The material balance data make it possible to propose methods for controlling the
input oxidizers (e.g., an increase in the oxidant flow in the event of its detected leakage
before entering the oxidation zone).

• It is necessary to ensure the impermeable or poorly permeable surrounding layers of
the coal seam to increase the efficiency of the gasification in an ex-situ reactor.

• The impermeability of the physical model will provide better conditions for controlling
the UCG process.

In future research, it would be possible to design and implement methods for control-
ling the input oxidizing agents using a continuous evaluation of the material balance, and
subsequently, assess the efficiency of the process in terms of the material and heat balance.
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