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Abstract: The implementation of a multi-microgrid (MMG) system with multiple renewable energy
sources enables the facilitation of electricity trading. To tackle the energy management problem of
an MMG system, which consists of multiple renewable energy microgrids belonging to different
operating entities, this paper proposes an MMG collaborative optimization scheduling model based
on a multi-agent centralized training distributed execution framework. To enhance the generaliza-
tion ability of dealing with various uncertainties, we also propose an improved multi-agent soft
actor-critic (MASAC) algorithm, which facilitates energy transactions between multi-agents in MMG,
and employs automated machine learning (AutoML) to optimize the MASAC hyperparameters to
further improve the generalization of deep reinforcement learning (DRL). The test results demon-
strate that the proposed method successfully achieves power complementarity between different
entities and reduces the MMG system’s operating cost. Additionally, the proposal significantly
outperforms other state-of-the-art reinforcement learning algorithms with better economy and higher
calculation efficiency.

Keywords: multi-microgrid; collaborative optimization; multi-agent deep reinforcement learning;
automated machine learning

1. Introduction

To achieve sustainable social development, it is imperative to embrace clean, low-
carbon, and sustainable energy sources [1,2]. However, due to the inherent uncertainty
of renewable energy, the integration of multiple renewable energy sources in the form of
microgrid (MG) has played a significant role in promoting the consumption of renewable
energy [3–5]. As technology advances, connecting multiple microgrids (MGs) within
the same power distribution area can unlock the potential of various flexible resources,
enabling the complementary utilization of multi-microgrid (MMG) energy [6]. In addition,
this approach further promotes the consumption of various renewable energy sources,
which has emerged as a new trend in development [7,8]. However, the energy interaction
between multiple MGs involves complex transaction relationships, leading to significant
challenges in system regulation. In this case, it is of great significance to investigate the
collaborative optimal dispatch of MMG with electric energy interaction to fully exploit the
potential of renewable energy sources and ensure efficient system regulation.

Existing research has made significant progress in addressing the complexity of man-
aging MMG energy. Ref. [9] proposes optimal scheduling of MMG based on federated
learning and reinforcement learning. Ref. [10] constructs an MMG system in cold and hot
power areas, taking into account electric energy interaction. Although the above works
have addressed the power interaction in a multi-microgrid system, the benefits of each
MG are not considered enough. Regarding the aforementioned issue, some works have
addressed the complexity of energy transactions between different entities in MMG systems.
Ref. [11] considers an incompletely rational peer-to-peer MG energy transaction. Ref. [12]
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uses the particle swarm optimization (PSO) algorithm for peer-to-peer MMG economic
dispatch. Ref. [13] proposes an MMG distributed power management in the shipping
area based on an alternating direction method of multipliers (ADMM) algorithm. Ref. [14]
leverages Monte Carlo simulations for the energy trading of MMG. Nevertheless, the high
uncertainty, wide variability, and multi-energy coupling information of MMG systems
present significant challenges in modeling the energy transactions between different en-
tities. Currently, there are two main categories of methods for solving the MMG energy
management scheduling model: model-driven approaches and data-driven approaches.
Studies focusing on model-driven methods have also been conducted in this area. Ref. [15]
proposes an improved genetic algorithm for MMG economic dispatch. Ref. [16] utilizes a
PSO algorithm for the optimal scheduling of MG containing electric vehicles. Ref. [17] uses
a distributed control method for the energy scheduling of MMG. Ref. [18] leverages the
ADMM algorithm for the day-ahead scheduling of MMG based on the cooperative game
model. Despite the progress made in this area, research on MMG energy management still
faces several challenges due to the complexity of energy transactions between different
entities and the uncertainty associated with renewable energy output. These challenges
include: (1) The solution methods used heavily rely on the accuracy of the MMG model
and lack robustness to the uncertainties associated with multiple available energy sources.
Additionally, these methods may consume a significant amount of resources. (2) Moreover,
the existing solution methods focus primarily on short-term benefits, neglecting the poten-
tial long-term benefits. Consequently, finding effective ways to address these challenges
has become a key issue in MMG energy management.

To address the above challenges, we propose a data-driven approach that leverages
a deep reinforcement learning (DRL) algorithm to coordinate the energy management
of MMG. To be specific, deep neural networks avoid the dependence on precise math-
ematical equations and can automatically extract features from data to achieve precise
model regression. In light of the high level of the uncertainty and limited data volume
in MMG systems, reinforcement learning (RL) is suitable for real-time decision-making
under complex and variable operating conditions [19]. In this way, Ref. [20] utilizes a fast
online algorithm to solve the household load dispatching model, and the research results
have achieved satisfactory results. Ref. [21] established an MG dispatch model considering
renewable energy and used a hierarchical online algorithm to optimize the constructed
objective function. However, the online optimization algorithm used in the above work has
poor generalization performance compared to RL. Furthermore, the scheduling decision
of the RL algorithm takes into account the potential impact of future long-term benefits,
overcoming short-sightedness. However, existing RL methods are typically based on single-
agent decision-making, which has limitations when dealing with complex scenarios. This
is because single-agent RL relies on centralized scheduling and lacks autonomous learning
capabilities, and may also face difficulties with the curse of dimensionality in complex
multi-entity decision-making, resulting in convergence issues.

To address the aforementioned challenges, this paper proposes the use of multi-agent
deep reinforcement learning (MADRL) for MMG optimal scheduling. Existing work has
adopted MADRL to solve problems in power systems [22–24]. Ref. [25] proposes a layered
hybrid MADRL to optimize a multi-service delivery business model that involves the
coordination of multiple electric vehicles. Ref. [26] proposes a MADRL method for finding
the optimal energy-saving strategy for hybrid electric vehicles. Ref. [27] utilizes the hybrid
action space of MADRL to optimize off-grid building energy systems. Ref. [28] proposes the
use of MADRL for the optimal scheduling of electric vehicle charging. However, the above
works do not exploit the potential of MADRL to consider transactions between different
entities. Furthermore, the generalization performance of the algorithm is also critical for
practical applications. Ref. [29] uses the Nash-Q algorithm for multi-channel network
system security control. However, this algorithm still faces the curse of dimensionality
when dealing with complex scheduling scenarios, and its generalization ability is relatively
poor, which limits its applicability. Moreover, this algorithm employs a discrete action
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space, which can lead to a reduction in calculation accuracy. In this regard, a soft actor-
critic (SAC) algorithm, which combines value and policy iteration, has been successfully
applied to power systems [30,31]. To tackle the energy management problem of an MMG
system, which consists of multiple renewable energy microgrids belonging to different
operating entities, we propose a multi-agent soft actor-critic (MASAC) algorithm that
leverages automated machine learning (AutoML) as a skill to improve the generalization
of MASAC and utilizes the experience replay buffer to reduce the temporal correlation
between samples and improve training stability.

In summary, this paper proposes an MMG collaborative optimization scheduling
model for MMG based on AutoML and MADRL to address the complex characteristics of
the MMG system.

The main contributions of this study are summarized as follows:

• To address the issue of the transaction and complementarity of electric energy among
multi-microgrids, we constructed a collaborative optimization scheduling model for
MMG based on a multi-agent centralized training distributed execution framework.
This model effectively facilitates energy transactions between different entities and
reduces the MMG system operating cost.

• To enhance the generalization performance of the algorithm to cope with renewable
energy uncertainties, we proposed an AutoML-based MASAC analysis method for
MMG energy management. This approach eliminates the reliance on mathematical
probability distributions for renewable energy outputs and increases the adaptability
of the method to complex MMG scenarios.

• Simulation tests have demonstrated that the proposed method can effectively manage
the demand between different microgrids and promote the consumption of renewable
energy, while achieving power complementarity. Moreover, the proposed method has
better economy and computational efficiency than other RL algorithms.

• The remaining sections of this paper are organized as follows: Section 2 mainly
introduces the MMG energy management model, while Section 3 presents the solution
method of the proposed model. In Section 4, we conduct a comprehensive case
analysis to demonstrate the effectiveness of the proposed method. Finally, Section 5
summarizes the paper.

2. Multi-Microgrid Energy Management Model

The MMG system studied in this paper comprises multiple microgrids connected to
the distribution network. Each individual MG can interact with other microgrids and trade
energy with the distribution network through transmission lines. Before introducing the
scheduling model of multi-microgrid in this section, we first discuss the individual MG
model in detail.

2.1. Optimal Modeling of the Individual Microgrid

To clearly demonstrate the MG model, Figure 1 shows a schematic diagram of an indi-
vidual MG’s structure, which is mainly composed of wind turbine (WT) units, photovoltaic
(PV) units, electricity storage devices (ESD), micro-gas turbines (MGTS), load unit and an
energy management center. Furthermore, the energy management center is responsible for
the energy management of the MG.

2.1.1. Distributed Generation

The distributed generation in the studied MG includes WT and PV units. Following
the principle of data-driven dispatch, this study employs real wind and photovoltaic power
generation data for subsequent analysis, instead of modeling wind power and photovoltaic
power generation output using explicit expressions [32].
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Figure 1. Schematic diagram of an individual MG structure.

2.1.2. Micro-Gas Turbines

The MGTS mainly burns natural gas to generate electricity, which can offer advantages
such as high controllability and good power supply reliability. For the convenience of
analysis, the cost function of the MGTS of MG i is set as follows:

Ct
i (PMGTS,t,i) = λMGTS,MG iPMGTS,t,i ∀t (1)

Pmin
MGTS,i ≤ PMGTS,t,i ≤ Pmax

MGTS,i ∀t (2)

where Ct
i (PMGTS,t,i) represents the operating cost of the MGTS of MG i at time t; PMGTS,t,i

is the power generation of the MGTS of MG i at time t; λMGTS,MG i represent the power
generation cost coefficients of MGTS of MG i; Pmin

MGTS,i and Pmax
MGTS,i are the minimum and

maximum power generation of the MGTS of MG i, respectively.

2.1.3. Electricity Storage Devices

The ESD mainly achieves reasonable energy distribution by storing and releasing
through the storage and release of electric energy, ultimately reducing the operating cost of
the system [33]. At time t + 1, the relationship between the available capacity of the ESD
and its charge and discharge power of MG i is expressed as:

SESD,t+1,i = SESD,t,i + (ηchPch,t,i − Pdc,t,i/ηdc)∆t ∀t (3)

where ηch and ηdc represent the charging and discharging rate of the ESD, respectively;
Pch,t,i and Pdc,t,i are the charging and discharging power of the ESD of MG i in period t;
SESD,t,i and SESD,t+1,i represent the capacity value of the ESD of MG i in period t and t + 1.
Furthermore, we define the state of charge SOCESD,t,i of the ESD of MG i at time t to detect
the capacity of the ESD in real time as follows:

SOCESD,t,i = SESD,t,i/SESD,max ∀t (4)

where SESD,max is the maximum capacity of the ESD. Furthermore, ESD improves the
system economy through reasonable charge and discharge. For the convenience of analysis,
the ESD operation and maintenance cost is set as follows:

CESD,i(t) = (
∣∣Pch,t,i

∣∣+∣∣Pdc,t,i
∣∣)λb ∀t (5)

where CESD,i(t) is the ESD operation and maintenance cost of MG i at time t; λb is the
operation and maintenance cost coefficient per unit power.
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2.2. Multi-Microgrid Energy Management Model

To provide a clear representation of the MMG model, Figure 2 illustrates a schematic
diagram of the MMG structure, which comprises multiple microgrids connected to the
distribution network. The electricity trading process between MGs as well as between
MGs and the distribution network is based on energy price information to ensure the
economical operation of the MMG. Furthermore, the unified control center is responsible
for managing and integrating MMG price information and system power requirements,
which are then sent to individual MG. Additionally, the energy management center is
responsible for the energy management of the MG based on the information provided by
the unified control center.
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2.2.1. Objective Function

The primary objective of MMG is to minimize the system’s operating cost. The
operating cost of MMG consists primarily of the operating cost of micro-gas turbines, the
transaction cost between MGs, the transaction cost between MGs and the distribution
network, the operation and maintenance cost of ESD, the cost of active power loss, and the
penalty cost of power imbalance between energy supply and consumption. Therefore, the
objective function of MMG is:

min Cost =
T

∑
t=1

nMG

∑
i=1

(
Ct

i (PMGTS,t,i) + CMG,i(t) + CGrid,i(t) + CESD,i(t) + λlossPloss,t,i + `(Pgap,t,i)
2
)

(6)

where nMG is the number of MGs; T is the number of time periods in a day; Ct
i (PMGTS,t,i)

is the operating cost of MGTS of MG i at time t; CMG,i(t) is the transaction cost between
the MG i and other MGs at time t; CGrid,i(t) is the cost of transactions between MG i and
distribution network at time t; CESD,i(t) is the ESD operation and maintenance cost of MG
i at time t; λlossPloss,t,i is the loss cost of MG i in the process of energy transmission and
generation side unit generation at time t; λloss is the unit loss cost coefficient; Ploss,t,i is the
total power loss value of MG i during the energy transmission process and generation side
unit generation at time t; `(Pgap,t,i)

2 is the penalty cost of MG i in case of imbalance between
energy supply and consumption at time t; Pgap,t,i is the power difference of MG i between
the energy supplied and the energy consumed at time t; ` characterizes the penalty factor
for the imbalance between energy supply and consumption.
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Transaction Cost between Microgrids

The transaction cost between MGs is mainly determined by the price of electricity
transacting between MGs as well as the amount of electricity traded. To reasonably arrange
the transaction energy between MGs, the transaction cost of MG i is expressed as:

CMG,i(t) =
nMG

∑
j=1,j 6=i

δMG.tPij,t ∀t (7)

where δMG.t is the purchase and sale price of electricity between MGs during the period t,
and it is stipulated that the purchase price is equal to the electricity sale price; Pij,t is the
transaction power between MGs i and j during period t; when the value is greater than 0, it
is an electricity purchase, and when it is less than 0, it is for electricity sales.

Transaction Cost of MGs and Distribution Network

To reasonably arrange the electricity traded between the MGs and the distribution
network as well as reduce the pressure on the power supply of the grid, the following
transaction cost of MG i is set:

CGrid,i(t) = δGrid,tPig,t ∀t (8)

where δGrid,t is the purchase and sale price of electricity between the MGs and distribution
network during period t, and the stipulated electricity purchase price is greater than the
electricity sale price; furthermore, the purchase and sale price between the MGs is between
the purchase price and the sale price of the MGs and the distribution network; Pig,t is the
electricity traded between the MG i and the distribution network during period t. If the
value is greater than 0, it represents electricity purchase; on the contrary, it represents
electricity sales.

To ensure the interests of the distribution network and to encourage energy transac-
tions among MGs, we set the purchase and sale price of transactions between MGs to be
lower than the purchase price between MGs and the distribution network; furthermore, the
purchase and sale price between the MGs is between the purchase price and the sale price
of the MGs and the distribution network. In case the MG experiences a shortage of power,
it gives priority to purchasing power from other MGs. If the demand is still not met, the
MG purchases power from the grid. Similarly, when the MG has surplus power and other
MGs face a power shortage, it prioritizes meeting the load demand in the MMG system.

Microgrid Power Loss

The power loss taken into account in this study refers to the active power loss that
occurs during the power generation of the generator set and energy transmission process.
The generator-side unit comprises MGTS, WT, and PV. The formula used to calculate the
specific power loss is as follows:

Ploss,t,i = ψMGTS,t,iPMGTS,t,i + ψPV,t,iPPV,t,i + ψWT,t,iPWT,t,i ∀t (9)

ψMGTS,t,i =
∂Ploss,t,i

∂PMGTS,t,i
∀t (10)

ψPV,t,i =
∂Ploss,t,i

∂PPV,t,i
∀t (11)

ψWT,t,i =
∂Ploss,t,i

∂PWT,t,i
∀t (12)
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where ψMGTS,t,i, ψPV,t,i, ψWT,t,i represent the power loss coefficients of micro-gas turbines,
photovoltaics, and wind turbines, respectively; PWT,t,i is the power generated by the WT of
MG i at time t; PPV,t,i is the power generated by PV of MG i at time t.

Power Imbalance between Energy Supply and Consumption

To facilitate the integration of renewable energy sources and achieve a balance between
energy supply and demand, the unbalanced power of MG i is set to:

Pgap,t,i = Psup,t,i − Pcon,t,i ∀t (13)

Psup,t,i = PMGTS,t,i + PWT,t,i + PPV,t,i + Pdc,t,i + Pij,t + Pig,t ∀t (14)

Pcon,t,i = Pload,t,i + Pch,t,i + Ploss,t,i ∀t (15)

where Psup,t,i is the energy provided by MG i at time t; Pcon,t,i is the energy consumed by
MG i at time t; Pload,t,i is the load power of MG i at time t.

2.2.2. Constraints
Electrical Balance Constraint

To reasonably adjust the output of the power generation side and maintain the balance
of energy supply and demand in the system, we set the following energy balance constraint
of MG i:

PMGTS,t,i + PWT,t,i + PPV,t,i + Pdc,t,i + Pij,t + Pig,t = Pload,t,i + Pch,t,i + Ploss,t,i ∀t (16)

Constraints of Electricity Storage Devices

To ensure that the charging and discharging power of ESD is within the allowable
range, the limiting conditions of MG i are as follows [34]:

0 ≤ Pch,t,i ≤ Pch,max ∀t (17)

0 ≤ Pdc,t,i ≤ Pdc,max ∀t (18)

where Pch,max and Pdc,max represent the maximum charging and discharging power of ESD.
To ensure that the ESD capacity is within the allowable range, the capacity of MG i

must meet the following limits:

SESD,min ≤ SESD,t,i ≤ SESD,max ∀t (19)

where SESD,min is the minimum capacity of ESD.
Start and end limits: to ensure that the initial conditions remain consistent for each

scheduling cycle, the ESD should adhere to the following start and end limits:

S0 = ST,end = SESD,min (20)

where S0 = 0 and ST,end are the capacity of ESD at the beginning and end of the scheduling
period T (in this work, T is taken as 24 h).

Constraints on Power Trading between MGs and Distribution Network

To avoid the excessive purchase of electricity from the distribution network, which may
lead to higher electricity costs, the electricity traded between the MG i and the distribution
network at time t is set as:

−Pig,max ≤ Pig,t ≤ 0 Pig,t ≤ 0 ∀t (21)
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0 ≤ Pig,t ≤ Pig,max Pig,t ≥ 0 ∀t (22)

where Pig,max is the maximum power when the MG i trades with the grid.

Constraints on Electricity Traded between Microgrids

To prevent excessive power trading between MGs as well as avoid causing a supply–
demand imbalance in MGs, we set the following power trading constraints:

Pij,t = −Pji,t ∀t (23)

0 ≤ Pij,t ≤ Pij,max ∀t (24)

where Pji,t is the electricity traded between MG j and MG i at time t; Pij,max is the maximum
power traded between MG i and MG j.

3. Model Solving

In this section, we first describe in detail the automated machine learning used to
improve the generalization of MASAC, followed by a detailed introduction to the MASAC
methodology proposed in this study.

3.1. Automated Machine Learning

Typically, the process of selecting neural network structures and hyperparameters for
machine learning models involves a trial-and-error approach, which can be both tedious
and challenging. To overcome this issue, we propose the use of complex control structures
to operate machine learning models that can automatically learn appropriate parameters
and configurations without the need for human intervention [35–37].

Optimizing hyperparameters for DRL algorithms is widely acknowledged as a com-
plex task. In this study, we tackle this challenge by utilizing the currently popular AutoML
technique to automatically find the best combination of hyperparameters for DRL. Figure 3
illustrates the structure of our approach. We use the metis tuner algorithm [38,39] to opti-
mize hyperparameters. By leveraging metis to predict the next trial instead of guessing
randomly, the AutoML finds the best hyperparameters for DRL. Moreover, we utilize
AutoML to optimize the hyperparameters of MASAC with discount factor γ, actor network
learning rate a_l, critic network learning rate c_l, mini-batch N, and adjustment coefficient ∂.
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Moreover, metis uses latin hypercube sampling (LHS) in stratified sampling [40],
which divides the range of U parameters into D intervals and picks data points from the
interval one at a time. Therefore, the number of combinations C of bootstrapping trials is

C =
(
∏D−1

d=0 D− d
)U−1

(25)

After obtaining the above number of combinations, metis iteratively trains the Gaus-
sian process model to enhance the robustness of tuning.

3.2. MASAC Methodology

Generally, the MADRL task can be described as a Markov decision process game
(MDP game) [41]. Specifically, the MDP game consists of five key elements{
[Si]nMG

, [Ai]nMG
, [ρi]nMG

, [Ri]nMG
, [γi]nMG

}
, where Si is the state set of agent i, [Si]nMG

is
the state set of all agents; Ai represents the action set of agent i, and [Ai]nMG

is the action set
of all agents; ρi is the state transition matrix of agent i, [ρi]nMG

is the set of state transition
matrices of all agents; Ri is the return reward of agent i from state Si,t−1 to state Si,t, [Ri]nMG
is the reward set of all agents; γi is the discount factor of agent i, which will affect the
convergence of the algorithm; [γi]nMG

is the discount factor set of all agents. During the
training process, the agent optimizes its own strategy, and the accumulated reward value
gradually increases and tends to stabilize.

In this section, we apply the MDP game to the MMG scheduling model in this research.
The key elements for each MG i are as follows.

(1) Agent: in each MG, the energy management center is set as an agent for the
DRL algorithm.

(2) Environment: the environment is composed of PV, WT, ESD, loads, distribution
network, and micro-gas turbines.

(3) State: the state is used to describe the environmental feedback of the action taken
by the agent in the current environment. Specifically, the state includes the load power
Pload,t,i of the MG i in period t, the state of charge SOCESD,t,i of the electricity storage device
of the MG i in period t, the power generation PWT,t,i of the WT of MG i in period t, the
power generation PPV,t,i of the PV of MG i in period t, the transaction price δMG,t between
MGs in period t, as well as the transaction price information δGrid,t between MGs and the
distribution network in period t. Therefore, the state set of agent i is:

Si =
{

Pload,t,i, SOCESD,t,i, PWT,t,i, PPV,t,i, δMG,t, δGrid,t
}

(26)

(4) Action: action is mainly composed of the output PMGTS,t,i of the MGTS of the MG i
at time t, the transaction strategy Pij,t between MG i and MG j at time t, and the transaction
strategy Pig,t between MG i and the distribution network at time t. Therefore, the action set
of agent i is:

Ai =
{

PMGTS,t,i, Pij,t, Pig,t
}

(27)

(5) Reward: the cost of each MG i includes the operation cost of micro-gas turbines,
transaction cost with other MGs, transaction cost with the distribution network, ESD
operation and maintenance cost, active power loss cost, and unbalanced power penalty
cost. Furthermore, the goal of MG is to minimize the operating cost; therefore, the reward
of agent i at time t is defined as follows:

Ri(t) = −(Ct
i (PMGTS,t,i) + CMG,i(t) + CGrid,i(t) + CESD,i(t) + λlossPloss,t,i + `(Pgap,t,i)

2) ∀t (28)

In this regard, we define the total reward as the sum of the reward values of all agents.
Moreover, in complex multi-agent interactive scenarios, the policy gradient method of
the general single-agent reinforcement learning algorithm tends to increase the variance
with the number of agents. Furthermore, the most single-agent reinforcement learning is a
centralized learning method, which is not scalable. However, multi-agent reinforcement
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learning algorithms demonstrate superiority in multi-agent interaction scenarios. They ac-
quire additional information during training to enhance stability, and the specific execution
of the strategy depends only on the observation of the agent itself, without relying on the
additional information. In this study, we adopt the MASAC algorithm, which follows the
basic idea of centralized training and distributed execution (CTDE). Specifically, during
training, the algorithm incorporates a global critic to guide actor training, while during
testing, only actors with local observation environments are used to take action [42]. The
advantage of this method is that it improves the efficiency of learning during training and
improves the stability of training in a multi-agent environment. In this way, the framework
of CTDE is shown in Figure 4.
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Furthermore, we utilize the CTDE framework to extend the SAC algorithm to the
dispatching scenario of multi-agent microgrids, which we call MASAC. This approach
allows for the training of multiple agents in a high-dimensional continuous action space.
The goal of MASAC is to maximize exploration by increasing entropy, thereby avoiding
falling into a local optimal solution, and finding the strategy of global maximization. In
MASAC, the actor of agent i updates the parameters of the policy network according to the
gradient descent theory. The objective function of the specific policy network is as follows:

J(ϕi)πi
= Ex∼<[κ log

(
πϕi (âi|si)

)
−Qξ,i(x, â)] (29)

â = {â1, â2, . . . ânMG} (30)

x = {s1, s2, . . . snMG} (31)

a = {a1, a2, . . . anMG} (32)

r = {r1, r2, . . . rnMG} (33)

x′ =
{

s′1, s′2, . . . s′nMG

}
(34)

where πϕi is the parameter of the actor network π of each agent i is ϕ; Qξ,i is the parameter
of the critic network of agent i is ξ; κ is the temperature parameter, which is used to control
the influence ratio of entropy and reward; < is the experience replay buffer, which is mainly



Energies 2023, 16, 3248 11 of 21

used to store the joint state x, action a, reward r, and next state x′; â is the action input into
the critic network. Furthermore, the critic network of agent i updates the parameter ξ by
minimizing the Bellman error J(ξi)Q:

J(ξi)Q = Ex,a,r,x′∼<[
1
2
(
Qξ,i(x, a)− w

)2
] (35)

w = ri + γE[Qξi

(
x′, a′

)
− κ log

(
πϕi

(
ai
′∣∣si
′))] (36)

where ξi is the target critic network parameter of agent i; a′ is the next action of agent i.
During training, the actor and current critic network are utilized, while the target critic
network performs parameter transfer from the current network to stabilize the training
effect. After updating each critic network parameter, the target critic network parameter is
soft updated, as follows:

ξ i = φξi + (1− φ)ξi (37)

where φ is the hyperparameter controlling the soft update. Moreover, one of the main
features of MASAC is the regularization of policy entropy. By increasing the exploration
of actions, it can speed up the speed of the train and improve the quality of learning,
preventing the policy from prematurely converging to a bad local optimal solution.

Moreover, the effective utilization of sampled data is also a key issue in MASAC.
Experience replay buffer is a commonly used technique to store old and new experiences
to prevent temporal correlations among samples [43], thereby improving the efficiency and
quality of learning during training.

Based on the above analysis, Algorithm 1 summarizes the final MASAC algorithm.

Algorithm 1: MASAC Algorithm Based on AutoML for Multi-Microgrid Optimal Scheduling

1: Initialize the neural network parameters ϕ and ξ of actor and critic.
2: Initialize the replay buffer < with size S<.
3: for trial = 1: M do
4: Select a set of hyperparameters from the search space according to the Metis Tuner.
5: for episode = 1: E do
6: Select random action from the action space.
7: Select the initial state from the state space.
8: for t = 1: H do
9: Each agent i selects action ai from the action space.
10: Interact joint actions a = {a1,a2, . . . anMG ) with the environment to get corresponding
states x′ and rewards r.
11: Store transition (x,a,r,x′) in experience replay buffer <.
12: for agent = 1: nMG do
13: Sample a mini-batch of N experience (xN,aN,rN,x′N) from the experience replay
buffer <.
14: Updating the critic network by minimizing the loss function.
15: Updating the actor network via gradient descent.
16: end for
17: Updating critic target network parameters using soft update.
18: end for
19: end for
20: Collect the reward and upload it to the Metis Tuner.
21: end for
22: Select the best hyperparameters and policies.

3.3. Solving Process

The solution process of the MMG scheduling model is as follows:
Step 1: Construct a scheduling model according to the Formulas (6)–(24).
Step 2: Input the MMG parameters.



Energies 2023, 16, 3248 12 of 21

Step 3: Set and update the episode of MASAC training.
Step 4: According to the state set and action set, calculate the reward function according

to the Formula (28).
Step 5: Determine whether a solution exists. If it exists and meets the stopping criteria,

the process terminates; otherwise, return to Step 2.
Step 6: Obtain the optimal scheduling strategy for MMG.

4. Case Study

To verify the effectiveness of the proposed scheduling model and method, the follow-
ing simulation experiments are carried out. Moreover, the MASAC algorithm proposed
in this study has been implemented in Python 3.8 using Pytorch 1.10. All simulation tests
are carried out on a PC platform equipped with Intel Core i5-6300HQ CPU (2.3 GHz) and
8 GB RAM.

4.1. Settings in Test Case

In this study, we set up a test case of an MMG system test case consisting of two
microgrids. The key components of the MMG system include micro-gas turbines, wind
turbines, photovoltaics, electricity storage devices, loads, and energy management centers.
Furthermore, the data records for WT power generation are provided by Fortum Oyj from
a wind farm in Finland, while the data related to PVs are obtained from [44]. Moreover,
the time range of the simulation test is set to T = 24 h, and the time interval is t = 1 h.
Figures 5 and 6 are the data curves of WT and PV power generation and load power of MG
1 and MG 2, respectively. It can be seen from the data that the load value of MG 1 is higher
than the output of renewable energy in multiple periods, while the load value of MG 2
is lower than the output of renewable energy in multiple periods. Figure 7 depicts the
price information for transactions between the MGs and the grid as well as between MGs.
Moreover, the maximum trading power between the MGs and the grid is 500 kW, and the
maximum trading power between MGs is 200 kW. Table 1 describes the main parameter
settings of the MG [45]. Furthermore, the main implementation details of MASAC are as
follows: Specifically, the basic structure of the neural network of each MG is consistent, and
the Adam optimizer is used. The γ of MASAC is 0.916, the learning rates of actor and critic
are a_l = 0.0004 and c_l = 0.0006, respectively, the size of the experience replay buffer S< is
10,000, ∂ is 0.159, and the sampling mini-batch N is 512.
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Table 1. Main parameter settings of each MG.

Parameter Value Parameter Value

Pch,max (kW) 100 λMGTS,MG 1 ($/kWh) 1.3
Pdc,max (kW) 100 λMGTS,MG 2 ($/kWh) 1.5

SESD,max (kWh) 200 λloss ($/kWh) 1.35
ηch, ηdc 0.9 ` 0.5

Pmin
MGTS,i (kW) 5 nMG 2

Pmax
MGTS,i (kW) 30 ψMGTS,t,i, ψPV,t,i, ψWT,t,i 0.02

λb ($/kWh) 0.5

4.2. Results and Analysis
4.2.1. Analyze Optimization Results Using AutoML

To evaluate the effectiveness of AutoML, the following simulation tests have been
carried out. AutoML assesses the intermediate results generated by the current hyperpa-
rameter selection and offers reasonable suggestions for the next hyperparameter trajectory.
Finally, the hyperparameter selection results for each trajectory are displayed on the WebUI,
as shown in Figure 8.
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Figure 8. Results of hyperparameter optimization using AutoML.

Figure 8 shows the results of AutoML’s optimization of the hyperparameters required
by MASAC. In this figure, each curve represents a set of hyperparameters for a trial, each
ordinate represents a range of hyperparameters, and the last ordinate is the reported total
reward value for all agents using those hyperparameters. Furthermore, the darker the
red, the more appropriate the hyperparameter set, and the green color indicates that the
selected combination of hyperparameters cannot achieve satisfactory results.

Furthermore, to validate the rationality of AutoML’s multiple trial results, the follow-
ing simulations were conducted. Figure 9 shows the results of the final report total reward
value for all agents in multiple trials using AutoML, where each coordinate point represents
a trial. It can be seen from the figure that except for a few trial results that deviate from the
normal value of the trial, most of the trials can achieve satisfactory results. Based on the
final reported total reward value for all agents, it is evident that the designed AutoML can
achieve desirable optimization results.
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Upon analyzing the results above, it is evident that AutoML is capable of selecting the
optimal combination of hyperparameters for MASAC, leading to an improvement in the
algorithm’s generalization ability and learning efficiency.

Furthermore, to verify the adaptability of AutoML to parameter adjustment when the
input parameters are changed, we changed the values of the input parameters in Table 2
and performed simulation experiments. Note that Table 2 here is only a set of parameters
for verifying the adaptive setting of the above-mentioned AutoML, which is different from
the parameters of the MMG optimization model constructed in Table 1. Furthermore, we
set up two experiments as follows:

Experiment 1: Optimizing the scheduling model under the input parameters in Table 1.
Experiment 2: Optimizing the scheduling model under the input parameters in Table 2.
Table 3 shows the best hyperparameter results optimized by AutoML for MASAC

under different experiments. It can be seen from the table that under different input
parameters, the optimal combination of hyperparameters optimized by the experiment
is different. This shows that AutoML can automatically select the best hyperparameters
for MASAC according to different inputs to formulate a reasonable scheduling strategy.
Additionally, the AutoML adaptability was verified.
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Table 2. A set of parameters to verify the adaptability of AutoML.

Parameter Value Parameter Value

Pch,max (kW) 100 λMGTS,MG 1 ($/kWh) 0.1
Pdc,max (kW) 100 λMGTS,MG 2 ($/kWh) 0.2

SESD,max (kWh) 200 λloss ($/kWh) 0.15
ηch, ηdc 0.9 ` 0.5

Pmin
MGTS,i (kW) 5 nMG 2

Pmax
MGTS,i (kW) 30 ψMGTS,t,i, ψPV,t,i, ψWT,t,i 0.02

λb ($/kWh) 0.06

Table 3. Results of AutoML optimization hyperparameters under different experiments.

γ a_l c_l N ∂

Experiment 1 0.916 0.0004 0.0006 512 0.159
Experiment 2 0.877 0.0002 0.0007 128 0.269

4.2.2. Electrical Balance Analysis of Each MG

To verify the electrical balance effect of each MG, we conducted a simulation analysis,
and the results are shown in Figures 10 and 11. The analysis demonstrates that each MG
attains its own energy supply balance by means of energy transactions with other MGs and
the distribution network.
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It is evident from Figure 10 that the WT and PV outputs of MG 1 are lower than the
power of the electric load during the peak period of power consumption, resulting in a
power deficit for this MG. As a result, MG 1 receives additional power supply from other
MGs and the distribution network to meet the demand. Similarly, Figure 11 shows that the
WT and PV outputs of MG 2 are higher than the power of the electric load in most periods
of time, indicating a power surplus MG. The excess electricity produced can be sold to
other MGs or the distribution network, resulting in additional income. Specifically, during
the off-peak period of electricity consumption, each MG charges the excess electricity to
its own ESD, which is then discharged during the peak period of electricity consumption.
Additionally, the excess electricity is sold to other MGs and the distribution network to
generate further revenue. During peak hours of power consumption, MG 1 discharges its
own ESD first. If the energy supplied by the MG itself is insufficient, it purchases electricity
from other power surplus MGs at a lower transaction price than the price between MGs
and the distribution network. If the energy demand is still not met, electricity is purchased
from the grid to maintain the energy supply and demand balance. Through the energy
complementarity between the MGs, the full utilization of energy is realized, and the power
supply pressure of the distribution network is reduced. Additionally, the electrical balance
of each MG is achieved.

4.2.3. Economic Analysis

In order to verify the effectiveness of the proposed multi-microgrid scheduling model,
the following two modes are set and simulation experiments are carried out.

Model 1: Transactions between microgrids are not considered in a single MG, only
transactions between microgrids and distribution network are considered.

Model 2: Consider transactions between microgrids as well as between microgrids
and distribution network in a single MG.

Table 4 shows the operating cost of MMG in two different modes. Furthermore, the
MMG in this study works in Mode 2. It can be seen from Table 4 that the cost of MMG
under Mode 2 is reduced by 7.36% compared with that under Mode 1. This shows that
the power interaction between microgrids can effectively reduce the operating cost of the
MMG system and improve the economics of system operation.

Table 4. Operating cost of MMG under different modes.

Model 1 (USD) Model 2 (USD)

MMG 63624.00 58942.00

4.2.4. Analysis of Transactions between MGs as Well as between MGs and the
Distribution Network

To verify the effectiveness of the proposed scheduling scheme, simulation results
were tested and presented in Figure 12, which describes the process of energy transactions
between MGs as well as between MGs and the grid. The simulation results reveal that
the power purchase price between MGs is much lower than that of MGs and the grid,
as well as the price of electricity sold between MGs is higher than the price of electricity
sold between MGs and the grid, hence the priority of energy transactions between MGs is
higher than that of MGs and the grid. Specifically, when MG 2 has sufficient power, it gives
priority to selling the excess power to the power shortage MG 1, and then finally sells the
remaining energy to the grid. Similarly, when the power shortage MG 2 cannot meet the
energy demand, it gives priority to purchasing power from MG 1 and then from the grid.
The above analysis shows that the MMG system optimally utilizes energy and achieves a
high economic utilization of energy through the energy complementation of each MG.
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4.2.5. ESD Charging and Discharging Strategy Analysis

To verify the effectiveness of the ESD charging and discharging strategy, a simulation
test was conducted and the results are shown in Figure 13. As can be observed from the
figure, both MG 1 and MG 2’s ESD store enough power when the power is sufficient; when
the power consumption peaks and the power is short, the ESD releases the stored energy.
The power released by the ESD reduces the power purchased by the MG from the grid,
further relieving the pressure on the grid power supply. Additionally, the charging and
discharging strategy of ESD considers the energy shortage in future peak hours, effectively
increasing the MMG system’s operating flexibility.

Energies 2023, 16, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 12. Electric power trading. 

4.2.5. ESD Charging and Discharging Strategy Analysis 
To verify the effectiveness of the ESD charging and discharging strategy, a simula-

tion test was conducted and the results are shown in Figure 13. As can be observed from 
the figure, both MG 1 and MG 2’s ESD store enough power when the power is sufficient; 
when the power consumption peaks and the power is short, the ESD releases the stored 
energy. The power released by the ESD reduces the power purchased by the MG from 
the grid, further relieving the pressure on the grid power supply. Additionally, the 
charging and discharging strategy of ESD considers the energy shortage in future peak 
hours, effectively increasing the MMG system’s operating flexibility. 

 
Figure 13. ESD charging and discharging strategy. 

4.2.6. Performance Comparison with other RL Algorithms 
To show the superiority of the proposed method, it has been tested in comparison 

with other RL methods. Figure 14 illustrates the convergence of different RL algorithms. 
During the initial learning phase, each RL method explores different directions random-
ly, which may not result in a more profitable policy and consequently leads to a lower 
total reward value for all agents. However, as the accumulated experience increases, the 
total reward value of all RL methods starts to increase continuously and eventually con-
verges. 

Figure 13. ESD charging and discharging strategy.

4.2.6. Performance Comparison with other RL Algorithms

To show the superiority of the proposed method, it has been tested in comparison
with other RL methods. Figure 14 illustrates the convergence of different RL algorithms.
During the initial learning phase, each RL method explores different directions randomly,
which may not result in a more profitable policy and consequently leads to a lower total
reward value for all agents. However, as the accumulated experience increases, the total
reward value of all RL methods starts to increase continuously and eventually converges.

Furthermore, the proposed method exhibits significantly higher total reward value
for all agents compared to other RL algorithms, indicating a lower operating cost. Here,
the proximal policy optimization (PPO) and advantage actor-critic (A2C) algorithms are



Energies 2023, 16, 3248 18 of 21

extended to the multi-agent space in this study, named MAPPO and MAA2C, respectively.
Based on the results shown in Figure 14, it can be observed that the proposed method
has reduced operating costs by 12.9% and 17.30% compared to MAPPO and MAA2C,
respectively. The reasons for this are analyzed as follows: (1) the experience replay buffer
and AutoML have improved the stability of training, and (2) MASAC has effectively
enhanced the generalization performance through the framework of maximum entropy
and CTDE. Hence, it can be concluded that our proposed method is more economical
compared to other RL methods.
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Additionally, to verify the convergence performance of the proposed method, we
conducted simulation tests and present the results below. Table 5 compares the number of
episodes and the calculation time required for different RL algorithms to reach convergence.
Table 5 clearly indicates that the proposed method has the shortest convergence time and
requires the least number of episodes to converge, as compared to other RL algorithms.
Thanks to the strong generalization of the MASAC, it can quickly identify the optimal
strategy and converge and stabilize faster. Thus, the proposed method outperforms other
RL algorithms in terms of computational performance.

Table 5. Convergence comparison of different RL algorithms.

Solution Method Number of Episodes Convergence Time (s)

Proposed method 545 236.43
MAPPO 771 267.67
MAA2C 995 339.24

4.2.7. Analysis of Convergence and Computational Efficiency across Multiple Runs

In order to verify the convergence performance and computational efficiency of the
proposed method for multiple runs with the same input parameters, the following simula-
tion experiments are performed.

Table 6 presents the total reward value for all agents and computation time in multiple
runs with the same input parameters. Here, each run comprises 1000 episodes. It can
be seen from the table that the total reward value for all agents has not changed across
multiple runs, and the difference between the longest calculation time and the shortest
calculation time during the training process is 12.01 s, which falls within an acceptable
range. Additionally, the average computation time over 10 runs is 446.17 s. This shows that
the proposed method can converge stably across multiple runs.
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Table 6. Total reward value for all agents and computation time in multiple runs.

Run Number Total Reward (10−4) Computation Time (s)

1 −5.89 442.00
2 −5.89 449.11
3 −5.89 451.78
4 −5.89 447.33
5 −5.89 444.08
6 −5.89 439.77
7 −5.89 447.56
8 −5.89 439.99
9 −5.89 449.42
10 −5.89 450.68

5. Conclusions

To investigate the complementarity and trading of electric energy between MGs under
different operating entities in MMG, this study proposes a multi-agent deep reinforcement
learning scheduling method. The proposed method employs a multi-agent centralized
training distributed execution framework to address uncertainty in the environment and
determine the optimal trading strategy. Based on the simulation results, we draw the
following conclusions.

(1) The established MMG scheduling model, based on a multi-agent centralized train-
ing distributed execution framework, allows for each MG to adjust the power interaction
between MGs based on energy transaction prices and energy demand. This helps to reduce
the cost of energy utilization and dependence on grid energy supply, while effectively
facilitating energy transactions between different entities and improving the economics of
MMG system operation.

(2) The developed MASAC algorithm, based on automated machine learning, has
been shown to be capable of addressing the collaborative optimal scheduling of MMG and
achieving satisfactory convergence by learning from historical experience. This approach is
better suited to complex scheduling scenarios and real-time online scheduling decisions.

(3) The test results prove that the proposed method is more economical and computa-
tionally efficient than other RL algorithms.

In future work, various flexible loads will be considered to increase the flexibility on
the demand side. It is interesting to extend this work to include the dispatch of multiple
energy forms, such as heat and power, in an integrated energy system [46,47]. Another
topic worthy of research is the resilient scheduling of information attacks [48].
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