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Abstract: Contemporary megawatt-scale data centers have emerged to meet the increasing demand
for online cloud services and big data analytics. However, in such large-scale data centers, servers of
different generations are installed gradually year by year, making the data center heterogeneous in
computing capability and energy efficiency. Furthermore, due to different processor architectures,
complex and diverse load dynamic changing, business coupling, and other reasons, operators pay
great attention to processor hardware power consumption and server aggregation energy efficiency.
Therefore, the simulation and analysis of the energy efficiency characteristics of data center servers
under different processor architectures can help operators understand the energy efficiency charac-
teristics of data centers and make the optimal task scheduling strategy. This is very beneficial for
improving the energy efficiency of the production system and the entire data center. The Escope
simulator designed in this study can simulate the online quantity (placement strategy) of different
types of servers in the data center and the optimal operating range of the servers. The purpose of this
is to analyze the energy efficiency characteristics of all servers in the data center and provide data
center operators with the energy efficiency and energy proportionality characteristics of different
servers, improve server utilization, and perform reasonable scheduling. Through the simulation
experiment of Escope, it can be proved that running the server at the highest energy efficiency point
or running the server under full load cannot improve the energy efficiency of the entire data center.
The simulation algorithm provided by Escope can select the optimal set of servers and their corre-
sponding utilization. Escope can set up a variety of simulation strategies, and data center operators
can simulate data center energy efficiency according to their own needs. Escope can also calculate
the power cost savings of introducing new servers in the data center, which provides an essential
reference for operators to purchase servers and design data centers.

Keywords: data center; power consumption; energy proportionality; energy efficiency

1. Introduction
1.1. Energy Efficiency Indicators for Data Centers

With increasing demand for cloud computing from large-scale internet applications,
enterprise-level essential services, and the construction of the digital economy, the scale
and number of data centers have achieved unprecedented development. At the same time,
the rapid growth in size and quantity has brought about many problems for data center
operators, such as high energy consumption, huge cost, and severe pollution [1,2]. In
sharp contrast to the sizable energy consumption of data centers, the resource utilization
of most data centers is much lower [3–5], and the utilization of the majority of servers is
generally less than 30%. Increasing server utilization can improve a data center’s energy
efficiency. Placing online services and batch jobs on the same cluster is an effective way
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to enhance the utilization of modern data center clusters [6,7]. However, it is not easy
to deploy different types of applications to increase server utilization without affecting
application performance. Their coexistence is a dilemma because it attempts to improve
resource utilization while the performance of online services declines as resource utilization
increases. Moreover, oversupply of peak power usage, fluctuating data traffic, and multi-
level power transmission infrastructure in large data centers can lead to serious power
budget fragmentation and inefficient power utilization [8].

Therefore, improving the energy efficiency of data centers has become one of the
main goals of data center construction and operation. Servers are the most essential
infrastructure of data centers, and their energy efficiency (EE) and energy proportionality
(EP) have become hot research topics in academia and industry. If the energy efficiency of
data center servers can be improved, the overall data center energy efficiency will also be
effectively improved.

Data center energy efficiency indicators play a very important role in data center
construction and operation management. Nowadays, there are a variety of evaluation
indicators for data center energy efficiency in the industry. Power efficiency (power us-
age effectiveness, PUE) is one of the most important indicators to evaluate data center
energy efficiency. PUE represents the ratio of total data center energy consumption to IT
equipment energy consumption. The total energy consumption of a data center includes
IT equipment energy consumption, cooling energy consumption, and lighting energy con-
sumption, among other things. The energy consumption of IT equipment includes server
energy consumption, network equipment energy consumption, and storage equipment
energy consumption.

This study is mainly based on the energy efficiency characteristics of the servers in the
data center. Improving the energy efficiency of all servers in the data center is also the top
priority for maintaining the high energy efficiency of the data center. The energy efficiency
of the data center is defined as Formula (1), where Ttotal represents the total number of
tasks that the data center can handle, and Ptotal represents the total power consumption of
all running servers in the data center:

Date Center Energy Efficiency = Ttotal/Ptotal. (1)

The energy efficiency of this data center is expressed as the number of load tasks per
watt and increasing the size of this metric means that when the number of tasks in the
data center is fixed, the data center PUE is reduced by reducing the power consumption of
IT devices.

1.2. Energy Efficiency and Energy Proportionality of Servers

The energy efficiency of data centers has become one of the main issues to be con-
sidered in the construction and management of data centers [9–14]. The most important
component of a data center is servers, as shown in Formula (2). The efficiency of a server is
defined as the ratio of server performance to power:

Server Energy Efficiency = Performance/Power. (2)

The higher the energy efficiency of a data center or server, the more tasks that can be
completed per watt of electricity. The energy efficiency indicator on a single server is often
used to describe the ratio of server performance to power consumption under a certain
utilization rate. Jiang [15] et al. found that the current peak energy efficiency of servers has
shifted from 100% utilization level to 70–80% utilization level, which shows that it is more
energy-saving to keep each server running within its energy efficiency peak range than at
100% utilization level. Figure 1 shows the energy efficiency of a server released in 2019
under different utilization rates. It can be seen that under different utilization rates, servers
exhibit different energy efficiency characteristics.
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Figure 1. The relationship between a server utilization rate and energy efficiency released in 2019.

In a data center, the utilization rate of the servers is dynamic. Simply comparing the
energy efficiency value of a server under a certain utilization does not necessarily mean that
the server is energy saving in all cases. For example, if a server has high energy efficiency
at 70% utilization, it does not necessarily mean that this server has high energy efficiency
even under low utilization. In a data center with low utilization, many servers are idle. The
use of such servers does not automatically improve the energy efficiency of the data center.
In these cases, another indicator is needed to determine the overall energy efficiency of
the servers. This indicator is called energy proportionality (EP). Energy proportionality
refers to the change in server energy consumption with utilization rate. It was proposed by
Rysckbosch in 2007 [16], and its Formula (3) is as follows:

EP = 1− (Areareal − Areaideal)/Areaideal . (3)

The server with the most ideal energy consumption curve has the following character-
istics: Assuming that the power consumption of the ideal server is 100 W under full load
(100% utilization), the power consumption should be reduced equally with the reduction
in the load, and the power consumption at 80% load should be 80 W. When it is completely
idle, it should be 0 W. At this time, the energy proportional property of this server is one,
which is the ideal energy proportional characteristic. However, in actual scenarios, the
server still needs power consumption when it is completely idle, so the energy consumption
of the real server is not proportional to the utilization rate. As shown in Figure 2, the Areareal
in Formula (3) represents the area between the real energy proportional curve of the server
and the abscissa; ideally, Areaideal represents the area between the energy proportional curve
and the abscissa. The value of EP ranges from 0 to 2.
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Figure 2. Energy efficiency curve of the server with an EP value of 0.98.

Wong explained the meaning of EP on paper [17]: the EP value represents the change
in power consumption of a server with utilization; the energy proportionality of data center
servers has significantly improved in the past decade. Energy proportionality has a great
impact on the power consumption of servers. In their experiments, Barroso et al. [18]
found that servers with energy proportionality closer to one can save more power, so
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they recommend that optimizing energy proportionality should be the primary goal of
server design. Ryckbosch et al. [16] studied the situation in which servers with higher EP
values can save power consumption. Under 10−50% utilization, servers with higher EP
values can ideally save 34% of energy consumption. Therefore, energy proportionality is of
great significance to server research and design. Improving the energy proportionality of
the server can greatly reduce the power consumption of the server. As the server energy
proportionality (EP) increases, data centers have an increasing demand for peak energy
efficiency-aware scheduling.

1.3. Data Center Simulation Tool

When designing a new data center, energy efficiency is one of the most concerning
issues for data center operators. In large-scale data centers, servers of different generations
are gradually installed year by year, which makes the data center heterogeneous in terms
of computing power and energy efficiency. Additionally, in existing data centers, internal
server distribution and infrastructure layouts that have been in operation for some time may
undergo significant changes, as will their original energy efficiency. Therefore, the extensive
energy efficiency of the data center depends to a large extent on the working range and
utilization level of each server. Although the current PUE (power usage efficiency) of large
data centers is already very low, if the server is not operating at full load working within
the maximum energy efficiency range, then the low value of PUE is meaningless. Therefore,
according to the workload characteristics, it is more energy-efficient to let different servers
operate within their most energy-efficient working ranges than to let all servers operate at
the same utilization level. This will greatly improve the energy efficiency of the data center.

In order to design a green data center with ideal PUE, many researchers have designed
various data center simulation tools. The simulated objects include data center servers,
network traffic, task placement, and heat maps, among others. The focus is on the power
consumption, communication, and application response time within the data center The
main problem of these simulation tools is poor stability and scalability.

Since workloads may change dynamically throughout the day, it is a challenge to
adaptively select a specific subset of servers to perform tasks while powering off the power
of the remaining servers so that the data center can operate with higher energy efficiency
as much as possible. Due to the paucity of energy efficiency simulators and incomplete
understanding of the overall energy efficiency of the data center, it is difficult for data center
operators to model the energy efficiency of the entire data center. Therefore, we designed
and implemented a data center energy efficiency simulator, namely Escope, which can
simulate and evaluate the energy efficiency of a data center.

The difference between the data center energy efficiency simulator designed in this
study and the above data center simulation is that it can simulate data center energy
efficiency. According to the different workload conditions and server configuration of the
data center, Escope explicitly models and visualizes the energy usage of the data center and
uses the energy efficiency characteristics of the servers in the data center to formulate work
server placement strategies to keep the servers at their most energy-efficient scope of work.
Through the simulation of data center energy efficiency, data center throughput, server
power consumption, power distribution, and other contents, the optimization algorithm
is used to simulate and evaluate the data center energy efficiency as a means to help
data center operators grasp the energy efficiency characteristics of each server and better
perform task scheduling.

Inspired by this, we have designed a new data center energy efficiency simulator
called Escope. We make the following contributions:

(1) Escope: This paper proposes the idea of simulating data center energy efficiency,
which is different from other simulators. Escope can clarify the energy usage of data
centers according to different workload conditions and server configurations and
model and visualize them;
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(2) Flexibility: Escope allows for a variety of simulation strategies, and data center
operators can simulate energy efficiency according to their own needs;

(3) Depth: Through Escope’s simulation experiments, it has been shown that improving
energy efficiency in data centers is not simply a matter of running servers at their
highest energy efficiency point or running servers at full load. Escope’s simulation
algorithm can select the optimal set of servers and their corresponding utilization
levels to achieve optimal energy efficiency.

The organizational structure of this paper mainly consists of the following parts:
Section 1 explains the concepts related to data center energy efficiency. Section 2 introduces
the current relevant research content, while Section 3 expands on the key designs and
algorithms of Escope. Section 4 experiments with the Escope simulator and evaluates its
role. Finally, the discussion and summary are presented.

2. Related Studies

In order to design a green data center with ideal PUE, many researchers have designed
various data center simulation tools. Table 1 shows a comparative analysis of the different
simulation tools. Before 2009, distributed system simulators were less frequently used in
cloud computing environments, so Buyya et al. [19] and Calheiros et al. [20,21] proposed
CloudSim. This simulation software can produce seamless modeling and simulation of
cloud computing and their upper-layer application characteristics. CloudSim supports
simulation of cloud computing infrastructure and management services, so users can use
CloudSim to study specific system problems. CloudSim also introduced the simulation
of virtualized data centers and used NetworkCloudSim to expand the functions to better
support the simulation of internal communication in the data center [22]. However, the
scalability of CloudSim is poor, and experiments prove that the CloudSim simulator will
encounter various failures during the submission of the job.

Table 1. Comparison of different simulation tools.

Characteristics Advantages Disadvantages

CloudSim Cloud computing
environment simulation Open source, user-friendly Poor scalability

CloudAnalyst Performance evaluation,
cost-benefit analysis Visualization

Not integrated with the latest
version of CloudSim

functionality

DartCSim+ Resource allocation, load
balancing

Simulates large-scale cloud
environments Steep learning curve

DVFStoCloudSim Energy-aware simulation Integrated with DVFS
technology

Considers only CPU power
consumption

WorkflowSim Simulates workflow processes Supports multiple workflow
models

No dynamic resource
scheduling algorithm

In order to reduce or even eliminate the shortcomings and faults in CloudSim, many
researchers [23–30] improved the CloudSim simulator. For example, Li et al. [25] designed
the simulator DartCSim+, which supported power-aware network simulation. In order
to solve transmission failures caused by migration or network failures, DartCSim+ uses
a resubmission mechanism based on packet transmission. Bux et al. [26] solved the in-
homogeneity problem of CloudSim. On the basis of CloudSim, they added a process of
modeling instability in the cloud environment. It could simulate dynamic changes in
runtime performance and sudden changes during task execution issued by the failure.
In addition, Guérout and Monteil et al. [27] and others added a new patch of DVFS to
CloudSim, so that CloudSim could use DVFS to perform energy-aware simulation experi-
ments. Chen and Deelman et al. [28] et al. pointed out that ignoring the system failure and
overhead in the simulation workflow would have a significant impact on the simulation
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experiment results, so they proposed WorkflowSim, which can be used to simulate the
workflow in a distributed environment. Wickremasinghe [29,30], also from the Buyya
team, proposed the visualization simulator CloudAnalyst, based on CloudSim. The main
purpose of the simulator was to achieve optimal scheduling of the data center under the
current configuration conditions. CloudAnalyst was designed directly based on CloudSim
and expanded some of CloudSim’s functions. It could be used to learn the behavior of
large-scale internet applications in the cloud computing environment and quickly conduct
simulation experiments. Kecskemeti [31] introduced a unified model of resource sharing
and a hierarchical energy monitoring framework, thus solving the scalability problem
of CloudSim.

Based on CloudSim, Tian et al. [32] developed the lightweight visual cloud computing
simulator CloudSched, which could support simulation modeling of large-scale cloud
computing applications. Using this simulator, users can customize their information,
data center information (number and location, etc.), resources, and other information
and simulate basic indicators such as data center response time and processing requests.
However, the simulator cannot simulate the amount of power consumption of the data
center. The MDCSim simulator [33] simulates the power consumption of the data center
and can model the characteristics of various devices (servers, switches, etc.) in the data
center. MDCSim can avoid building and processing similar simulation objects one by one,
so the required simulation time is significantly shortened, and the scalability is significantly
improved. CloudSim and MDCSim are event-based simulators. Their simulation accuracy
is insufficient. The MDCSim simulator is a commercial product, and its working principle
cannot be understood due to the lack of public source code. In order to improve the
simulation accuracy, Kliazovich [34] proposed a new simulator, GreenCloud, which is a
packet-level cloud data center simulator designed to evaluate the energy consumption cost
of data center operation. This simulator is an extension of the network simulator NS2 [35].
It mainly focuses on evaluating the power consumption of cloud communications and
provides a fine-grained power modeling and simulation tool for cloud data centers. Its key
advantage is that it fully supports the TCP/IP protocol model. For fine-grained simulation
of data center power consumption, DCWorms [36] provides simulations of data center
energy consumption, including energy consumption of cooling and ventilation systems
and energy consumption modeling of CPU, memory, and network in servers.

In order to support elastic cloud infrastructure simulation, Sriram [37] proposed the
SPECI simulation tool. It allows simulation of the performance and behavior of data centers
and simulates the functions and code of large data centers according to input size and
the middleware design strategy. SPECI consists of two packages: one for building data
center layouts and topologies and the other for executing experimental components, so it
has good scalability. Unlike the simulators introduced above, which are software-based
simulators, OpenCirrus [38,39] is an open cloud computing simulator based on software
and hardware, designed to support server design and management research in data centers.
The simulator has three main goals: to promote system-level research on cloud computing;
to encourage new cloud computing applications and application-level research; and to
provide experimental data sets to supply open API for cloud computing development.

The difference between the energy efficiency simulator designed in this research and
the above data center simulation is that Escope mainly simulates the energy efficiency
of the data center. By simulating data center energy efficiency, data center throughput,
server power consumption, and power distribution, optimized algorithms are used to
simulate and evaluate data center energy efficiency. It can also help data center operators
master the energy efficiency characteristics of each server, as a means to better perform
task scheduling.
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3. Data Center Energy Efficiency Simulator—Escope Design

Experiments have shown that running servers in the best working range can improve
the energy efficiency of servers. Still, hundreds of thousands of servers are deployed in
large data centers, hundreds of which have different configurations and models. Due
to different hardware configurations, the energy efficiency characteristics of servers are
also different [40,41]. Therefore, data center operators need to understand the energy
efficiency and energy ratio of each server in order to effectively improve server utilization
and reasonable task scheduling with the objective of improving the energy efficiency of
the data center as much as possible. In order to enable data center operators to better
understand the energy efficiency characteristics of servers in the data center, we have
developed the data center energy efficiency simulator Escope. We use Escope to simulate
the online number of servers of different models in the data center and the optimal working
range of the servers to analyze the energy efficiency characteristics of the data center
servers and provide data support for data center operators. By modeling data center
energy efficiency, task throughput, and power quota, optimization algorithms simulate and
evaluate data center energy efficiency to help data center operators understand the energy
efficiency characteristics of each server, thus improving task scheduling and data center
energy efficiency.

3.1. System Function Design

The architecture of Escope is shown in Figure 3. It includes components such as
crawler, simulator, database, selector, and web interface.
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Escope provides the following functions:

(1) Escope integrates the monitoring solution for large-scale distributed clusters in the
open-source framework Zabbix, which can collect runtime data of all servers in the
cluster, including temperature, CPU utilization, memory utilization, server power
consumption, memory power consumption, and power management unit (PMU)
information. Monitoring items can be added at any time according to the needs
of users;

(2) Escope provides a load model, which integrates a variety of commonly used loads
in the industry. Users only need to enter information such as memory utilization,
disk I/O, and network I/O, and Escope will automatically complete the test on the
designated physical machine to obtain data information. The generated data will
support the data center energy efficiency simulation;

(3) For cloud computing operators, Escope provides a VM power consumption model,
which can automatically estimate the VM power consumption based on the system
information collected on the server;

(4) In addition to automatically testing the energy efficiency of the server according to the
load model, Escope can also automatically obtain the server configuration and energy
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efficiency information (such as SPECpower) disclosed by each website to establish a
server energy efficiency information database;

(5) Users can make simulation policies and scenarios, such as setting the utilization rate of
all servers to no more than 30% or setting the utilization range for servers to simulate
the load of different business scenarios;

(6) Users can add new servers and server prices to the constructed data center. After
adding new machines, Escope can simulate the energy efficiency operation of the
newly constructed data center and calculate the cost–benefit based on the
electricity savings;

(7) Escope provides a web visual interface, so users can input various parameters and
display the simulation results. For example, it will classify and display the simulation
results according to server parameters (CPU model, memory size, release year, etc.)
to deeply analyze the energy efficiency distribution of data center servers.

3.2. Interface Design

The functions of each interface in Escope are as follows:

(1) Data interface: This interface is mainly used to test and collect energy efficiency
information of data center servers, including three components: monitoring, energy
efficiency testing, and VM power consumption model. The monitoring component is
used to collect information about the server. The energy efficiency testing component
integrates a variety of loads to perform energy efficiency testing on the server. The
VM power consumption model is used to estimate the power consumption of the VM
based on the monitoring information of the server;

(2) External data acquisition interface: This interface is responsible for acquiring server
energy efficiency information from the website that publishes server energy efficiency
information, sorting the data and storing it in the Escope database; hence, even
without real servers, Escope can still simulate data center energy efficiency;

(3) Storage interface: The function of the storage interface is to store and classify server
information obtained from various methods. Escope uses MySQL for persistent
storage and Redis for data caching, thus speeding up simulation efficiency while
ensuring data integrity;

(4) Calculation interface: This interface includes three components, namely, the selector,
the energy efficiency simulator, and the load generator. The selector can select quali-
fied server information and quantity from the database according to the parameters
provided by the user to construct the data center to be simulated. The load generator
can estimate the total throughput of the data center based on the typical load situation
of the data center and then input it into the simulator for simulation. The simulator
contains an energy efficiency simulation algorithm, which executes the simulation
algorithm according to the simulation strategy parameters input by the user. Then, it
generates a report after the simulation ends and displays the simulation result on the
Web interface;

(5) Visual interface: The visual interface has two functions. The first is to receive simu-
lation parameters provided by users, such as simulation strategies and server com-
bination strategies. The second is to display Escope simulation results for users
to analyze;

(6) External call: Escope provides an external call interface, and other systems in the
data center can call the simulation results generated by Escope through RPC (remote
procedure call).

The detailed execution process of Escope is shown in Figure 4. (The server energy
efficiency test process is omitted.)

(1) First, users collect information about the server’s energy efficiency, either by crawl-
ing from some web sites (SPECpower, for example) or by entering custom server
information through a web interface;
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(2) Then, users enter the selection parameters, the selector selects the server according
to the parameters and builds the data center to be simulated. The parameters can be
server type, server release year, server quantity, and CPU type;

(3) Next, the user inputs a simulation strategy, which can be to limit the total power
consumption of the data center or the throughput that the data center needs to achieve.
The goal of the simulator is always to select the server and its utilization rate under
the existing simulation strategy to maximize the energy efficiency of the data center,
thereby maximizing the throughput and energy efficiency of the data center;

(4) Finally, when the simulation is completed, the simulator will send the results to the
Web server in JSON format and generate a corresponding result report. The web
interface will display different types of simulation result data and charts according to
the simulation result, which is convenient for users to view and analyze the data.
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3.3. Energy Efficiency Simulation Algorithm for the Data Center

The Escope energy efficiency simulation algorithm needs to solve a combinatorial
optimization problem. Assuming that the data center has x servers with different configura-
tions, the number of servers in each configuration is n, and there are N servers in total. Each
server can run underutilization j (j = 1, 2, 3 . . . 10, representing 10% to 100% utilization).

max ∑i=x
i=1 ∑

j=10
j=1 qijnici,

s.t. ∑i=x
i=1 ∑

j=10
j=1 pijnici ≤ P,

s.t. ∑
j=10
j=1 ni ≤ n.

(4)

The power consumption of server i under the utilization rate of j is pij; the throughput
is qij, and the value of cj is either 0 or 1, which represents whether to turn on the server.
Formula (4) expresses the maximum throughput of the data center under the power limit,
and Algorithm 1 shows the throughput maximization algorithm under the power limit.
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Algorithm 1: Maximizing throughput simulation algorithm

Input: Data center server set N, Total power P
Output: Optimal solution bestvalue
1: for k in [1 , P] :
2: for i f rom [1, N + 1] :
3: if ni is f ailure :
4: bestvalue[i, j] = bestvalue[i− 1, j]
5: end if
6: for j f rom 1 to 10 :
7: if k < pij :
8: bestvalue[i, k] = bestvalue[i− 1, k]
9: else if bestvalue[i− 1, k] ≥ qij and bestvalue[i− 1, k] > bestvalue[i, k] :
10: bestvalue[i, j] = bestvalue[i− 1, k]
11: else :
12: bestvalue[i, k] = qij + bestvalue

[
i− 1, k− pij

]
13: end if
14: end for
15: end for
16: bestValue = bestvalue[N + 1, k + 1]

Algorithm 1 is similar to the multiple knapsack algorithm. The two-dimensional
array bestvalue [i, j] represents the maximum throughput of the first i server under power
consumption j, and bestValue represents the maximum throughput of the data center
under power consumption limit P. In this study, the power consumption limit P of the data
center is regarded as the backpack capacity, the power consumption of the server under the
utilization rate j as the weight, and the number of tasks that the server can handle under the
utilization rate j as the value. The function of the algorithm is to aggregate the appropriate
server and utilization and maximize the target value under restricted conditions. As shown
in Formula (5), Escope can also minimize the energy consumption of the data center while
limiting the total number of tasks in the data center.

min ∑
i=x,j=10
i=1,j=1 pijnici,

s.t. ∑
i=x,j=10
i=1,j=1 qijnici ≥ T,

s.t. ∑
j=10
j=1 ni ≤ n.

(5)

The data center power minimization algorithm is shown in Algorithm 2. The bestValue
in the algorithm represents the minimum power consumption required by the data center
when the data center throughput is T.

Based on Algorithms 1 and 2, users can calculate the optimal value under the data
center’s total power consumption or throughput limit. Assuming that the set of servers
selected by Algorithm 1 and Algorithm 2 is S, Algorithm 3 can output the optimal server
combination and the specific utilization rate of these servers according to bestvalue [i, j].
The two-dimensional array utl [i, j] represents the utilization rate selected by the server ni
under the limit j, and the utilization rate ranges from 10% to 100%. When bestvalue [i, L] is
greater than bestValue [I − 1, L], server ni will join the server set S, and the utilization rate
of server ni will be recorded at this time. When the simulated data center is too large, the
two-dimensional array bestvalue [i, j] may cause memory overflow. When j exceeds the
threshold (the size of the threshold is related to the size of the JVM), Escope will divide a
large knapsack problem into multiple small knapsack problems for simulation calculation,
and the segmentation accuracy will be lost (less than 1%). Although the accuracy is reduced,
it ensures that Escope can simulate data centers of any size. Users can freely adjust the
threshold according to the configuration of the computer running Escope, thus ensuring
the scalability of Escope.
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Algorithm 2: Minimizing total power consumption simulation algorithm

Input: Data center server set N, Total throughput T
Output: Optimal solution bestValue
1: P = 0
2: for i in (1, N + 1) :
3: P = P + pi,10 // maximum power consumption of data center servers
4: for k in (1, P) :
5: for i in (1, N) :
6: if ni is f ailure :
7: bestvalue[i, j] = bestvalue[i− 1, j]
8: for j f rom 1 to 10 :
9: if k < pij :
10: bestvalue[i, k] = bestvalue[i− 1.k]
11: else if bestvalue[i− 1, k] ≥ qij and bestvalue[i− 1, k] > bestvalue[i, k] :
12: bestvalue[i, j] = bestvalues[i− 1, k]
13: else:
14: bestvalue[i, k] = qij + bestvalue

[
i− 1, k− pij

]
15: end if
16: end for
17: end for
18: while(bestvalue[i, k] > T) :
19: k¯
20: end while
21: bestValue = bestvalues[N + 1, k + 1]

Although the above algorithm can obtain the optimal solution of the combinatorial
optimization problem, its time complexity reaches O(n3), which requires more time to
simulate a large data center with a large number of servers. Therefore, this research also
integrates a simulated annealing algorithm (simulated annealing, SA) in Escope. The
simulated annealing algorithm is a method of seeking approximate solution optimization
problems based on a Monte Carlo design. The simulated annealing algorithm is essentially
a greedy algorithm. Because it adds random factors in searching for the optimal solution, it
has a certain probability to accept the sub-optimal solution, which may jump out of the
local optimal solution and reach the global optimal solution.

Algorithm 3: Server Selection Result output

Input: bestvalues[][]
L = Total throughput T || Total power P
Data center server set N
Output: Selected server set S
1: Initialize array utl[n + 1] [L + 1]
2: for i in (n + 1, 1) :
3: if bestvalues[i][L] > bestvalues[i− 1][L] :
4: S.add(ni−1)
5: end if
6: if L is Power :
7: L = L− pi,utl[i−1][L]
8: end if
9: if L is throughput :
10: L = L− qi,utl[i−1][L]
11: end if
12: if L == 0 :
13: Break
14: end if
15: end for
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As shown in Figure 5, assuming that the minimum point C is the optimal solution, the
simulated annealing algorithm will continue to move to the right with a certain probability
after searching for the local optimal solution B. By moving to the right, there is a certain
probability that B and C can be skipped. Therefore, the local minimum B is jumped out,
and the optimal value C is reached. The probability of accepting the sub-optimal solution
adopts the metropolis criterion. As shown in Equation (6), the probability that the particle
tends to balance at temperature T is exp (−∆E/(kT)), where E is the internal value at
temperature T, ∆E is the variable, and K is the Boltzmann constant.{

1 E(xnew < Eold)

exp
(
− E(xnew)<E(xold)

T

)
E(xnew ≥ E(xold))

(6)
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The simulated annealing algorithm is shown in Algorithm 4. When it is used to
solve the combinatorial optimization problem in this section, the internal energy E can
be assumed as the data center throughput, and the temperature T can be simulated as
the control parameter t to perform the simulated annealing algorithm. First, starting
from the initial i and the initial value of the control parameter t, the current solution is
repeated to generate a new solution (delete or add a new server); calculate the objective
function difference (compared with the previous data center throughput); accept or discard
iteration of the solution (whether the restriction condition exceeds the threshold); and
gradually attenuate t (recalculate the probability of accepting the sub-optimal solution).
Finally, the server combination generated at the end of the algorithm is the approximate
optimal solution.

The annealing rate in the simulated annealing algorithm has an undeniable impact on
the efficiency of the algorithm. Although the temperature drops too fast to reach stability
quickly, it will reduce the probability of obtaining the optimal solution. If the temperature
drops too slowly, the algorithm will take too much time. In this study, the experimental
annealing rate is 0.95. The more you set the number of balances, the fewer iterations
you need, but the time for a single iteration becomes longer. The setting of the initial
temperature will affect the search range of the solution. The higher the temperature, the
higher the quality of the final solution, but the algorithm will take longer. Compared
with the knapsack algorithm, the simulated annealing algorithm can obtain sub-optimal
solutions, but the time complexity is reduced to O (2x(log (n))2). We use two different
simulation algorithms in Escope to minimize power consumption for 10,000, 100,000, and
1 million servers. The input is the number of tasks that need to be processed. Algorithm 2 is
labeled as Algorithm 1, and Algorithm 4 Labeled as Algorithm 2. The experimental results
are shown in Table 2.
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Algorithm 4: Simulated Annealing algorithm

Input: Data center server set N, Total throughput T,
Initial temperature It, Annealing rate a f , number of balances b
Number of iterations iter
Output: Selected server set S
1: for i in (0, iter) :
2: for j in (0, b) :
3: nowValue = calcuValue()
4: server = random()
5: S = put(server)
6: if calcuWeight() > P :
7: delete(server)
8: continue
9: end if
10: if calcuValue() >= nowValue :
11: continue
12: else :
13: Math.random() < Math.exp

(
cacluValue−nowValue

It

)
14: end if
15: end for
16: It = It ∗ a f
17: end for

Table 2. Simulation time comparison of different algorithms.

Number of Servers
(104)

Number of Servers
(105)

Number of Servers
(105)

Algorithm 1
completion time 54 s 228 s 1498 s

Algorithm 1 accuracy 100% 100% 99.4%

Algorithm 2
completion time 8 s 19 s 488 s

Algorithm 2 accuracy 99.1% 97.6% 94.1%

Algorithm 1 has a smaller accuracy in the case of one million units. The reason is that
there are too many servers to be simulated, which requires decomposition and processing,
resulting in a decrease in simulation accuracy. On the other hand, Algorithm 2 has a faster
calculation time. In the case of a million scale, the speed is 68% higher than Algorithm 1,
but it also loses 6% accuracy.

Data center operators can choose different simulation algorithms according to their
needs. If a fast simulation is required and the optimal value is not required, then the
simulated annealing algorithm can be selected. If the optimal solution is needed, the
multiple knapsack algorithm can be used for simulation.

4. Experiment and Analysis

In order to verify the effectiveness of energy efficiency simulator Escope, four kinds
of simulation data centers were established in this section. The data center server was
constructed with the server energy efficiency information released by SPECpower in
2017–2019; 135 types of servers were selected, each type of the server was set to 50, and the
total number of servers in a data center was 6750. We set two different simulation goals.
One goal was to calculate the number of servers online when the data center throughput
was maximized and the utilization group located under the power consumption limit of the
data center. The second goal was to calculate the online number of servers that minimize
the power consumption of the data center and the utilization rate when the task load of the
data center was determined. Escope would simulate the optimal solution for the highest
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energy efficiency in the data center by simulating which servers were turned on and at
which utilization rate among the 6750 servers. The overview of the four different types of
data centers is as follows:

(1) Data center #1: the server can choose to run at any utilization;
(2) Data center #2: the server is always running at the highest energy efficiency;
(3) Data center #3: server utilization is less than 30%;
(4) Data center #4: the server runs at 100% utilization.

In the simulation of this article, data center #1 has no restrictions on server utilization,
and all servers can choose to operate at any utilization. Intuitively, as long as each server
runs on the highest EE, the data center can achieve the highest energy efficiency, so we set
up data center #2 to verify whether this idea is correct. The server portfolio simulated by
data center #2 will all run at its highest EE utilization. Data center #3 simulates a typical
data center situation where the server usage rate is less than 30%. This situation wastes a
lot of resources but is not completely useless. The servers selected in data center #4 will
run at 100% utilization, and the purpose of the setting is to verify whether running the
server at 100% utilization is an optimal policy. No matter which simulation strategy is used,
Escope will select the best combination of servers under the current situation to maximize
the energy efficiency of the data center while satisfying the current strategy.

4.1. Simulation of Maximum Throughput in Data Center with Limited Power Consumption

Constrained by data center power infrastructure and cooling conditions, data center
servers must operate under strict power restrictions. When the power of all the servers
on the rack exceeds the rated upper limit, the servers will power out, which will affect
the stable operation of the data center. Therefore, the limited power consumption poses
problems for data center operators: When the total power of the data center is limited,
which types of servers should data center operators choose, and how many servers should
run in each model? Furthermore, at what utilization range should these servers keep
maximizing the throughput of the data center?

In this section, several simulation experiments will be conducted on the four afore-
mentioned data centers to explore the energy efficiency operating range of different types
of servers in data centers under power constraints. The upper limit of the total power of
each data center in the experiment is 100 KW to 1000 KW, and the increased step length is
10 KW. The experimental results are shown in Figures 6 and 7.
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Figure 6. Number of servers online for different data centers.

The simulation results of data center #1 and data center #2 are similar, but the through-
put of data center #1 is always greater than that of data center #2. The reason for this
result is that although the simulation strategy of data center #2 always selects the server
utilization at the peak EE, in some cases, this choice does not maximize the total throughput.
For example, when the available power consumption is 200 W, the selected server running
at 100% utilization needs 200 W, and the server running at EE peak (assuming 80%) needs
180 W. Therefore, #1 will select 100% utilization, while # 2 will choose 80% utilization,
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so the remaining 20 W will be wasted. Obviously, since data center #1 can choose any
utilization rate and the simulated optimal combination of servers can maximize throughput,
the throughput of data center #1 is always the largest.
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Figure 7. Throughput of different data centers.

The throughput of data center # 3 is much lower than that of other data centers,
indicating that traditional data centers waste resources when server utilization is less than
30%, thus reducing the throughput and energy efficiency of the entire data center. For
data center # 4, the number of servers online is always the lowest, because server power
consumption is always the highest at 100% utilization, so it is easy to reach the power limit.
This also verifies that the strategy of unplanned running servers at the highest utilization
does not improve the energy efficiency of the data center.

By analyzing the experimental results, the following conclusions can be drawn:

(1) Under the same power consumption limit, the number of online servers at peak energy
efficiency (data center #2) is about 29.86% higher than servers at 100% utilization (data
center #4), and the total number of tasks in the entire data center (ssj_ops) increased
by 7.17%;

(2) The number of servers in data center #1 is slightly lower than that in data center #2,
but the throughput is 2% higher than that of servers running at peak energy efficiency
utilization (data center #2).

(3) The server utilization rate of the traditional data center is lower than 30% (data center
#3), and the average throughput is 33% lower than that of data center #1. However,
the number of online servers has increased by 25% when compared to #1. The largest
number of online servers means that data center #3 has better redundancy, which can
ensure that the data center provides stable services.

Judging from the energy efficiency distribution of Escope’s selection of server col-
lections, the energy efficiency of servers released in recent years has been significantly
improved when compared to many years ago, and the average EE and EP have been greatly
improved. Table 3 shows the average EE and EP of different data centers when the power
consumption is limited to 1000 KW. Comparing the average EE values of data center #1 and
data center #2, it can be seen that it is a better strategy to choose a server with a high EE
value, but this is not always optimal. The largest EP is chosen in data center #2, because EP
represents the variation in server power consumption with utilization. Therefore, servers
with large EE may not have the largest EP, but servers with larger EPs tend to have a higher
EE value when working at low utilization (10−30%).
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Table 3. The average EE and EP of the four data centers with a power limit of 1000 KW.

Data Center Average EE Average EP Average Utilization

#1 15,331 0.86 79.75%

#2 15,148 0.87 77.95%

#3 10,571 0.92 30%

#4 14,327 0.83 100%

4.2. Simulation of Power Minimization with Data Center Throughput Preserved

When the size and business of the data center are stable, the throughput of the data
center remains stable. Minimizing the power consumption of the data center when the
throughput is fixed is also a key issue for improving the energy efficiency of the data
center. In this section, the simulation goal of all four data centers is to minimize data center
power consumption while maximizing data center throughput. In the simulation, the total
throughput of each data center is set from 1 × 108 to 1 × 1010, with a step size of 1 × 108.

The simulation results are shown in Figures 8 and 9. For data center #4, the number of
online servers is always the lowest. This is because running at 100% utilization on the server
means that the server needs to consume the most power and can handle the most tasks.
However, maximum peak processing capacity does not imply highest energy efficiency.
Therefore, data center #4 has an average power consumption increase of 1.7% (about
30 KW) when compared to data center #2, with the highest energy efficiency utilization.
The average energy consumption of data center #1 is reduced by 0.85% when compared to
data center #2. For the traditional data center #3, due to the low resource utilization rate,
the average power consumption increased by 36% (about 200 KW) when compared to the
other three high utilization data centers. However, the number of online servers in data
center #3 has increased by an average of 45% when compared to other data centers, which
can better guarantee the quality of service.
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Table 4 shows the release year of the server selected by data center #1 in the simulation. It
can be seen from the table that in order to achieve maximum energy efficiency, the choice of the
simulator is related to the server energy efficiency characteristics but not the release year, which
shows that Escope can choose the best server combination according to different strategies.

Table 4. Release year and number of servers under 1 × 1010 throughput in data center #4.

Server Name Price (USD) EE Number(U)

Fusion 2288 H V5 7768 13,478 10

Fujitsu RX2540 M4 11,172 12,842 10

Fujitsu RX4770 M4 9270 12,828 10

ThinkSystem SR950 10,025 12,377 10

Sugon I820-G30 9487 12,306 10

Escope will use load generators to generate tasks that the data center needs to complete.
The load generation result is shown in Figure 10, which shows the throughput of the data
center in a day. The maximum task volume of the data center is 6.0 × 108, and the hourly
load in the day is set to a step shape based on SPECpower modeling.
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The simulation results are shown in Tables 5 and 6. The energy efficiency of data
center #5 is 7297, and the energy efficiency of data center #6 is 13758. Based on the average
electricity price of 1 CNY/kWh in China in 2019, small data center #6 compares with
data center #5 by saving about CNY 1000 per day. Using the Escope simulation, it takes
3418 days to recover the cost of purchasing a new server by saving power.

Table 5. Simulation results of data center #5.

Throughput Average
Consumption (W)

Number of Severs
Online Time (Hour)

1E8 11,660 36 2

2E8 23,645 47 2

3E8 36,967 71 2

4E8 52,873 140 2

5E8 70,823 162 2

6E8 91,594 210 14
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Table 6. Simulation results of data center #6.

Throughput Average
Consumption (W)

Number of Severs
Online Time (Hour)

1E8 6458 22 2

2E8 13,082 37 2

3E8 19,946 41 2

4E8 26,930 50 2

5E8 37,193 67 2

6E8 49,052 38 14

The larger the size of the data center, the greater the electricity consumption, the higher
the electricity price, and the faster the cost recovery will be. However, this number is only
a reference value for data center operators. Data center operators can simulate data center
energy efficiency by configuring different server combinations so as to choose the most
suitable server for their data center and reduce procurement costs.

5. Discussion

In practice, on the one hand, data center servers must run under strict power restric-
tions, and operators need to consider which types of servers should be selected and how
many servers should be run in each model; they also need to understand what utilization
range must be maintained to maximize the throughput of the data center. On the other
hand, when the size of the data center and the business is stable, the throughput of the
data center will remain stable. Minimizing power consumption in the data center when
throughput is fixed must also be considered. Escope can simulate the energy efficiency of
the data center. By entering the power consumption limit of the data center, we can simulate
the maximum throughput of the data center under this power limit. Simulations can also
be run to determine which servers should be started and what utilization range the servers
should be run in as a means to achieve the maximum throughput. At the same time, by
entering the number of tasks that the data center needs to handle, Escope can calculate the
minimum power consumption required by the data center server to handle these tasks. In
terms of specific algorithm selection, data center operators can choose different simulation
algorithms according to their needs. If a fast simulation is required and the optimal value
is not necessary, then the simulated annealing algorithm can be selected. If the optimal
solution is needed, multiple simulation algorithms can be selected. The backpack algorithm
is simulated.

6. Conclusions

This study starts with the reduction in data center power consumption; then, related
research on data center energy efficiency and energy proportionality are introduced. Subse-
quently, we develop the design and experimental analysis of the energy efficiency simulator
Escope, and now we can draw the following conclusions:

(1) The energy efficiency of the data center cannot be improved by running the server
at the highest energy efficiency point or by running the server under full load. The
simulation algorithm provided by Escope can select the optimal server set and their
corresponding utilization rate;

(2) Escope can set a variety of simulation strategies, and data center operators can simu-
late data center energy efficiency according to their own needs;

(3) When limiting the server utilization rate to less than 30%, almost all simulation
results of the server run at 30% utilization rate. This is because under the existing
architecture, the energy efficiency of the server at 30% utilization rate must be higher
than a utilization rate of less than 30%, so most of the selected servers run at 30%
utilization rate;
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(4) Escope can calculate the electricity cost saved by introducing new servers in the
data center. This function provides an important reference for operators to purchase
servers and design data centers.

In addition to the data centers constructed in the study, operators can also build data
centers that conform to the actual situation. According to different management purposes,
the data center may have different operation strategies. Escope can simulate the energy
efficiency of the data center according to different strategies, help data center operators
understand the energy efficiency characteristics of the data center, and require the data
center task scheduler to make the best decision.

In future work, we plan to set up server performance data for more benchmark types
such as hybrid web server benchmarks and memory intensive benchmarks. Further, we
hope to allow users to customize the benchmark. We will add a monitoring system to
Escope, allowing Escope to automatically monitor server performance. Administrators
can test more benchmarks (rather than SPECpower only), and Escope can automatically
generate server performance data to bring the simulation closer to reality.

In addition, due to the fact that new applications of artificial intelligence require a large
amount of computing and storage resources to support their algorithms and models, these
resources need to be supported and maintained in data centers, resulting in significant en-
ergy consumption. In the future, we can further use CPU and GPU to accelerate simulation
calculations in data centers and improve simulation speed and accuracy. Quantum com-
puting, on the other hand, can better handle complex problems such as optimization and
derivation of artificial intelligence algorithms, thereby improving the level of intelligence
in data centers. By combining these tools, different data center scenarios can be simulated,
and future performance and energy costs can be predicted.
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