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Abstract: Climate change and increasing food demand are global issues that require immediate
attention. The agrivoltaic system, which involves installing solar panels above farmland, can si-
multaneously solve climate and food issues. However, current systems tend to reduce agricultural
production and delay the harvest period due to shading by the solar panels. A delayed harvest period
impacts the income of farmers who wish to sell produce at specific times. Incorporating a model that
calculates the amount of electricity generated by solar irradiation, this study establishes a model to
estimate the correct start date of cultivation for solar panel covered crops to ensure the correct harvest
date and determines the expected income of farmers by calculating agricultural production and
power generation. Using taro cultivation in Miyazaki Prefecture as a case study, the model estimated
that the start date of cultivation should be brought forward by 23 days to ensure the ideal harvest
period and agricultural production. This would prevent an opportunity loss of USD 16,000 per year
for a farm area of 10,000 m2. Furthermore, an additional income of USD 142,000 per year can be
expected by adjusting shading rates for the cultivation and non-cultivation periods.

Keywords: agrivoltaic system; farming photovoltaics; solar radiation; climate change; increasing
food production; photosynthetic photon flux density

1. Introduction
1.1. Background

Climate change and increasing food demand due to population growth are global
issues that need immediate attention. The agrivoltaic system can solve climate and food
issues by installing solar panels at a height of 3 to 4 m above farmland to simultaneously
produce agricultural products and renewable electricity. The agrivoltaic system was advo-
cated by Dupraz et al. [1]. Schindele et al. [2] examined the effectiveness of the system for
avoiding competition for land by agriculture and power generation in multiple countries.

The agrivoltaic system is promoted as a national policy in Japan [3]. Pascaris [4]
pointed out that the popularization of the agrivoltaic system in the United States needs
policy measures. This means that government support is needed to promote the agri-
voltaic system.

The introduction of solar panels on farmland has a significant effect on agricultural
growth. Dupraz et al. [1] modeled light transmission at the crop level below an array of
solar panels and used a crop model to predict the productivity of the partially shaded
crops. Marrou et al. [5] demonstrated the relationship between power generation and
agricultural growth. Cho et al. [6] demonstrated the relationship between power generation
for three different photovoltaic modules and grape growing. Chopard et al. [7] developed
algorithms to support farmers to make decisions by estimating the amount of water supply

Energies 2023, 16, 3261. https://doi.org/10.3390/en16073261 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en16073261
https://doi.org/10.3390/en16073261
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-7428-8965
https://orcid.org/0000-0002-1608-518X
https://orcid.org/0000-0002-3907-7406
https://orcid.org/0000-0002-8704-3171
https://doi.org/10.3390/en16073261
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en16073261?type=check_update&version=1


Energies 2023, 16, 3261 2 of 16

according to the environmental conditions under the solar panels. These studies have led
to subsequent demonstrations and research in various regions.

In Japan, the effect of shading from solar panels on agricultural growth has been
observed for a wide range of agricultural products, including grains, such as rice [8], soy-
beans [9], and buckwheat [10]; vegetables [11], such as spinach, Japanese mustard spinach,
potatoes, and asparagus; and fruits, such as strawberries and blueberries [12]. A unique
study used three-dimensional geographic data to analyze areas where systems can be
installed in the Kyoto Prefecture in Japan, which has many steep mountains and paddy
fields for rice cultivation, which occupy 85% of the agricultural land [13]. Marrou et al. [5]
found that the yields of lettuce, cucumber, and wheat decreased following the introduction
of the agrivoltaic system. However, this is to be expected, as the general concept of the agri-
voltaic system is that the decrease in farmers’ income caused by the decrease in agricultural
production due to the installation of solar panels is compensated by the income gained
from selling electricity [14]. Many farmers are at risk of abandoning farming due to lower
agricultural income [15]. In addition, farmers are exposed to risks such as bad weather
and declining sales prices of agricultural products. Therefore, the additional income from
selling electricity can mitigate the risk of declining farmers’ income [16]. Nordberg et al. [17]
pointed out that if CO2 emission reductions or biodiversity improvements are achieved
as a result of the system’s introduction, economic benefits can also be gained through
environmental credits, which have been introduced in several countries.

There have been studies on soil moisture and water flow following the introduction
of the agrivoltaic system. Marrou et al. [18] studied the influence of the shading of solar
panels on water flows in a soil–crop system. Zainol et al. [19] proposed that adequate
water supply to the crops maintains soil moisture and ensures a stable environment under
solar panels. Elamri et al. [20] proposed crop modeling for irrigated lettuces based on
water management under solar panels. Hassanpour et al. [21] studied the influence of the
agrivoltaic system on soil moisture, micrometeorology, and efficient water use. Parkinson
and Hunt [22] examined the economic potential of the agrivoltaic system using a rainwater
harvesting system in groundwater-stressed regions.

Other studies include raising pasture-raised rabbits [23] and lambs [24] as part of the
agrivoltaic system.

Weselek et al. [25] and Malu et al. [26] pointed out that the agrivoltaic system is
effective as a decentralized and off-grid power source in rural areas. For off-grid use, the
use of solar thermal energy could be considered. The effectiveness of solar dish Stirling
systems, which can also generate electricity from solar heat and heat from agricultural
residuals, as a decentralized energy system have been studied [27]. A study established
a detailed numerical modeling for the production of heat, electricity, and hydrogen via
an electrocatalytic hydrogen production cell powered by a solar photovoltaic thermal
collector as a decentralized energy system [28]. There was also a unique proposal to achieve
agricultural land conservation and residential land development by introducing the system
for residential land and town development [29].

The impact of the agrivoltaic system on communities has been the subject of study
in many countries, such as in Japan [30], the United States [31], Palestine [32], Spain [33],
Germany [34], Turkey [35], European countries [36], the Russian Federation [37], India [38],
Thailand [39], and East Africa [40]. Another study addressed the impact of the system’s
introduction on the landscape of the target area [41].

Past studies on the agrivoltaic system generally covered the impacts on local areas;
however, Adeh et al. [42] studied the impacts on the energy supply on a global scale and
found that the introduction of agrivoltaic systems on less than 1% of the world’s agricultural
land could provide enough energy to meet the global energy demand.

The solar tracking system is effective in increasing power generation and agricultural
production. Valle et al. [43] examined a solar tracking system for lettuce production. Perna
et al. [44] suggested the effectiveness of installing mini-module-type solar panels together
with tracking systems. From other technical perspectives, spectrally selective solar cells [45],
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bilayer luminescent solar concentrators [46], and special film attachments [47] have been
proposed. Other studies described the effects of heat generated by solar panels. For
example, the increased humidity may increase the occurrence of pests [48], while plant heat
stress may occur between the photovoltaic system’s bottom surface and plant height [49].

The abovementioned studies have aroused interest in the agrivoltaic system among
farmers and investors. However, motivated farmers and investors still require effective models
to provide information to inform their decision making regarding the system introduction.

1.2. Purpose

Current agrivoltaic systems tend to reduce agricultural production and delay the
harvest season due to shading by solar panels. The delayed harvest season affects the
income of farmers who wish to sell their produce at the time when the product is most
highly traded in the market. In addition, the reduction in agricultural production can
have a negative impact on meeting the increasing food demand. The aim of this study is
to establish a model that uses solar irradiation data to determine the correct cultivation
start date to ensure the ideal harvest period for specific crops under solar panels, calculate
agricultural production and renewable power generation, and calculate the expected
income of farmers.

We developed a model that calculated the photosynthetic photon flux density (PPFD)
under solar panels by solar irradiation [50]. This study establishes a model using PPFD
calculated by solar irradiation to determine the correct cultivation start date to ensure an
ideal harvest period for specific crops under solar panels in order to maintain agricultural
production without delaying the harvest period combined with an existing model that
calculates the amount of electricity generated by solar panels based on solar irradiation.

Power generation can be maximized by installing solar panels over the entire farmland
area during non-cultivation periods. However, there are concerns over how cost-effective
this would be, including the labor involved in installing and removing solar panels. This
study envisions the installing of the most basic fixed solar panels; however, the effects of
varying shading rates between the cultivation period and non-cultivation period are exam-
ined. The results of this study can be used to study the effects of introducing technologically
superior solutions in the future.

1.3. Contents and Boundaries

This study estimates the photovoltaic electricity generation and agricultural produc-
tion using solar irradiation data. The amount of photovoltaic electricity generation was
estimated using a model developed by Tawa et al. [51] that considers atmospheric param-
eters from the amount of solar irradiation published in the METPV-11 solar irradiance
database. This database provides the amount of daily and hourly solar irradiation from
1990 to 2009 at 837 points [52]. The model developed by Tawa et al. [51] considers all
weather conditions when estimating solar irradiation. The model of estimating the amount
of agricultural production from solar irradiation was established in this study. Agricultural
growth by photosynthesis is represented by the photosynthetic rate per leaf area (µmol-
CO2 m−2 s−1) on the vertical axis and PPFD (µmol m−2 s−1) on the horizontal axis. The
reduction of PPFD and daily light integral (DLI) under solar panels was observed by Santra
et al. [53]. We developed a model for calculating PPFD under solar panels from the amount
of solar irradiation published in the METPV-11 solar irradiance database. This improved
the accuracy of the modeling because the solar irradiance under the solar panels is lower
than that above the solar panels, as shown in Figure 1 [50]. The amount of agricultural
production was estimated from the PPFD calculated by solar irradiation.
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2. Materials and Methods
2.1. Materials

Cultivated plants suitable for the agrivoltaic system generally include shade plants
and half-shade plants. However, non-shade plants (corn) have been examined in a system
with raised installation heights of solar panels [54].

This study was conducted based on taro (Colocasia esculenta (L.) Schott) cultivation at
the University of Miyazaki in Miyazaki Prefecture, as shown in Figure 2. Taro is a type of
potato and is a half-shade plant with a relatively simple plant structure [55], and is often
the subject of research on the effects of shading on plant growth.
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The precondition for the calculations is included in Table 1 and the variables are
defined in Table 2.

Table 1. Preconditions for the calculations.

Item Precondition

Area of farmland 10,000 m2

Installation rate of solar panels on the farmland 80% (8000 m2)
Tilting angle of solar panels 30 degrees
Shading rate by solar panels 32.6%

Output of solar panel 218 Wm−2

Unit selling price of electricity 10 yen kWh−1 (around USD0.09 kWh−1)

Table 2. Model variables.

Variables Description

i Index number of elapsed days from the start day of seed potato exposure to
sunlight to the day of harvest (0 ≤ i < 170)

Wp Growth weight of child potatoes (g m−2 (farmland))
Ad Photosynthetic rate per leaf area per day (µmol (CO2) m−2 (leaf) d−1, 0 <)

Dl
Leaf area per plant by elapsed days from the start day of seed potato exposure to

sunlight (m2 (leaf) per plant, 0 <)
Wd Weight of carbon dioxide per mol (= 44.01 g mol−1 (CO2))
Rm Molecular weight ratio of carbon to carbon dioxide (= 12 / 44)
Rc Carbon distribution rate to child potatoes by elapsed days (0 <)
Rt Child potato’s total carbon content rate (0 <)
Wc Dry weight ratio of carbohydrates in child potatoes (= 0.131)
Wr Dry weight ratio of protein in child potatoes (= 0.015)
Wf Dry weight ratio of fat in child potatoes (= 0.001)
Ww Weight rate other than water contained in child potatoes (= 0.159)
Df Farmland area per plant (m2 (farmland) per plant) (0 <)

2.2. Growth of Taro

Germinated seed potatoes were planted in the field. The expansion of leaf area
grown from seed potatoes accumulates nutrients in the potatoes to be harvested. The
expansion of leaf area of taro is unaffected by shading [55]. The growth of its leaf area
and carbon distribution to each organ by photosynthesis results from the elapsed days
of growth inherent in the plant, regardless of the amount of solar irradiation. Therefore,
this study established the model to estimate the growth of child potatoes as potatoes to
be harvested based on the increase in carbon accumulation calculated from the amount of
solar irradiation absorbed by increasing leaf area.

2.3. Growth Weight of Child Potatoes (Wp)

The child potato growth weight (Wp, g m−2 (farmland)) is the total daily growth beginning
from the initial exposure of seed potatoes to sunlight to the day of harvest (0≤ i < 170), according
to following equation:

Wp =
n

∑
i=1

Si (1)

Si =
AdDlWdRmRc

RtWwD f
(2)

The schema of above equation is shown in Figure 3:
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where Ad (µmol(CO2) m−2(leaf) d-1, 0 <) is the photosynthesis rate per leaf area per day.
This study used the formula of Sugimoto [56]. Sugimoto [56] derived the photosynthesis
rate of the leaves of C. esculenta per leaf area per second (µmol (CO2) m−2 (leaf) s−1, 0 <) as
the quadratic function of PPFD (µmol m−2 (farmland) s−1, 0 <).

Dl (m2 (leaf area) per plant, 0 <) is the leaf area per plant by elapsed days following
exposure of the seed potatoes to sunlight. It was calculated based on the fact that the
maximum individual leaf area of the whole taro plant occurs approximately 150 days after
exposing seed potatoes to sunlight [55]. Sugimoto [57] summarized the changes in the
photosynthetic product distribution of 13C (carbon 13) with growth inferring the transition
of the individual leaf area. The study did not describe when the seed potatoes were exposed
to sunlight. On the other hand, a derivative study [56] described that “seed potatoes of each
variety were exposed to sunlight on May 8, 1995, and. Seedlings with developed second
to third leaves being were planted in a field converted from a paddy field in the Faculty
of Agriculture, Ehime University, with a ridge of 90 cm and a stock spacing of 50 cm on
June 16”. Based on this description, the period from exposing seed potatoes to sunlight
to the three-leaf development stage was estimated at 39 days. The same source describes
that “one individual seedling of the three-leaf development stage of toba (a kind of taro)
was transplanted to a 1/2000a Wagner pot on June 2, 1991”. Based on this description, it
was assumed that exposing seed potatoes to sunlight was implemented on April 24, 1991,
subtracting 39 days from June 2, 1991.

In the present study, the dry weight (g/individual) of leaves was measured on June 18
before enlarging seed potatoes, on August 18 at the beginning of enlarging of grandchild
potatoes grown further from the child potatoes to be harvested and September 19 at the
beginning of enlarging of great-grandchildren. Dry matter weight increase and leaf area
are proportional; the leaf area in total seed grown potatoes and child potatoes on the 150th
day after exposing seed potatoes to sunlight is 8505 cm2 [56]. The leaf area by elapsed day
per plant after exposing the seed potatoes to sunlight was empirically represented using
the 4-parameter logistics curve, which was created using three inflection points starting
from zero, based on Sugimoto [56] (Figure 4).
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Rt (0 <) is the child potato’s total carbon content rate. The National Agriculture and
Food Research Organization of Japan published the food composition table and the total
carbon conversion formula based on the food composition table in Japan [58]. The total
carbon conversion formula is as follows:

Rt = 0.44Wc + 0.53Wr + 0.77W f (3)

Wc (0 <) is the dry weight ratio of carbohydrates in child potatoes (0.13). Wr (0 <) is
the dry weight ratio of protein in child potatoes (0.015). Wf (0 <) is the dry weight ratio of
fat in child potatoes (0.0010). Ww (0 <) is the weight rate other than water in child potatoes
(0.159) [58]. Df (0 <) is the farmland area per plant. Taro cultivation is generally carried out
with furrows of 90–100 cm and strains of 50 cm. This study set the farmland area per plant
of 0.45 m2 from 90 cm × 50 cm.

2.4. Model Verification

Model verification was carried out by comparing the past yield of taro in the Miyazaki
Prefecture (published as statistical information) with the growing weight of child potatoes
(Figure 6).
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The taro yield was calculated by dividing the production volume (g) by the published
farmland area (m2). The growth weight of child potatoes used for comparison was cal-
culated when solar panels were not installed on the farmland. Furthermore, since taro
harvesting generally starts approximately 160 days after seed potato exposure to sunlight,
child potato growth weight was calculated on the 160th day. The PPFD values used for the
calculation was the average value for ten years in the Miyazaki Prefecture, calculated by
Yajima et al. [50].

Using published statistical information, the five-year average yield of taro in the
Miyazaki Prefecture from 2016 to 2020 was calculated as 1.288 kg m−2 and the ten-year
average yield from 2011 to 2020 was calculated as 1.473 kg m−2 (Figure 7b).

The proposed model calculated the yield of child potatoes on the 160th day to be
1.296 kg m−2 and on the 170th day to be 1.570 kg m−2 (Figure 7a). The values calculated by
the model were derived to have a difference of less than 1% from the average of the last
5 years calculated by the statistics.
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3. Results
3.1. Impact of Solar Panel Installation on Crop Shipping Dates of Taro

The impact of solar panels installation on crop shipping time was quantified for three
cases (Table 3).

Table 3. Three cases for qualifying impact of solar panels installation on crop shipping time.

Cases Description

Case A No solar panels installed
Case B Highest calculated PPFD value on the farmland under the solar panels
Case C Lowest calculated PPFD value on the farmland under the solar panels

In all cases, it was assumed that exposure of seed potatoes to sunlight was started on
February 1, which was common in the Miyazaki Prefecture.

July 12 was the calculated date when child potato growth weight exceeded 1.3 kg m−2

(the standard weight for harvesting) in Case A. In comparison, the calculated harvest start
date was delayed by 21 days to August 2 for Case B, and by 38 days (August 19) for Case C
(Figure 8).
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3.2. Calculation of Cultivation Date to Avoid Delaying Harvest Date Due to Solar Panel Installation

Although taro is consumed by households in Japan, high-end restaurants serve dishes
containing taro all year round. As a result, wholesale prices increase in June and July when
the supply falls (Figure 9). Farmers in Miyazaki Prefecture ship taro to target shortages and
high wholesale prices.
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Figure 9. Monthly market transaction volume and average wholesale price of taro in the Tokyo
Central Wholesale Market for the past three years (Adapted with permission from Ref. [59]. 2022,
Metropolitan Central Wholesale Market of Japan).

The harvests start date for case A without installing a solar panel is on July 12. Aligning
harvest date with Case A, the proposed model recommended bringing the start date of
exposing the seed potatoes to sunlight forward from February 1 to January 9 for Case
B (Figure 10). Although it is necessary to consider other environmental conditions and
cultivation methods according to optimize the date of exposing the seed potatoes to sunlight,
the model provides a useful guideline date.
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Figure 10. Calculation of cultivation date to avoid harvest date delays due to solar panel installation.

The amount of solar irradiation varies from year to year. If solar irradiation data in the
whole year can be predicted based on data from the beginning of the year, this model could
more accurately calculate the appropriate start date of exposing seed potatoes to sunlight
according to the day which farmers want to start to harvest and ship.

4. Discussion

The wholesale price of taro in July 2019 was 580 yen kg−1 (around USD 5.1 kg−1),
compared to 443 yen kg−1 in August (around USD 3.9 kg−1). Assuming a farmland area
of 10,000 m2, the difference in income between shipping in July and August is up to 1.8
million yen (approximately USD 16,000). Therefore, delays in shipping can significantly
impact farmers’ income.

One possible method to increase farmers’ income while maintaining agricultural
production for increasing food demand is to change the shading rate of the solar panels
to maximize power generation. This involves covering the entire farmland with solar
panels when the land is unsuitable for cultivation and reducing the number of installed
solar panels during the cultivation of agricultural products to secure the amount of solar
irradiation required for product growth.

Based on the results in Figure 10, the following preconditions are added to Table 1
(Table 4).
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Table 4. Preconditions for discussion added to Table 1.

Item Precondition

Seed potatoes sunlight exposure date January 9
Harvest starts data July 12 and continues for two months

Shading rate during cultivation 32.6%
Shading rate when cultivation is unsuitable 100%

The results are presented in Figure 11.
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Figure 11. Difference in cumulative power generation for different shading rates set depending on
growing conditions (b), cumulative growth of child potatoes (a), and PPFD changes (c).

Based on Figure 11, farmers start to expose the seed potatoes to sunlight on January 9
to ship taro in July, when the highest wholesale prices are expected. When the harvest ends
on September 11, the shading rate is 32.6%. At the end of the harvest, the farmer spreads
solar panels over the entire farmland and sets the shading rate to 100%. This shading rate
is maintained until the start of cultivation the following year.

The additional power generation gained by changing the shading rate according to
the stage was calculated at 203 kWh m−2 for 10,000 m2 of farmland. This economic value
amounted to 16.2 million yen (approximately USD 142,000) per year. Depending on the
cost associated with solar panel relocation (including labor costs), there is a considerable
profit to farmers (Figure 11). A summary of the values estimated by the model for 10,000
m2 of farmland is provided in Figure 12.
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4.1. Model Applicability

The installation of agrivoltaic systems is declining in Japan due to the falling sale prices
of electricity generated by solar power and the negative impacts of solar panel installation
on agricultural growth. However, many places in the world are under increasing pressure
to meet energy and food demands with a limited amount of land. Therefore, effective use
of land in a coordinated manner through combining its uses are indispensable. Solar panel
performance and durability have improved due to technological advances and prices have
declined. Therefore, their utility as a tool for use in sharing purposes is increasing.

The advantage of this model is that the amount of renewable power generation and
agricultural production by the introduction of the agrivoltaic system can be calculated using
a single variable, solar irradiation. With this model, farmers could estimate the benefit of
the system in advance by simply obtaining solar irradiation data for the target area. This
simplified model is an effective tool for farmers who have long experience in the target
area and can empirically predict the impact of environmental and weather changes on
agricultural output. On the other hand, the model, which does not consider environmental
and weather impacts, may mislead farmers and investors who are inexperienced in the
target area. To promote the agrivoltaic system, it is essential to develop tools that can
be used by farmers and investors unfamiliar with the target area. Improving model
performance is vital for this and could be achieved by incorporating environmental and
weather factors. One method is to use dummy variables to incorporate environmental and
weather effects into the equation. Another method is to reflect environmental and weather
effects in the PPFD calculated from solar irradiation.

The growth associated with photosynthesis of various agricultural products has been
the subject of research in many agronomic papers. Using this model, the impact of the
introduction of agrivoltaic systems on the production of other agricultural products can be
quantified by applying other variables such as photosynthetic rate and carbon distribution rate
to the harvested object for the target agricultural product-specific numerical information.

4.2. Study Limitations and Future Study

The growth of agricultural products depends on various environmental factors, such
as temperature and rainfall, and is not solely determined by solar irradiation. Therefore,
this study focused on photovoltaic electricity generation and agricultural growth estimated
from solar irradiation as a first step towards a more comprehensive evaluation based
on complex factors. Some studies have used artificial intelligence models to predict the
performance of equipment from multiple input variables. For example, Almodfer et al. [60]
conducted performance prediction of a solar-powered thermoelectric air-conditioning
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system using advanced optimized artificial intelligence models. Establishing models from
various environmental variables by utilizing these advanced methods is a subject for
further study.

5. Conclusions

To introduce the agrivoltaic system, farmers must bear the high initial and mainte-
nance costs of the system. This study established a model that calculates the quantitative
effect of the introducing the system in any area with solar irradiation data based on taro
cultivation in Miyazaki Prefecture as a model case. This model can predict the power
generated, production of agricultural products, and the ideal cultivation start date, which
allows farmers to develop a concrete business strategy to assess feasibility of introducing
the system. The proposed model could encourage farmers to change their behavior by
quantifying the reduction in agricultural production and producer surplus created by the
introduction of the agrivoltaic system.

Power generation using solar panels is commonplace on the roof area of residential
houses and factories. We hope that the land will continue to be shared to generate renewable
energy and produce agricultural products in a coordinated manner in the future.
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