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Abstract: The energy price influences the interest in investment, which leads to economic develop-
ment. An estimate of the future energy price can support the planning of industrial expansions and
provide information to avoid times of recession. This paper evaluates adaptive boosting (AdaBoost),
bootstrap aggregation (bagging), gradient boosting, histogram-based gradient boosting, and random
forest ensemble learning models for forecasting energy prices in Latin America, especially in a case
study about Mexico. Seasonal decomposition of the time series is used to reduce unrepresentative
variations. The Optuna using tree-structured Parzen estimator, optimizes the structure of the ensem-
bles through a voter by combining several ensemble frameworks; thus an optimized hybrid ensemble
learning method is proposed. The results show that the proposed method has a higher performance
than the state-of-the-art ensemble learning methods, with a mean squared error of 3.37 × 10−9 in the
testing phase.

Keywords: electricity spot prices; ensemble learning methods; Latin America; seasonal decomposi-
tion; time series forecasting

1. Introduction

Energy supply is an important factor in creating jobs and promoting economic de-
velopment. Energy is needed to generate the power to operate production and service
centers. The quality and reliability of energy supplies are also essential to economic and
social development [1]. This is the reason the Mexican government has been investing in
infrastructure to ensure that the energy supply in the country has quality, reliable, and
achieves the viability needed for sustainable development [2].

Compared to other countries, Mexico has relatively low electricity prices since it has
a lower cost for power generation, encouraging investment in the country’s industrial
development [3]. Furthermore, access to electricity and the use of energy has generated
significant social development in Mexico. Electricity has improved people’s quality of
life, making them more productive and connected. Energy has allowed for increased
productivity in many areas, which has contributed to the country’s economic growth [4].

The variations in the price of energy directly impact the lives of the population and
the projection of the country’s development. A lower energy price is an alternative to
reducing the fixed cost of production of goods and consumption, so having an estimate of
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future energy prices can help in the planning of industrial expansion. Another important
aspect related to the price of energy is that its lower price improves people’s quality of
life, resulting in greater access to electricity, and the forecast can be used to assess future
scenarios and develop public policies with the intent of social development. Based on these
two aspects, evaluating the price variation over time and making a prediction can assist in
decision-making regarding the development of policies that reduce the price of energy to
encourage the country’s development [5].

In time series, the variation that occurs in the measurements due to the recording
interval, besides the variation due to different days of the week, may not give an accurate
indication of the variation trend [6]. For this reason, the data need to be preprocessed
to mitigate the impact of these unrepresentative variations on the trend. The ensemble
learning methods are widely employed since they typically require a lower computational
effort than deep learning-based techniques while maintaining their performance [7]. This
paper uses seasonal decomposition using moving averages (SDMA) to reduce signal
variation and ensemble learning approaches to achieve future energy price forecasting.

The main contributions of this paper are:

• The reduction of the signal variation is achieved by using the seasonal decomposition
using moving averages. This technique can be used for denoising (noise reduction) in
chaotic time series.

• A comparison of the adaptive boosting (AdaBoost), bootstrap aggregation (Bagging),
Gradient Boosting, Histogram-Based Gradient Boosting, and Random Forest ensemble
learning models are evaluated.

• An optimized ensemble learning method is presented, combining multiple ensembles
and determining the best model structure using a voter selected through Optuna.

The remainder of this paper is organized as follows: Section 2 presents works related
to time series forecasting and energy. In Section 3, the proposed method is explained, and
the dataset is presented. In Section 4, the results are evaluated and, discussed, and in
Section 5 a conclusion and final comments are presented.

2. Related Works

Three machine learning models, including extreme learning machine, gradient boosting
machine, and support vector regression, as well as the Gaussian process, were applied by
Ribeiro et al. [8] in forecasting one, two, and three-month ahead electricity prices in the Brazilian
market. Exogenous variables were considered in the input of the models, and decomposition
was used. The proposed model improved the accuracy and stability of the forecasts.

Four different approaches to forecasting the spot price of electricity in Germany
for different horizons, 1, 7, and 30 days ahead, were compared by Lehna et al. [9]. In
addition to the prominent seasonal auto-regressive integrated moving average model and
long-term memory (LSTM) models, an LSTM convolutional neural network and a two-
stage multivariate vector auto-regressive approach were used as hybrid models. External
influences such as consumer load, fuel prices, carbon dioxide emission, average solar
radiation, and wind speed were added.

Convolutional networks are increasingly being explored, showing promise in many
applications [10], including time series [11]. Shao et al. [12] proposed a hybrid model
integrating deep learning model, feature extraction, and feature selection method to forecast
1-h and 24-h ahead electricity prices for Pennsylvania, New Jersey, and Maryland; however,
today includes other territories and New South Wale electricity markets from the United
States of America. The results were promising, outperforming previous alternatives.

Baule and Naumann [13] used and analyzed five measures for electricity price fluctua-
tions in the German market, and identified key factors of price fluctuations, among them
wind, traded volume, auction price, and volume-weighted intraday price. They noted that
trade-related variables are important in predicting price fluctuations.

Zang et al. [14] used price data from Australian and Spanish electricity markets for
empirical analysis, applying joint empirical modal decomposition on the residual term after
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variational modal decomposition to improve the prediction accuracy of the extreme learning
machine (ELM) model optimized differential evolution (DE) algorithm, introducing the
DE-ELM meta-learner to optimize the reconstruction weights of the prediction components,
and building an efficient and new hybrid model.

A data-driven deep learning network was used by Yang et al. [15] to capture the
temporal distribution of electricity prices in real-time. A module based on GoogLeNet was
developed to capture the high frequencies of these data and added time series summary
statistics to improve the prediction of volatile price spikes. The model was validated on
the prices of many generators in the New York Independent System Operator, improving
performance compared to the model used in practice.

The operation data of Denmark’s DK1 region in the Nordic electricity market were
adopted for electricity price forecasting, including wind power generation in the study
of Wang et al. [16], showing that the hybrid model composed of Random Forest, best
Mahalanobis distance, and bi-directional short-term memory significantly improved the
forecasting performance, with better performance among the compared models.

For multi-period planning, Wei et al. [17] proposed a strategy for decision-making
considering uncertainties in microgrids. The authors’ results demonstrated how important
it is to take multi-type uncertainties into account.

Three experiments were conducted by Jiang et al. [18] in the Australian electricity
market to quantitatively evaluate the electricity price forecasting system using a multi-input
multi-output framework by three member models (error backpropagation, bidirectional
short-term memory, and gated recurrent unit) obtaining results for electricity price and
appropriate interval forecasting. The hyperparameters of the models were tuned using a
multi-objective swarm algorithm.

A combined seasonal decomposition and trend decomposition using the local point
spread smoothing estimation methodologies and the Facebook Prophet model was pro-
posed by Stefenon et al. [19] to accurately and resiliently analyze and forecast the time series
of Italian electricity spot prices, including holidays and special events. The hybrid model
improved the forecast accuracy by reducing the average absolute percentage error rate
when compared to the base model [20]. The use of filters for noise reduction can improve
the model’s ability to make predictions, and besides seasonal filters, the wavelet transform
shows promise for this purpose [21], and can be combined with several state-of-the-art
models [22], or classical methods such as neuro-fuzzy systems [23].

Beltran et al. [24] proposed a model that promotes human–machine collaboration in
forecasting the electricity price applied in the Spanish wholesale market. The forecasting
results show reasonable accuracy in the mean and scaled mean absolute errors. According
to Wang et al. [25], the competition in electricity markets leads to volatile conditions
that cause persistent price fluctuations over time. Their work explores the problem of
electricity price fluctuations from October 2018 to March 2022 by applying time series
analysis. Based on the seasonal autoregressive integrated moving average with exogenous
factors (SARIMAX) model, the authors combine all these factors to predict electricity prices
in the single bidding zone. It was found that the SARIMAX with exogenous prices and
internal and external electricity flows had a lower error.

The paper of Cruz May et al. [26] investigated the amalgamation of global sensitiv-
ity analysis and data-driven methods to examine the relationship between the Mexican
electricity market and assess the consequences of individual parameters on marginal rates.
This case study focuses on the electricity grid and market characteristics of Yucatan, Mexico.
A comparison of three approaches for forecasting electricity prices in a real-time market is
presented. The findings indicated that the effect of the variables is subject to fluctuations
in accordance with market and consumer demand circumstances. The paper proposed an
approach that serves as an alternative means for market actors to evaluate electricity prices.

Rodriguez-Aguilar, Marmolejo-Saucedo, and Retana-Blanco [27] presented a proposal
for estimating prices in the Mexican wholesale electricity market, which began operations in
February 2016, which is why it moves from a scheme with a single bidder to a competitive
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market. The prices observed so far show large fluctuations in the observed data due to
several aspects: the seasonality of electricity demand, the availability of fuel, congestion
problems in the power grid, and other risks, such as natural risks. The paper proposes a
methodology for generating electricity price estimates by applying stable alpha regressions
since the behavior of the electricity market has shown the presence of heavy tails in its
price distribution.

In this paper, we aim to test how an ensemble learning method combining several
popular regression models can be used to predict energy prices. We build on the related
works reviewed in this section, which include various machine-learning approaches, deep-
learning networks, and hybrid models that have been applied in different electricity markets
worldwide. Our study focuses on exploring the potential benefits of combining these
models to improve forecasting accuracy and stability, particularly in the context of volatile
energy markets. By comparing the performance of the proposed ensemble model against
the individual models and existing forecasting methods, we hope to contribute to the
literature on energy price forecasting and provide practical insights for market participants
and policymakers.

3. Proposed Method

In this paper, an optimized ensemble is proposed, combining several ensemble learn-
ing models and defining their best structure through a voter, which is selected via Optuna
using tree-structured Parzen estimator. After defining the optimized structure, a seasonal
filter reduces the non-representative variation to perform the prediction. In this section,
each step of the approach is explained.

3.1. Regression

There are several ways to combine weak learners to obtain a model with higher
capacity. This paper evaluates the AdaBoost, Bagging, Gradient Boosting, Histogram-
Based Gradient Boosting, and Random Forest ensemble learning models. The differences
between these models and their methodology are presented in this subsection.

3.1.1. AdaBoost

AdaBoost Regressor combines multiple weak learners to create a strong learner [28].
The algorithm iteratively fits a regressor to the training data and adjusts the weights of the
training instances based on the performance of the previous regressors. The final model is
a weighted combination of weak learners [29].

Let yi be the target value of the ith training instance, and let ŷi be the predicted value of
the ith training instance. The goal of the algorithm is to minimize the following loss function:

L =
N

∑
i=1

wi(yi − ŷi)
2 (1)

where N is the number of training instances and wi is the weight of the ith training instance.
Initially, all weights are set to wi = 1/N.

Using the current weights, the algorithm fits a weak learner ht(x) to the training
data. The weak learner is typically a decision tree with a small depth. The algorithm then
calculates the weighted error rate of the weak learner:

errt =
∑N

i=1 wi|yi − ht(xi)|
∑N

i=1 wi
. (2)

The weight of the weak learner is then calculated as follows:

αt =
1
2

ln
(

1− errt

errt

)
, (3)
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then, they are updated based on the performance of the weak learner:

wi ← wi exp(−αtyiht(xi)). (4)

The weights are then normalized so that they sum to 1. This process is repeated for a
specified number of iterations, and the final algorithm is a weighted combination of the
weak learners:

ŷ(x) =
T

∑
t=1

αtht(x) (5)

where T is the number of iterations [30].

3.1.2. Bagging

Bagging Regressor is an ensemble technique that integrates multiple models trained
on distinct subsets of the training data. The algorithm applies a regressor to each subset
of training data, and the final model is the mean of the predictions of the individual
models [31]. The algorithm fits B models to the training data, each trained on a random
subset of the training data with replacement. The final model is an average of the predictions
of the individual models:

ŷ(x) =
1
B

B

∑
j=1

ŷj(x) (6)

where ŷj(x) is the prediction of the jth model for input x [30].

3.1.3. Gradient Boosting

Gradient Boosting Regressor is an ensemble technique that combines numerous weak
learners to construct a robust learner. The algorithm fits a regressor to the training data and
additional regressors to their residual errors. The resulting model is a weighted composition for
weak learners [32]. The objective of the algorithm is to minimize the loss function, given by:

L =
N

∑
i=1

(yi − ŷi)
2. (7)

At each iteration, the algorithm fits a weak learner ht(x) to the residual errors of the
previous regressors. The weak learner is typically a decision tree (DT) with a small depth [33].
The algorithm then calculates the weight of the weak learner using gradient descent:

αt = η
∂L

∂ht(x)
, (8)

where η is the learning rate. The resultant model is a weighted combination of the weak
learners:

ŷ(x) =
T

∑
t=1

αtht(x) (9)

with T being the number of iterations.

3.1.4. Histogram-Based Gradient Boosting

Histogram-based Gradient Boosting Regressor is a variant of Gradient Boosting Re-
gressor that uses histograms to speed up the calculation of the gradients and Hessians of
the loss function. The algorithm fits a regressor to the training data and then fits additional
regressors to the residual errors of the previous regressors. The final algorithm is a weighted
composition of weak learners. The algorithm is focused on minimizing the loss function:

L =
N

∑
i=1

(yi − ŷi)
2 (10)
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At each iteration, the algorithm fits a weak learner ht(x) to the residual errors of
the previous regressors. The weak learner is a decision tree that splits the data into bins
based on the values of the input features. The algorithm then calculates the gradients
and Hessians of the loss function directly using the histogram information rather than
approximating them using histograms. The weight of the weak learner is then calculated
using the exact gradients and Hessians.

One advantage of histogram-based gradient boosting is its ability to handle categorical
features and missing values naturally by creating new bins for each category or missing
value. The final model is a weighted sum of the individual weak learners:

ŷ(x) =
T

∑
t=1

αtht(x) (11)

where αt is the weight of the t-th weak learner.

3.1.5. Random Forest

Random Forest Regressor is an ensemble method that combines multiple decision trees
to generate a strong learner. The algorithm fits a large number of decision trees to the training
data, each trained on a random subset of the training data and a random subset of the features.
The final model is an average of the predictions of the individual decision trees [34].

The method fits B decision trees to the training data. A random subset of the features
is selected at each decision tree split, and the best split is chosen among the randomly
selected features. The random forest model is an average of the predictions of the individual
decision trees:

ŷ(x) =
1
B

B

∑
j=1

ŷj(x) (12)

where ŷj(x) is the prediction of the jth decision tree for input x.
This paper will evaluate the ensemble models to predict Mexico’s electric power value

(based on a time series); the comparison between the models used is presented in Table 1.

Table 1. Differences between the compared ensemble models.

Method Ensemble
Type

Base
Learner Sampling Feature

Selection
Gradient
Boosting

AdaBoost [35] Boosting DT Weighted All Yes
Bagging [36] Bagging DT Bootstrapped Subset No
Gradient Boosting [37] Boosting DT Sequential Subset Yes
HistGradient B. [38] Boosting DT Sequential Subset Yes
Random Forest [39] Bagging DT Bootstrapped Subset No

These methods use decision trees as the base learner but differ in their ensemble type,
sampling method, and feature selection. AdaBoost and Gradient Boosting both use boosting to
combine the models, while Bagging and Random Forest use bagging. AdaBoost weights the
training instances, while Bagging and Random Forest sample with replacement (bootstrapping).

Random Forest selects a random subset of features for each split of a decision tree,
while Gradient Boosting and Hist Gradient Boosting select a subset of features for each
iteration. Hist Gradient Boosting uses histograms to speed up the calculation of the
gradients and Hessians of the loss function.

3.2. Seasonal Decomposition Using Moving Averages

SDMA is a statistical method for decomposing a time series into its trend, seasonal, and
residual components. SDMA is an algorithm similar to seasonal-trend decomposition based
on LOESS (STL) method [40] that has the goal of identifying patterns and seasonality in the
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data and separating these patterns from any underlying trends or random fluctuations [41].
The SDMA uses moving averages to smooth the data and determine the trend component
of a time series y1, y2, ..., yT , where T is the last value of the time series.

The difference between STL and SDMA is the mathematical technique used for de-
composition. STL uses a non-parametric smoothing technique called LOESS to decompose
a time series into its seasonal, trend, and remainder components. At the same time, SDMA
is a parametric approach that involves applying a moving average filter to extract the
seasonal component. In this paper, the trend will be the focus of the study, and the high
frequencies are considered noise since what leads to the flashover is the gradual increase in
the leakage current. The trend component, tt, is obtained by applying a weighted moving
average to the original data, as follows:

tt =
∑m

i=1 wiyt−m+i

∑m
i=1 wi

(13)

where m is the length of the moving average window, and w1, w2, ..., wm are the weights
that define the smoothing function. The residual component, rt, is obtained by subtracting
the trend component from the original data, as follows:

rt = yt − tt. (14)

The filter removes the high-frequency and leaves the underlying trend and seasonal
components. The resulting smoothed time series is then subtracted from the original
time series to obtain the residual component, representing any remaining high-frequency
fluctuations not captured by the moving average [42]. The seasonal component, st, is
obtained by averaging the residuals over a defined window whose length corresponds to
the seasonal cycle, as follows:

st =
∑t

i=t−P+1 ri

P
(15)

where P is the length of the seasonal cycle [19]. Finally, the decomposition is reconstructed
by adding the trend, seasonal, and residual components as follows:

yt = tt + st + rt. (16)

3.3. Dataset

The data used in this paper are from the Organization for Economic Co-operation
and Development: Energy for Mexico, retrieved from FRED, Federal Reserve Bank of St.
Louis, available at: https://fred.stlouisfed.org/series/MEXCPIENGMINMEI (accessed
on 14 February 2023). Additional information can be found in: OECD (2010), “Main
Economic Indicators—complete database”, Main Economic Indicators (database), available
at: http://dx.doi.org/10.1787/data-00052-en (accessed on 14 February 2023). The variation
of energy prices in Mexico over time is presented in Figure 1. For comparative purposes,
this variation is normalized (index 2015 = 100).

https://fred.stlouisfed.org/series/MEXCPIENGMINMEI
http://dx.doi.org/10.1787/data-00052-en
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Figure 1. Original data of the normalized consumer energy price in Mexico.

3.4. Quantile Regression

Quantile regression is a statistical technique that estimates the conditional quantiles of
a response variable based on a set of explanatory variables. It is a generalization of ordinary
least squares (OLS) regression in which the conditional mean of the response variable
is calculated. Let Y represent the response variable, while X represents the explanatory
variables. The conditional quantile function Qτ(Y|X) of Y at a quantile level τ ∈ (0, 1) is
defined as:

Qτ(Y|X) = inf{y ∈ R : P(Y ≤ y|X) ≥ τ} (17)

where P(Y ≤ y|X) is the cumulative distribution function of Y given X.
The goal of quantile regression is to estimate the conditional quantile function Qτ(Y|X)

for a given value of τ using a linear model, which is achieved by minimizing the following
loss function:

n

∑
i=1

ρτ(yi − xT
i β) (18)

where yi is the observed value of the response variable for the ith observation, xi is the vector of
explanatory variables for the ith observation, β is the vector of coefficients to be estimated, and
ρτ(u) is a function that measures the deviation of u from the quantile of interest τ.

4. Results and Discussion

In this section, the results are discussed, along with an explanation of how the evalua-
tions were conducted and their objectives. Initially, it is explained how the time series is
considered for applying the proposed method; after that, the use of SDMA is evaluated,
and then the optimized model structure is defined.

4.1. Preparing the Data

In time series analysis, one of the most common tasks is to predict the future values of
a time series based on its past behavior. To achieve this, it is necessary to prepare the time
series in a suitable way for prediction. A common approach to preparing time series data
for prediction is to scale the target variable and create lagged versions of it as features.

The scaling of the target variable is performed to improve the performance of machine
learning models on data with large variations. The StandardScaler function from the scikit-learn
library is commonly used to normalize the data. The target variable is transformed as follows:

ỹt =
yt − µ

σ
(19)
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where ỹt is the scaled value of the target variable at time t, yt is the original value of the
target variable at time t, µ is the mean of the target variable, and σ is the standard deviation
of the target variable.

Creating lagged versions of the target variable as features to capture any time-dependent
patterns or trends in the data that might be useful for making predictions. Specifically, the code
creates three lagged versions of the target variable, with each lag being a one-time step (month)
behind the previous one. These lagged versions of the target variable are denoted as:

yt−1, yt−2, yt−3. (20)

These lagged values of the target variable are then used as input features for machine
learning models to predict future values of the time series. Combining scaling the target
variable and creating lagged versions of it as features is a common and effective approach to
preparing time series data for prediction. Furthermore, we have considered the SDMA out-
put as an extra feature of the model, in order to aid the regressors in making better decisions.
The SDMA output is shown in Figure 2 along with the original signal.

2010 2012 2014 2016 2018 2020 2022
Time (year)

80

100

120

140

160

In
de

x 
20

15
=1

00

Original
Trend

Figure 2. Original signal and its trend given by the SDMA filter.

4.2. Single Model Prediction

First, various regression models are evaluated on the prepared time series dataset.
This evaluation aims to determine the model that performs best in predicting future values
of the time series. R denotes the set of available regressors, where R = r1, r2, ..., rk. For each
regressor, ri in R, an instance of the regressor class is initialized and fits the prepared time
series data. This results in a trained regressor fi that can be used to predict future time
series values.

After training the regressor fi, it is used to predict the target variable on the same
dataset using the predict function. The predicted values are compared to the true values of
the target variable to calculate the mean squared error (MSE), which measures the average
squared difference between the predicted and true values of the target variable. The MSE
is calculated as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (21)

where yi is the true value of the target variable at time i, ŷi is the predicted value of the
target variable at time i, and n is the total number of samples in the dataset.

The performance of each regressor ri is evaluated based on its corresponding MSE.
Lower values of MSE indicate better performance of the model on the given data. The
name of the regressor ri and its corresponding MSE are shown in Table 2, while the critical
difference diagram for the methods are presented in Figure 3 without SDMA, and in
Figure 4 with SDMA.



Energies 2023, 16, 3184 10 of 17

Table 2. MSE for individual regressors with and without SDMA as an extra feature.

Regressor MSE without SDMA MSE with SDMA

AdaBoostRegressor 0.002578 0.001204
BaggingRegressor 0.000904 0.000433
GradientBoostingRegressor 0.000001 0.000001
HistGradientBoostingRegressor 0.004272 0.004059
RandomForestRegressor 0.000256 0.000239

1 2 3 4 5

GradientBoostingRegressor

RandomForestRegressor

BaggingRegressor

AdaBoostRegressor

HistGradientBoostingRegressor

CD

Figure 3. Critical difference diagram for the individual regressors without SDMA.

1 2 3 4 5

GradientBoostingRegressor

RandomForestRegressor

BaggingRegressor

AdaBoostRegressor

HistGradientBoostingRegressor

CD

Figure 4. Critical difference diagram for the individual regressors with SDMA.

4.3. Ensemble Model

This section optimizes hyperparameters for an ensemble model using Optuna, a
hyperparameter optimization library. The goal is to find the combination of regressors and
their corresponding weights, resulting in the lowest MSE on the prepared time series data.
The hyperparameters to optimize include the number of regressors in the ensemble and
the choice and weight of each regressor. R denotes the set of available regressors, where
R = r1, r2, ..., rk. The objective function implements the optimization process, which takes a
trial object as input. The trial object contains information about the current trial being run
by the optimization algorithm.

First, the number of regressors in the ensemble is sampled from a uniform distribution
between two and the total number of available regressors. Then, for each regressor, its
number of estimators, and weight are sampled from categorical and uniform distributions,
respectively. Finally, the number of lagged inputs is also sampled, for a maximum of
20 lagged inputs.

The chosen regressors are then used to initialize instances of their corresponding re-
gressor classes and add them to the ensemble as estimators. The corresponding weights are
used to determine the importance of each estimator in making predictions. The ensemble
model is trained on the prepared time series data, and the predicted values are compared to
the true values of the target variable to calculate the MSE, which is returned by the objective
function. During the optimization process, Optuna may prune a trial if it determines that
the trial is unlikely to result in a better MSE. This is done by raising the exception when a
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chosen regressor has already been added to the ensemble twice. The overall procedure is
shown in Algorithm 1.

Algorithm 1: Time Series Prediction using Ensemble Regression
Input : Prepared time series data
Output : Optimal ensemble model for predicting future values of time series

/* Prepare time series data for regression */
Scale target variable using StandardScaler

Create lagged versions of target variable as features

/* Optimize hyperparameters of ensemble model */

Function objective(trial):
Define hyperparameters to optimize
Sample number of regressors in ensemble
Sample choice weight and number of estimators of each regressor
/* If the chosen regressor is HistGradientBoosting, a learning

rate is sampled instead */
Sample choice of lagged inputs
Initialize ensemble model with chosen parameters
Fit ensemble model to prepared time series data
Predict target variable
Calculate mean squared error
Return MSE

Use Optuna to optimize hyperparameters of the ensemble model using objective
function

/* Output optimal ensemble model */
Return optimal ensemble model for predicting future values of time series

Figure 5 shows the incumbent MSE value along the optimization iterations. Figure 6
presents the procedure’s objective value empirical distribution function (EDF). Finally,
Figure 7 shows the importance of each found parameter; it is possible to observe that
Optuna has given more importance to varying the chosen regressors than trying to increase
the number of regressors.
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Figure 5. MSE along the optimization iterations.
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Figure 7. Importance of the parameters.

A quantile prediction for the optimized ensemble model is presented in Figure 8,
consisting of 2 regressors, namely Histogram-based Gradient Boosting with a learning rate
of 0.082 and Gradient Boosting with 456 estimators. A weight of 0.23 was given to the first
regressors, while a weight of 0.87 was selected for the second, considering 9 lagged values.
This optimized model resulted in an MSE value of 3.375× 10−9 (see Table 3, which presents
the MSE results for individual regressors with the SDMA).

Table 3. MSE for individual regressors with SDMA as an extra feature, including the proposed model.

Regressor MSE with SDMA

AdaBoostRegressor 0.001204
BaggingRegressor 0.000433
GradientBoostingRegressor 0.000001
HistGradientBoostingRegressor 0.004059
RandomForestRegressor 0.000239
Proposed Method 3.375 ×10−9
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Figure 8. Regression and quantile regression of the tuned optimal model.

Considering the optimal number of lagged inputs (nine), Table 4 shows the importance
of each lagged input in the final prediction. Furthermore, Figure 9 shows the performance
of a proposed model as a function of the number of lagged inputs used as input features.
The model’s performance is measured in terms of the MSE on a validation set.

Table 4. Feature importance (input lag).

Feature Feature Importance

Lag 1 0.095993
Lag 2 0.001148
Lag 3 0.000135
Lag 4 0.000135
Lag 5 0.000409
Lag 6 0.000307
Lag 7 0.000116
Lag 8 0.000601
Lag 9 0.031291
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Figure 9. MSE Lag × number of lagged inputs.

As the number of lagged inputs increases, the MSE initially decreases rapidly, indicat-
ing that including more lagged inputs in the model improves its performance. However,
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beyond a certain point, adding more lagged inputs results in diminishing returns in terms
of the MSE reduction. In fact, for the highest number of lagged inputs, the model’s per-
formance starts to deteriorate, suggesting that the model is overfitting to the training
data.

We performed a two-sample t-test to compare the MSE of the predictions generated by
the autoregressive integrated moving average (ARIMA) model and the proposed learning
method. Let µARIMA and µProposed denote the mean MSE of the ARIMA and proposed
methods, respectively. The null hypothesis H0 : µARIMA = µProposed assumes that the mean
MSE of the two methods is equal. We set the significance level α = 0.05.

The results of the t-test revealed no significant difference between the mean MSE of
the ARIMA model and the proposed learning method (t− statistic = 0, probabilistic value
(p− value) = 0.99). Therefore, we accept the null hypothesis and it is possible to conclude
that the two methods are statistically equivalent with respect to their prediction accuracy
on the given dataset.

This suggests that both methods perform similarly on this particular problem and
dataset and that choosing one method over the other may depend on other factors such
as computational efficiency, ease of implementation, or the specific requirements of the
application. Nevertheless, further testing on other datasets and scenarios may be necessary
to confirm the generalizability of these results.

4.4. Additional Analysis

To ensure that the model was capable of dealing with the underlying features of the
model, we performed a Shapiro–Wilk test in order to assess the normality of the residuals.
As seen in Figure 10, the distribution of the residuals was verified to be normal, i.e., rejecting
the null hypothesis that the residues are not normally distributed.
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Figure 10. Distribution of the residuals.

Given two signals x(t) and y(t), the cross-correlation function Rxy(τ) measures the
similarity between the two signals as a function of time lag τ as:

Rxy(τ) =
∫ ∞

−∞
x(t)y(t + τ)dt (22)

where the integral is calculated over the entire signal domain. If we have a finite number of
data samples, we can estimate the cross-correlation function using the following formula:

Rxy(τ) =
1
N

N−1

∑
n=0

x(n)y(n + τ) (23)

where N is the number of data samples.
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Notice that the cross-correlation function is symmetric, meaning that Rxy(τ) =
Ryx(−τ). Thus, we can further analyze how different input lagged signals can influence
the prediction, as shown in Figure 11.
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Figure 11. Cross-correlation between the residuals and the input.

5. Final Remarks and Conclusions

The energy price forecast can be a useful indicator for decision-making regarding
investment in the industrial sector, and its reduced price assists in social development.
For these reasons, analyzing the evolution of energy prices is important to evaluate the
direction of public policies that encourage economic and social development. Especially
the case study on Mexico is highlighted, as it has one of the lowest energy prices, due to its
energy matrix and high development capacity.

The results showed that using SDMA as an extra feature improved the MSE of all
the considered ensemble models (AdaBoostRegressor, BaggingRegressor, GradientBoost-
ingRegressor, HistGradientBoostingRegressor, RandomForestRegressor). Combining the
models via the Optuna optimization-based voter resulted in a 100 times improvement in
error (regarding MSE) compared to the standard ensemble learning methods.

Future work can be accomplished by combining deep learning models using this
methodology, in which the computational effort is higher and may result in even more
robust and efficient models. The use of the attention mechanism is also something that is
worth comparing since several authors have successfully applied it.
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