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Abstract: Market power, defined as the ability to raise prices above competitive levels profitably,
continues to be a prime concern in the restructured electricity markets. Market power must be
mitigated to improve market performance and avoid inefficient generation investment, price volatility,
and overpayment in power systems. For this reason, involving market power in the transmission
expansion planning (TEP) problem is essential for ensuring the efficient operation of the electricity
markets. In this regard, a methodological bilevel stochastic framework for the TEP problem that
explicitly includes the market power indices in the upper level is proposed, aiming to restrict the
potential market power execution. A mixed-integer linear/quadratic programming (MILP/MIQP)
reformulation of the stochastic bilevel model is constructed utilizing Karush−Kuhn−Tucker (KKT)
conditions. Wind power and electricity demand uncertainty are incorporated using scenario-based
two-stage stochastic programming. The model enables the planner to make a trade-off between the
market power indices and the investment cost. Using comparable results of the IEEE 118-bus system,
we show that the proposed TEP outperforms the existing models in terms of market power indices
and facilitates open access to the transmission network for all market participants.

Keywords: bilevel programming; KKT conditions; market power; mixed-integer linear/quadratic
programming; stochastic programming; transmission expansion planning

1. Introduction
1.1. Backgrounds, Aims, and Contributions

To construct a reliable and efficient electric power grid, it is essential to have a suf-
ficient transmission capacity to transfer the generated electrical power to load centers
securely. Transmission expansion planning (TEP) involves identifying the location and
installation time of new transmission lines or transformers in a power network in order to
satisfy the future electric demand in a reliable, economical, and efficient manner during a
given horizon. In its comprehensive and original form, TEP is a large-scale, multi-period,
multi-objective, and highly non-convex combinatorial optimization problem that involves
many uncertain parameters and is mainly considered a natural monopoly. Traditionally,
TEP is mathematically formulated as a cost-minimization problem considering transmis-
sion constraints.

So far, extensive research works have been carried out to study the TEP problem
from different perspectives. From the uncertainty point of view, TEP is categorized into
deterministic and non-deterministic models. In the former approach, the uncertainty is
ignored, while the latter considers the uncertainty through either stochastic programming or
robust optimization. It is of note some models utilize a hybrid robust/stochastic approach.
From the time period’s viewpoint, TEP can be either static, where a single time period is
regarded during the entire planning horizon, or dynamic, in which several periods are
considered. In other words, the construction time of transmission lines is a decision variable
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in dynamic approaches, making its solution space much larger and its solution algorithm
more complex than static approaches. TEP can also be divided according to the utilization
of DC or AC power flow equations. In DC-TEP, an approximated linear representation of
the power network is used, while the exact nonlinear power flow equations are employed
in AC-TEP. It is worth mentioning there are numerous convex relaxation models in the
current literature that seek to convexify the AC power flow equations in a very efficient
and precise manner.

Moreover, TEP problems can be formulated as single-level or multi-level (particularly
bilevel) mathematical programming where each level shows the desire of the corresponding
entity. Additionally, it is imperative to coordinate the TEP problem with generation expan-
sion, reactive power planning, and gas network, which results in the creation of different
integrated models. All of these viewpoints have been well investigated, particularly within
the context of a vertically-integrated power system, while the research area is still open on
this topic to enhance the models and relevant solution techniques.

On the one hand, electricity markets are known to be prone to the exercise of market
power due to inelastic electric demand, network congestion, and the inability to eco-
nomically store electric energy on a large scale, which can cause inefficient generation
investment, ineffective power dispatch, price volatility, overpayment, and social welfare
reduction [1]. Market power is defined as the ability to raise prices profitably above com-
petitive levels, mainly when the balance in demand−supply is tight, under which some
actors, especially generators, can earn more profit [1,2]. On the other hand, the available
transmission capacity considerably affects the exercise of market power and market com-
petition. The configuration of transmission grids as a link between supply and demand
highly influence the nature of competition and market power in the deregulated power
industry. Adequate transmission capacity enables more generators to be connected to
the electricity network, leading to more competition in the wholesale electricity market.
Conversely, insufficient transmission capacity would block some lines to transfer power,
enabling some generators to exert market power. Hence, it is needed to design an effective
configuration for transmission grid infrastructure, such that all participants could have
open access to transmission capacity. Devising an efficient formulation for the TEP problem
to augment the transmission capacity can help mitigate the market power and enhance
competition among all market participants. However, this crucial matter has not gained
much attention in the current literature. Hence, the existing TEP models cannot capture
the potential exercise of market power in electricity markets. The purpose of this paper
is to construct a novel methodology for the TEP problem that directly seeks to enhance
market power through transmission capacity augmentation and investment. Toward this
end, a bilevel TEP strategy based on DC power flow (DC-TEP) is utilized, where the market
power indices are explicitly incorporated into the problem at the upper level. It is worth
pointing out that although the upper level’s objective function also minimizes the lower
level’s objective function, it is necessary to utilize a bilevel model because market power
indices incorporated in the upper level must be computed in the lower level. To the best of
our knowledge, there is no model in the existing published research that market power
indices are considered decision variables. Moreover, a high penetration level of renewable
energy sources (RESs) will increase the necessity for considering a mechanism to mitigate
market power in the TEP problem, as, in the presence of RES, the power flow pattern
of transmission lines becomes less predictable. Motivated by the discussion above, the
contributions of this work are listed below:

1. To construct a mathematical model to incorporate market power in the TEP prob-
lem, such that the planner is able to make a trade-off between the cost and market
power values.

2. To propose several techniques to make the presented model linear/quadratic such
that it can be efficiently solved by commercial solvers.

The numerical results obtained by applying the presented model to the IEEE 118-bus
power system indicate the effectiveness of the proposed methodology, which enables the
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planner to make a trade-off between the market power indices and the investment cost. It
is shown that the proposed TEP outperforms the existing models in terms of market power
indices and facilitates open access to the transmission network for all market participants.
The following section reviews some state-of-the-art papers in the technical literature that
deal with the TEP problem and the effect of transmission capacity on market power.

1.2. Literature Survey

An integrated transmission and generation expansion planning (TGEP) model based
on three different mathematical formulations is presented in [1], where in order to overcome
the computational complexity, the Benders decomposition (BD) technique is employed. A
three-stage robust optimization approach for TGEP is proposed in [2] in the presence of
different long-term climate conditions, in which a modified version of the nested column-
and-constraint-generation (C&CG) technique is used to reach the optimal global solution.
The authors of [3] constructed a mathematical optimization model for simultaneous TEP
and energy storage systems (ESS) optimal siting and sizing considering N−1 contingency,
in which BD is utilized to overcome the computational burden. The authors of [4] sug-
gest a multi-period scheme for TEP in a hybrid AC/DC grid using a second-order conic
relaxation considering the increasing integration of large-scale RES. A mixed-integer lin-
ear programming (MILP) model for the TEP problem considering N−1 contingency is
developed in [5], where compressed air energy storage (CAES) is included to improve
grid-scale system flexibility. A resilient-based TEP model that considers the N−1 secu-
rity criterion is proposed in [6], where a multi-stage BD is used to solve the problem. A
mixed-integer nonlinear programming (MINLP) problem is presented as a novel global
solver in [7] for the AC-TEP problem based on second-order cone relaxation and improved
relaxation tightening equations. The authors of [8] proposed a risk-based method for TEP,
intending to decrease the wind power curtailment through the theory of super quantile
and a convex relaxation method. The impact of wind and solar energy on TEP modeling
the correlations and fluctuations based on hourly resolution was studied in [9], where
both DC and AC power flow were considered. A flexibility-based MILP method for the
contingency-constrained TEP problem was studied in [10], where linearized power losses
were modeled. The authors claim their model avoids under-investment in TEP due to
neglecting losses. The authors of [11] present a new methodological model for the dynamic
AC-TEP problem in order to maintain the system stability under conditions with a high
electric load and low production of RESs, which is solved by an evolutionary algorithm.
As reducing the number of scenarios to deal with computational complexity may result
in inefficient solutions, the authors of [12] proposed a model for TEP to incorporate many
operating scenarios without any reduction based on BD. In this sense, the TEP problem
is divided into a master problem and several subproblems in which multiple parametric
linear programming is utilized to cluster the operation subproblems in each iteration. A
novel two-stage algorithm to solve the dynamic TEP problem was proposed in [13], where
the first stage reduces the search space size by a constructive heuristic algorithm, and the
second stage is to refine the optimal solution plan using particle swarm optimization and
a genetic algorithm. A strategy to create an efficacious set of candidate-line for the TEP
problem modeling both long-term uncertainty, i.e., the peak load and available generating
capacity and short-term uncertainty, i.e., different operating conditions, is put forth in [14].
A robust-based TEP regarding the N-k security criterion was formulated in [15] under the
demand and RES uncertainty, where the proposed MILP problem was solved using BD. A
TEP model that considers the resistance variations of transmission lines was formulated
in [16] using robust adaptive optimization. A tri-level model for the TEP problem where the
distribution networks expansion is coordinated with the transmission grid was suggested
by [17], where multi-parametric programming and duality theory was utilized to solve this
tri-level problem. The authors of [18] designed a new scenario-based TEP model consider-
ing the dynamic thermal rating (DTR) of transmission lines in which the optimal placement
of lines and DTR was identified. It has been shown that DTR can postpone the investment
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in transmission lines. The authors of [19] developed the probability of RES uncertainty
based on RES output probabilities derived from recorded historical information for the
robust TEP problem, where a modified C&CG was employed to reach the optimal solution.
A new data-driven scenario generation technique was set out in [20] for the TEP problem to
create unseen but vital wind-demand scenarios while modeling correlation by employing a
vine-copula-based stochastic variable modeling method. A coordinated dynamic TGEP
in the presence of a high share of RES considering the demand response was studied
in [21], in which the multi-objective model was formulated as a mixed-integer quadratic
programming (MIQP) problem. A static TEP model for integrated TGEP considering de-
liberate attacks was presented in [22], where investment and operation cost, energy not
supplied, and the grid’s vulnerability against physical deliberate attacks were considered
as the objective function. The authors in [23] explored a game-based TGEP problem in an
integrated gas and electricity market where a mixed complementarity approach was used
to simulate interactions among participants. A tri-level integrated strategy for TEP and
distributed generations was proposed in [24], where, distinct from the existing methods,
the hourly transmission prices were considered. A tri-level adaptive robust TEP model
was formulated in [25], in which C&CG was utilized to solve the dynamic tri-level model.
Moreover, for an effective survey of TEP models and relevant solution techniques with
more detailed demonstration, the readers are referred to the review articles [26–30].

Several technical publications in the literature deal with market power and its re-
lationship with transmission capacity. The impact of transmission capacity on market
power was studied in [31–33]. It was shown in [33] that there might be a condition in a
transmission-constrained electric grid in which a unit would exercise market power by
increasing its generation level to block a transmission line. The authors of [34] concluded
that a line with even a little power flow may be crucial for mitigating market power. The
effect of nodal congestion management on the exercise of market power was investigated
in [33]. The authors of [34] showed that transmission expansion decreased the unit’s market
power and that the transmission constraint was essential in assessing market power. A
method for assessing the economic benefits of transmission expansions was discussed
in [35], which accounted for how transmission expansions mitigated market power.

1.3. Paper Organization

The rest of this paper is laid out as follows. In Section 2, we present the mathematical
formulation of the bilevel TEP model. Section 3 describes the solution methodology for our
TEP model. Section 4 uses a case study to evaluate the model’s performance. Finally, we
draw the main conclusion in Section 5.

2. Bilevel Stochastic TEP Model Considering Market Power

This section contains two subsections. In Section 2.1, the market-oriented TEP problem
is mathematically formulated as bilevel programming while modeling the uncertainty
in demand and wind power through several representative scenarios. Then, Section 2.2
describes the market power indices used in the TEP problem.

2.1. Mathematical TEP Formulation

To structure the proposed TEP model considering market power enhancement in wind-
integrated power grids, the optimization problem comprised two levels, as is customary
in the existing literature. In the first level, the binary investment decisions were made by
the independent system operator, assumed to be the responsible agent for expanding the
transmission capacity. The objective function of the upper level consisted of two terms:
investment cost plus the expected operation cost over all of the scenarios. The available
investment budget and the equations relevant to the market power requirement constrained
the upper objective function. In the second level, the electricity market was cleared for
each scenario using a lossless DC approximation by minimizing the total production cost
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subject to the prevailing power system constraints. The detailed mathematical formulation
is as follows:

Min︸︷︷︸
uL

ij ,MPI

∑(ij) cL
iju

L
ij + σ ∑s∈ΩS ρs ∑i∈ΩN cT

i PT
is (1)

∑(ij) cL
iju

L
ij ≤ CLmax (2)

MPI ≤ MPImax (3)

where λis, PT
is , PL

ijs ∀s ∈ ΩS ∈ arg{

Min︸︷︷︸
PT

is ,PW
is ,PL

ijs ,δis

∑i∈ΩN cT
i PT

is (4)

PT
is + PW

is −∑j∈ΩN PL
ijs = PD

is → λis (5)

PL
ijs = −uL

ijbij
(
δis − δjs

)
→ ηL

ijs (6)

0 ≤ PT
is ≤ PTmax

i → ηT
is, ηT

is
(7)

0 ≤ PW
is ≤ KW

is PWmax
i → ηW

is , ηW
is

(8)

−PLmax
ij ≤ PL

ijs ≤ PLmax
ij → ηC

ijs, ηC
ijs

(9)

−δmax ≤ δis ≤ δmax → ηA
is , ηA

is
(10)

δre f ,s = 0 → ηre f ,s (11)

The objective function defined by (1) is the lines’ annualized investment cost plus
the annual total generation cost of the thermal units. The investment cost is bounded by
(2). Constraint associated with market power is shown by (3). The total generation cost of
thermal units for each scenario is indicated by (4), which is the objective function of the
lower level problem. Supply−demand balance at each bus is imposed by (5). Equation (6)
is the power flow through lines. Note that for the existing lines, uL

ij is set to 1 and IL
ij is

set to 0. The generation output of thermal and wind power units is limited by (7) and
(8), respectively. The capacity of each line and voltage angle are restricted by (9) and
(10), respectively. Equation (11) means the slack bus’s voltage angle is equal to 0. The
dual variable of each constraint of the lower level is shown in front of its corresponding
constraint after→. The following section describes the indices used in (3) in detail.

2.2. Market Power Indices

Several indices have been introduced in the literature to measure market power. Here,
we introduce three market power indices used in our studies. In [36], two market power
indices are defined, in which one is based on the nodal price, and the other is based on the
power flows through lines. An index named the average nodal price deviation index (PDI)
is suggested, which is mathematically defined as follows:

PDI =
∑i∈ΩN

∣∣λi − λ
∣∣

N × λ
(12)
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λi = ∑s∈ΩS ρsλis , λ =
∑i∈ΩN λi

N
(13)

PDI = 0 means no congestion in the power system for all scenarios. Another index
named the network usage index (NUI) is also devised in [36], which is described as follows:

NUI =

∑(ij) max︸︷︷︸
s∈ΩS

{∣∣∣PL
ijs

∣∣∣}
∑(ij) uL

ijP
Lmax
ij

(14)

As demonstrated in [36], NUI is explained as the degree of severity of transmission
usage. With NUI being close to 0, the transmission system is not used much, and with
NUI being close to 1, the transmission capacity is reaching its boundaries. One of the most
widely-used indices is the Herfindahl−Hirschman Index (HHI), which is used to evaluate
the concentration of a market. HHI is defined as [37,38]:

HHI = ∑NF
i=1 S2

i (15)

where NF is the number of firms and Si is the market share of firm i. FERC uses the HHI to
classify the market type. On a percentage basis, if HHI is smaller than 1000, the market is
considered to be competitive. In a monopoly market, HHI would be equal to 10,000. On
the other hand, for a large number of firms where no single producer has a large amount of
market share, the HHI index will be near zero.

3. Solution Strategy

This section is divided into two parts. The bilevel model is transformed into a single-
level model in the first part. The second part is devoted to linearizing the nonlinear terms.

3.1. Converting the Bilevel into a Single Level

As the lower-level problem is linear, the KKT conditions can be used to replace
the lower level by its primal feasibility constraints (16)–(22), dual feasibility constraints
(23)–(27), and complementary slackness conditions (CSCs) (28)–(35), as follows:

PT
is + PW

is −∑j∈ΩN PL
ijs = PD

is (16)

PL
ijs = −uL

ijbij
(
δis − δjs

)
(17)

0 ≤ PT
is ≤ PTmax

i (18)

0 ≤ PW
is ≤ KW

is PWmax
i (19)

−PLmax
ij ≤ PL

ijs ≤ PLmax
ij (20)

−δmax ≤ δis ≤ δmax (21)

δre f ,s = 0 (22)

cT
i + λis + ηT

is − ηT
is
= 0 (23)

λis + ηW
is − ηW

is
= 0 (24)
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ηA
is − ηA

is
+ ∑j∈ΩN

{
uL

ijbij

(
ηL

ijs − ηL
jis

)}
= 0 (25)

ηre f ,s + ∑j∈ΩN

{
uL

ijbij

(
ηL

ijs − ηL
jis

)}
= 0 (26)

−λis + ηL
ijs + ηC

ijs − ηC
ijs

= 0 (27)

0 ≤
(

PTmax
i − PT

is

)
⊥ηT

is ≥ 0 (28)

0 ≤ PT
is⊥ηT

is
≥ 0 (29)

0 ≤
(

KW
is PWmax

i − PW
is

)
⊥ηW

is ≥ 0 (30)

0 ≤ PW
is ⊥ηW

is
≥ 0 (31)

0 ≤
(

PLmax
ij − PL

ijs

)
⊥ηC

ijs ≥ 0 (32)

0 ≤
(

PL
ijs + PLmax

ij

)
⊥ηC

ijs
≥ 0 (33)

0 ≤ (δmax − δis)⊥ηA
is ≥ 0 (34)

0 ≤ (δis + δmax)⊥ηA
is
≥ 0 (35)

3.2. Linearization of the Nonlinear Terms

The nonlinear terms appear in (17), (25), and (26) due to the product of binary and
continuous variables; in CSCs (28)–(35), in the absolute function used in (12); and in the
max function in (14). It is worthwhile to note that when HHI is considered to be the market
power index, (6) can be rewritten as ∑NF

i=1 S2
i ≤ HHImax, which is a convex equation and

can be easily handled by commercial solvers. To make (17) linear, (17) and (20) are replaced
by the following two equations:

−M1

(
1− uL

ij

)
≤ PL

ijs + bij
(
δis − δjs

)
≤ M1

(
1− uL

ij

)
(36)

−uL
ijP

Lmax
ij ≤ PL

ijs ≤ uL
ijP

Lmax
ij (37)

A similar approach can be applied to (25) and (26). Assuming AL
ijs = uL

ijbij

(
θijs − θjis

)
,

we can obtain:

−M2

(
1− uL

ij

)
≤ AL

ijs − bij

(
θijs − θjis

)
≤ M2

(
1− uL

ij

)
(38)

−uL
ij A

Lmax
ij ≤ AL

ijs ≤ uL
ij A

Lmax
ij (39)

Additionally, it is a commonly-used approach to recast the CSC 0 ≤ x⊥y ≥ 0 as
0 ≤ x ≤ Mz and 0 ≤ y ≤ M(1− z). For instance, (28) can be replaced by the following
equations:

0 ≤ PTmax
i − PT

is ≤ M3yis (40)
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0 ≤ ηis ≤ M3(1− yis) (41)

To be concise, we ignore reformulating all CSCs as linear equations. Moreover, the
absolute function y = |x| in (12) can be rewritten in a linear form as y = x+ + x− and
x = x+ − x− where x+, x− ≥ 0. Therefore, if PDI is used as the market power index, (3)
can be recast as follows:

∑i∈ΩN Λi ≤ PDImax × N × λ (42)

Φi = λi − λ (43)

Λi = Φ+
i + Φ−i (44)

Φi = Φ+
i −Φ−i (45)

Φ+
i , Φ−i ≥ 0 (46)

However, if NUI is used as a market power index, (3) would be as follows:

∑(ij) max︸︷︷︸
s∈ΩS

{∣∣∣PL
ijs

∣∣∣} ≤ NUImax ×∑(ij) uL
ij f Lmax

ij (47)

The left-hand side of which is nonlinear. To make (47) linear, first, it is needs to be
rewritten as below to linearize the absolute function as described before:

∑(ij) max︸︷︷︸
s∈ΩS

{
Γijs
}
≤ NCImax ×∑(ij) uL

ijP
Lmax
ij (48)

Γijs = Ψ+
is + Ψ−is (49)

PL
ijs = Ψ+

is −Ψ−is (50)

Ψ+
is , Ψ−is ≥ 0 (51)

Afterwards, by introducing Ξij = max︸︷︷︸
s∈ΩS

{
Γijs
}

, (48) can be recast as:

∑(ij) Ξij ≤ NCImax ×∑(ij) uL
ij f Lmax

ij (52)

Γijs ≤ Ξij ≤ Γijs + (1− zs)M4 (53)

∑s∈ΩS zs = 1 (54)

The resultant formulated problem is a MILP/MIQP problem that can be efficiently
solved by the off-the-shelf solvers. The next section shows the proposed model is efficacious
by applying it to a case study.

4. Numerical Results

The IEEE 118-bus power system is used to illustrate the presented model that con-
tains 186 existing lines, 64 candidate lines, 54 thermal units, and 99 loads. To solve the
MILP/MIQP problems, Gurobi [39] within GAMS [40] was utilized. The code was run
on a laptop with an Intel Core i7 CPU (2.5 GHz) and 16 GB of RAM. The optimality gap
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was set at 1%. It is worth mentioning that setting a lower value of the optimality gap,
although it yielded more exact solutions, significantly increased the computational time. In
this situation, decomposition techniques may be utilized, which was not within the scope
of this work. The system configuration input data are provided in [41], which include
investment cost, location, reactance and capacity of lines, electric demand, production cost,
location and capacity of thermal and wind units, and all the 30 representative scenarios
along with their probability. It is assumed the load demands, generation, and lines capacity
are 2.5, 2.5, and 0.7 times, respectively, the original values given in [41].

We considered four different cases: case (a), where TEP was solved without including
any market power indices; case (b), (c), and (d), where PDI, NUI, and HHI were incorpo-
rated into the TEP model, as described in the previous section. The simulation results for
all these cases are given in Table 1.

Table 1. Optimal solutions for four different cases considering different market power indices.

Case (a): without
MPI

Case (b): PDI
PDImax=0.09

Case (c): NUI
NUImax=0.40

Case (d): HHI
HHImax=100

Annualized investment cost ($) 3.101 × 107 9.980 × 107 7.762 × 107 4.893 × 107

Operation cost ($/year) 7.899 × 108 7.358 × 108 7.967 × 108 8.612 × 108

Objective function ($) 8.209 × 108 8.356 × 108 8.743 × 108 9.101 × 108

PDI 0.208 0.090 0.189 0.201
NUI 0.656 0.541 0.399 0.653
HHI 148 163 175 99.98

Several points can be construed from the results shown in Table 1:

1. Comparing case (a) with case (b) indicates that although PDI decreased from 0.208
to 0.090, the investment cost rose by 221%. However, the operation cost reduced by
about 6.8% due to the more available capacity in the transmission grid, which yielded
the commitment of cheaper generators. As expected, the objective function in case (b)
would be 1.8% higher than in case (a). This increase was at the expense of reducing
PDI. It is of note that NUI was slightly lower in case (b) when compared with case (a),
indicating that transmission was less used in case (b).

2. If NUI was considered to be the market power index in the TEP problem, it decreased
to its minimum value of 0.399. However, both investment and operation cost increased
in this case to lower the NUI. The objective function was 6.5% higher in case (c)
compared with case (a). The PDI in case (c) was higher than that in case (b), but
slightly lower than that in case (a).

3. In case (d), where HHI was considered as the market power index, the opera-
tion cost was the highest among all of the cases. To guarantee that constraint
HHI ≤ HHImax = 100 was satisfied, the more expensive generators were dispatched,
leading to a greater total operation cost. As shown in Table 1, the operation cost was
9% higher than that in case (a). In addition, despite the higher investment cost in case
(d) compared with case (a), NUI had the largest amount in case (d). HHI in the other
three cases was above 100. Note that as the number of producers participating in the
electricity generation was large enough (54 generators), all four cases were considered
competitive electricity markets from the HHI point of view. The effect of the fewer
generation companies on the HHI will be studied shortly.

It is of note that a linear combination of market power indices introduced in the
previous section could also be used. For instance, let us consider w× PDI + (1− w)NUI ≤
MPImax = w× PDImax + (1− w)NUImax as a combination of PDI and NUI. The results
for different amounts of weighting factor w are shown in Table 2. Notice that w = 0
corresponded to case (c) and w = 1 corresponded to case (b). It can be seen in Table 2 that
as w increased, the investment cost rose while the operation cost decreased. In addition, as
expected, PDI reduced and NUI increased.
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Table 2. Optimal solutions for four different cases considering different weighting factors.

w=0 (Case (c)) w=0.2 w=0.5 w=0.8 w=1 (Case (b))
Annualized investment cost

(×107$) 7.762 8.391 8.779 9.546 9.980

Operation cost (×108$/year) 7.967 7.812 7.604 7.479 7.358
Objective function (×108$) 8.743 8.651 8.481 8.433 8.356

PDI 0.189 0.153 0.117 0.097 0.090
NUI 0.399 0.423 0.487 0.509 0.541
HHI 175 171 170 166 163

Figure 1 denotes the investment cost as well as NUI for case (b) for different values of
PDImax. It was concluded from this figure that as PDImax decreased, the investment cost of
transmission lines increased, meaning that more transmission lines were needed to be built
to mitigate the price deviation throughout the power system. For PDImax equal to 0.21,
(3) it was nonbinding, i.e., it could be removed without any changes in the optimal solution.
Therefore, the investment cost remained unchanged for PDImax ≥ 0.21. In addition, when
PDImax reached 0.08, the investment cost reached its maximum value of 10.157 × 107$. For
such an investment cost, PDI was zero, meaning there was no congestion in the expanded
transmission grid in all of the scenarios. Moreover, it is observed from Figure 1 that, in
general, as PDImax increased, NUI increased as well, because more lines were constructed,
which led to more available capacity in the network. However, when PDImax increased
from 0.10 to 0.12 or from 0.14 to 0.16, the NUI reduced a little despite the rise in transmission
capacity. This could be justified because the power flow pattern through the transmission
lines slightly changed as PDImax increased.
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Figure 1. (a) Annualized investment cost of transmission lines and (b) NUI versus different values of
PDImax.

To further analyze the results, Figure 2 plots the average locational marginal prices
(LMPs) across the power system for three different values of PDImax. The blue curve shows
the LMPs for PDImax = 0.21. As can be seen, electricity prices differed significantly across
the whole power system. For instance, the end-user at bus 78 would face a high electricity
price of 37 USD/MWh, while the end-user at bus 12 would experience an electricity price
as low as 3 USD/MWh. This means that access to open transmission capacity was not non-
discriminatory. As PDImax decreased from 0.21 to 0.16, the price volatility was reduced. For
PDImax equal to 0.10 (red curve), the price profile was much smoother than the other two
curves, indicating that the presented mathematical model could effectively introduce more
uniform prices across the network, but at the expense of building more transmission lines.
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Figure 2. Average LMPs at different buses versus different values of PDImax.

To investigate the effect of the number of players on HHI, we studied the simulation
results for fewer generation companies. Notice that the number of players was assumed to
be known before the planning process. In doing so, we assumed the number of generating
companies to be 2, 5, and 10. The optimal solutions are shown in Table 3. As expected, as
the number of players grew, HHI reduced, regardless of whether HHI was included in the
TEP problem or not. Furthermore, for all three cases, HHI decreased if it was considered in
the TEP problem by 7.3%, 26%, and 27% for cases (e), (f), and (g), respectively. However,
the cost to mitigate HHI was an increase in the objective function. It should be highlighted
that when the number of players was 2, it was much more challenging to reduce HHI. Note
that the investment and operation cost for the situation in which HHI was not considered
in the TEP model was the same as case (a) and was not be impacted by the number of
players because we did not model the competitive behavior of the market participant. In
addition, the HHIs provided in row 2 of Table 3 were the minimum values of HHImax under
which the optimization model was feasible. This means if HHImax was selected below the
amounts given in Table 3, the problem was infeasible. Therefore, this is the minimum HHI
that the planning model could achieve. Figure 3 illustrates the objective function and NUI
for different values of HHImax, while the number of players was fixed at 5. As HHImax

increased from its minimum value, i.e., 1413, the objective function was reduced. When
HHImax reached 1926, the objective function did not change anymore. The right-hand side
of Figure 3 indicates that NUI behaved randomly, and there was no correlation between
HHImax and the amount of NCI. It is of note that in a market with a higher competitiveness
level, the total operation cost must be lower in practice, i.e., the higher the competition, the
lower the operation cost. However, comparing cases (c) and (e) was inconsistent with this
point. The reason is that the generation cost of each generator (cT

i ) was assumed to be a
constant parameter for all cases. In fact, it was assumed that all generators submited their
marginal cost. To consider the effect of different competition levels on the operation cost,
we needed to model the bidding strategy in the problem, which was beyond the scope of
our research work.
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Table 3. Optimal solutions considering different numbers of market players.

Case (e): 2 Players Case (f): 5 Players Case (g): 10 Players

With HHI as MPI

HHI 3898 1413 649
Annualized investment cost ($) 3.337 × 107 3.632 × 107 3.006 × 107

Operation cost ($/year) 7.952 × 108 8.414 × 108 8.697 × 108

Objective function ($) 8.289 × 108 8.777 × 108 8.997 × 108

Without MPI HHI 4207 1926 893
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5. Conclusions

This paper presents a market-oriented TEP model that directly takes the market power
measures into account. Motivated by the existing market settings, the proposed model
incorporates the market power measures using an approximated lossless DC representation
of power flow. In this context, a stochastic bilevel model is formulated where the planner
makes investment decisions at the upper level while respecting the constraints associated
with market power. The lower level is to clear the market using DC equations given
the optimal decisions attained from the upper level. The solution strategy is based on
the broadly used KKT conditions resulting in a MILP/MIQP problem whose solution
algorithms are efficient and mature. A set of plausible scenarios represents wind power
and electricity demand uncertainty. As demonstrated by the numerical experiment, the
proposed model can effectively reduce the market power in the electricity market, but at
the cost of a higher investment cost. The lower the market power indices, the higher the
investment cost. Moreover, it is observed that the set of candidate transmission lines can
significantly influence the results. It is also inferred from the numerical experiment that
improving one of the market power indices for the same set of candidate lines does not
necessarily lead to an improvement in all indices.

In future studies, we will model the generalizations of our formulation by investigating
the possibility of incorporating AC power flow equations. In addition, as the generation
expansion plans considerably affect the market power indices, it is suggested to consider
the market power in a co-planning model for transmission and generation expansion. It is
also interesting to explore the effect of demand response as well as energy storage systems
on the market power in the planning problems.
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Nomenclature

A. Indices and sets:
i, j Index for buses.
s Index for scenarios.
ΩN , ΩS Set of buses and set of scenarios.
B. Parameters:
bij Susceptance of lines.
cL

ij Transmission lines’ annualized investment cost.
cT

i Production cost of generators.
CLmax Maximum allowable investment cost.
PD

is Electric demand.
PTmax

i , PLmax
ij Capacity of Thermal generator and transmission line.

PWmax
i Capacity of the wind farm.

HHImax, NUImax,
PDImax Maximum value for market power indices.

M1, M2, M3, M4 Big-M parameters used in linearization process.
N Number of buses.
σ Number of hours in a year (σ = 8760).
δmax Maximum voltage angle.
ρs Probability of scenario s.
C. Variables:
AL

ijs, Λi, Φi, Φ+
i , Φ−i ,

Γijs, Ψ+
is , Ψ−is , Ξij

Continuous auxiliary variable used in linearization process.

PT
is , PW

is Thermal and wind power production.
PL

ijs Power flow of transmission lines.
MPI =
HHI ; PDI ; NUI

Market power indices.

Si Market share on a percentage basis.

uL
ij

Binary variables used to indicate whether the corresponding facility is
installed.

ys, zs Binary auxiliary variable used in linearization process.
δis Voltage angle.
λis, ηL

ijs, ηT
is, ηT

is
, ηW

is , ηW
is

,

ηC
ijs, ηC

ijs
,ηA

is , ηA
is

, ηre f ,s
Dual Variables.
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