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Abstract: Determining the operation scenarios of renewable energies is important for power system
dispatching. This paper proposes a renewable scenario generation method based on the hybrid
genetic algorithm with variable chromosome length (HGAVCL). The discrete wavelet transform
(DWT) is used to divide the original data into linear and fluctuant parts according to the length
of time scales. The HGAVCL is designed to optimally divide the linear part into different time
sections. Additionally, each time section is described by the autoregressive integrated moving
average (ARIMA) model. With the consideration of temporal correlation, the Copula joint probability
density function is established to model the fluctuant part. Based on the attained ARIMA model
and joint probability density function, a number of data are generated by the Monte Carlo method,
and the time autocorrelation, average offset rate, and climbing similarity indexes are established to
assess the data quality of generated scenarios. A case study is conducted to verify the effectiveness
of the proposed approach. The calculated time autocorrelation, average offset rate, and climbing
similarity are 0.0515, 0.0396, and 0.9035, respectively, which shows the superior performance of the
proposed approach.

Keywords: ARIMA model; copula function; genetic algorithm; renewable energy; scenario generation

1. Introduction

Renewable energy sources are fluctuant, stochastic, and uncontrollable [1,2]. The im-
pact of large-scale renewable energy integration on the power system is becoming more and
more obvious, and the risks of system operation are increasing [3–5]. The accurate scenarios
of wind, solar, and load can provide the basis for power system dispatch and reduce the
curtailment of renewable energies, which is significant for grid flexibility improvement [6,7].
The scenario generation methods can be classified into short-term, medium-term, and long-
term methods, according to the length of time scale [8]. A probabilistic model of the dataset
based on the Copula function is used to generate experimental scenarios that guarantee the
autocorrelation of the data [9]. The literature [10] extracts key features of weather factors
and uses the gated recurrent unit (GRU)-convolutional neural network (CNN) method
to generate scenarios. The literature [11] utilizes the generative moment matching net-
work (GMMN) and the optimization strategy to extract the typical wind power generation
scenario. The wind and solar output probability densities are con-structed based on the
non-parametric kernel density estimation and Frank-Copula functions, and the wind and
solar scenarios are generated by using the spline interpolation method [12].

When modeling based on the time series analysis, the autocorrelation can provide
enough information, and a high-accuracy model can be built based on the limited sample
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number of time series without the need to make predictions based on other conditions. The
main methods for the analysis of time series are the wavelet analysis method [13], Kalman
filter method [14,15], and autoregressive integrated moving average (ARIMA) model [16].
In [17], the ARIMA model and the identification of the model parameters are explained.
The ARIMA model needs to be improved to adopt characteristics of wind, solar, and other
renewable energies. The literature [18] combines the modified ensemble empirical mode
decomposition (MEEMD) with the ARIMA model, and uses the MEEMD to process the data
to improve accuracy. The literature [19] introduces frequency decomposition method to
decompose the wind speed data and constructs the ARIMA model for the decomposed data.
The non-smoothness factors of time series are eliminated by constructing seasonal-ARIMA
based on stochastic probability analysis methods [20,21]. The literature [22] proposed
a hybrid model of the ARIMA and triple exponential smoothing to achieve a real-time
prediction of linear and nonlinear data. The literature [23] uses the combined method
of wavelet transform and the ARIMA model to improve the accuracy of the ARIMA
model. The data feature extraction method proposed in the literature [24] can capture data
characteristics by using the correlation feature selection (CFS). The characteristics of the
above methods are summarized in Table 1.

Table 1. Characteristics of methods.

Literature Model Method of Data Analysis Characteristic

[17] ARIMA None Traditional Model
[18] ARIMA MEEMD Expanding single-dimensional data to multidimensional

[19] ARIMA Frequency Decomposition Determined cutoff frequency from experiments
(complex processing)

[20,21] ARIMA None Eliminate non-smoothness factors of time series

[22] ARIMA and triple
exponential smoothing None Improved ARIMA parameter determination

method(small time overhead)
[23] ARIMA Wavelet Transform Expanding single-dimensional data to multidimensional
[24] Random Forest CFS Identify redundant data features

The accuracy of the scenario generation method is closely related to the dataset, and
the analysis process of datasets is a nondeterministic polynomial (NP) problem. The NP
problem can be solved using optimization algorithms, with the genetic algorithm (GA)
being one of the key methods to solving the optimal problem. The traditional GA has
defects, such as falling into local optimal solution and early convergence [25]. Many re-
searches have been conducted to eliminate these defects. The search condition constraints
are set up to improve the search speed of using GA to search for gene fragments [26]. The
mixed-integer nonlinear programming (MINLP) is transformed into a linear programming
problem by using the Chu–Beasley GA (CBGA) [27]. The literature [28] uses a pruning
operator to improve the GA and increase the convergence of the algorithm. The litera-
ture [29,30] solve stochastic programming problems using GA. The former uses the biased
random key genetic algorithm (BKAGA) and the latter uses the grid-oriented genetic
algorithm (GOGA).

The above scenario generation methods also have defects, such as heavy calculation
burden and complex calculation process. The complexity of the time series has an important
impact on the scenario generation results. Therefore, this paper proposes a renewable
scenario generation method that decomposes the original time series to decrease the
complexity. The proposed approach can generate scenario results with a high amount of
accuracy and has a superior performance in reflecting the characteristics of original data.
The contributions can be listed as: (1) according to the time scales, the original data are
divided into linear and fluctuant parts by the discrete wavelet transform (DWT); (2) a
hybrid genetic algorithm with variable chromosome length (HGAVCL) is presented to
optimally divide the linear part into different time sections; (3) the ARIMA model and
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Copula joint probability density function are, respectively, adopted to depict the linear and
fluctuant parts.

The rest of this paper is organized as follows: Section 2 presents the decomposition of
original time series. Additionally, the HGCVCL and renewable energy scenario generation
method are presented in Section 3. Section 4 gives the steps of renewable energy scenario
generation method and the assessment indexes. The case study is carried out in Section 5.
Finally, conclusions are drawn in Section 6.

2. Decomposition of Time Series
2.1. Net Load Calculation

The power system with a high percentage of renewable energies have fluctuating
characteristics, including the fluctuations of load and renewable generation. Therefore, the
net load is used as the original time series and defined as,

PN = PL − PRES (1)

where PN is the power of net load; PL is the power of load; and PRES is the power of
renewable generation.

2.2. Permutation Entropy of Time Series

Permutation entropy (PE) is used to measure the kinetic mutations and time series
randomness, which can reflect the mutation of signals in a time series. PE has good
robustness and is calculated quickly.

The time series {xi, I = 1, 2, . . . , N} is reconstructed in phase space according to the PE
and the reconstructed matrix is obtained as,

x(1) . . . x(1 + iτ) . . . x[1 + (m− 1)τ]
. . . . . . . . . . . . . . .

x(j) . . . x(j + iτ) . . . x[j + (m− 1)τ]
. . . . . . . . . . . . . . .

x(k) . . . x(k + iτ) . . . x[k + (m− 1)τ]

 (2)

where j = 1, 2, . . . , k; m is the embedding dimension; and τ is the delay time.
Each row of the reconstruction matrix arranged in ascending numerical order has a

total of m! combinations and the PE is calculated as,

Hp(m) = −
k

∑
i=1

Pi ln(Pi) (3)

where Pi is the probability of occurrence of the i-th combination.
Hp(m) can quantitatively describe the complexity of the time series. The complex time

series corresponds to large Hp(m) and simple time series corresponds to small Hp(m).

2.3. Time Series Decomposition Method

The original time series is decomposed into the low-frequency and the high-frequency
parts using the discrete wavelet transform (DWT). The low-frequency series corresponds to
the linear part and the high-frequency series corresponds to the fluctuant part. The linear
series reflects the trend of the net load power in the scenario, and the fluctuating time series
reflects the degree of variation in net load in the scenario.

The DWT can be expressed as,

W f (p, r) = 〈 f (t), ψp,r(t)〉 =
∫ +∞

−∞
f (t)ψ∗p,r(t)dt (4)

where f (t) is the original data function.
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Linear series can be divided to reduce the complexity. Considering that PE can reflect
the complexity of the time series, this paper transforms the linear time series partitioning
problem into an optimization problem, where the objective function of the problem is to
minimize the Hp(m). The control variables are the number of time sections and the length
of each time section. The optimization problem is expressed as,

minHp (5)

Hp =
1
n

n

∑
z=1

Hp(mz) (6)

where n is the number of individual divided time sections; Hp is the average Hp(m)
of individual.

3. Principle of Scenario Generation Method
3.1. Hybrid Genetic Algorithm with Variable Chromosome Length
3.1.1. Framework of Proposed HGAVCL

For the problem of net load time series division, this paper proposes HGAVCL to
improve the computational speed and accuracy, which has three parts:

(1) Introduce hybridization operators, specify that the better individual perform hy-
bridization with higher probability, and constrain the locations where chromosome
segments can be hybridized.

(2) Non-reproductive offspring produced is possible after the hybridization of organisms,
and for this phenomenon, the survival factor ξ is proposed, which defines the survival
probability of individuals after hybridization. The survival factor is calculated as,

ξb,a =
ηb,a

ηb−1,a,min
(7)

where ξb,a is the survival factor of the a-th individual in the b-th generation; ηb,a is the
fitness of the a-th individual in the b-th generation; and ηb−1,a,min is the minimum fitness of
the a-th individual in the b−1-th generation.

Individuals with a survival factor greater than one are determined to be unable to
reproduce offspring and unable to hybridize during the iterative calculation.

(3) Considering the problem of time series division, the phenomenon of chromosome
splicing and deletion exists in the process of biological inheritance. The chromosome
splicing and deletion algorithms are proposed to realize the autonomous search for
the number of the divided time sections.

3.1.2. Procedure of Proposed HGAVCL

The fitness of population individual i is expressed as,

ηi = Hp (8)

The optimization problem is shown in (5), and the specific calculation procedure can
be listed as:

(1) The initial population I and II are set up based on the chromosome length. Based on
a priori knowledge, the initial population I and II of individuals are selected. The
length of population I chromosome is L1 and the length of population II chromosome
is L2. The chromosome length represents the number of the divided time sections and
the chromosomes are coded using binary. The sizes of population I and II are pop1
and pop2, respectively.

(2) The new individuals are generated by the crossover operation with the crossover
probability pc.
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(3) The new individuals are generated by the mutation operation with the mutation
probability pv.

(4) The hybridization operations are performed between populations according to the
hybridization probability ph, and if individuals are heritable based on growth factors,
the new populations are generated.

(5) The chromosome splicing is performed with splicing probability ps. If the fitness of
the spliced individual is greater than the lowest fitness individual in the previous
generation, the individual is extinguished.

(6) The chromosome deletion operation is performed with the deletion probability pd.
If the individual fitness is greater than that of the lowest fitness individual in the
previous generation, the individual is extinguished.

(7) The individual fitness of the population is calculated. The individuals of the popula-
tion are selected via the Russian roulette method.

(8) To ensure iterative convergence, the population extinction probability pe is set. After
each round of iterations, the population with the largest fitness among the best
individuals of each population dies out with pe.

(9) Repeat the above steps (2)–(8) until the required number of iterations is satisfied.
(10) The calculation process is shown in Figure 1.
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3.2. Model of Linear Time Series
3.2.1. ARIMA Model

For ARIMA (p, d, q), the AR is the autoregressive and p is the number of autoregressive
terms. The MA is the moving average and q is the number of moving average terms. The
optimal number of differences to make it a smooth series is d [31]. The ARIMA model can
be expressed as, (

1−
p

∑
i=1

ϕiBi

)
(1− B)dXt =

(
1 +

q

∑
i=1

θiBi

)
εt (9)

BpXt = Xt−p (10)
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∇dXt = (1− B)dXt (11)

where {Xt} is the time series; {εt} is normal white noise with mean 0 and variance 1; B is the
backward shift operand; ϕi is the autoregressive coefficient; and θi is the moving average
coefficient.

3.2.2. Parameter Calculation

The autoregressive parameter ϕi in the model can be determined by the autocorrelation
coefficient ρ, i.e., the Yule–Walker equation, which can be expressed as,


ϕ1
ϕ2
...

ϕp

 =


1 ρ1 · · · ρp−1
ρ1 1 · · · ρp−2
...

... · · ·
...

ρp−1 ρp−2 · · · 1


−1

ρ1
ρ2
...

ρp

 (12)

The moving average parameter θi in the model can be determined by the self-covariance
γk, which can be expressed as,

γk =


σ2

ε (1 + θ2
1 + θ2

2 + · · ·+ θ2
q) k = 0

σ2
ε (−θ2

k + θ2
1θ2

k+1 + θ2
2 + · · ·+ θ2

q θ2
q−k) 1 ≤ k ≤ q

0 k > q

(13)

3.2.3. Augmented Dickey–Fuller

Augmented Dickey–Fuller (ADF) is used to determine the smoothness of time series.
ADF is calculated as,

Model 1:

∆Xt = α + βt + δXt−1 +
m

∑
i=1

βi∆Xt−i + εt (14)

Model 2:

∆Xt = α + δXt−1 +
m

∑
i=1

βi∆Xt−i + εt (15)

Model 3:

∆Xt = δXt−1 +
m

∑
i=1

βi∆Xt−i + εt (16)

where ∆Xt is the residual at moment t; Xt−1 is the residual at moment t–−1; βt is the
coefficient of trend term; α is the constant; εt is the noise of residual.

The original hypotheses is H0: δ = 0. The steps of calculation are in the order of model
1, model 2, and model 3. If the ADF rejects H0: δ = 0 in any step of the ADF calculation, the
original time series does not exist unit root, so it is a smooth time series, and the calculation
is stopped. If the ADF satisfies H0: δ = 0, the calculated ADF is finished with model 1, 2,
and 3.

d is determined by ADF calculation. If the original time series is non-smooth, the
calculation of difference needs to be continued. Otherwise, it is smooth and the calculation
of difference is stopped.

3.2.4. Akaike’s Information Criterion

The autocorrelation coefficients and partial autocorrelation coefficients of the smooth
series obtained after differencing do not have the characteristics of truncation. The p and q
orders are determined by the Akaike’s information criterion (AIC).

AIC is calculated as,

AIC(p, q) = lnσ̂2
x(p, q) + 2(p + q)/T (17)
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The σ̂2
x is variance of model residuals, and expressed as

σ̂2
x(p, q) =

T
∑

t=1

_
X(t)

T − (p + q)
(18)

where T is number of samples.
The ARIMA models are set up separately by different values of p and q taken from

low-to-high order and the parameters are estimated. The results of each model AIC are
compared. p0 and q0 are determined, which make the AIC extremely small. The p and q of
the ARIMA model are p0 and q0, respectively.

The ARIMA models are constructed for the divided time sections to obtain the linear
time series of the scenario.

3.3. Model of Fluctuant Time Series
3.3.1. Copula Function

The joint probability density model is developed by Copula function. Assuming the
variables are [x1, x2, . . . , xn], the joint distribution function is H(x1, x2, . . . , xn), and the
marginal distributions are [F1, F2, . . . , Fn], respectively, the Copula function is expressed as,

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)) (19)

If F1, F2, . . . , Fn are continuous, C(F1, F2, . . . , Fn) is uniquely determined and the
joint probability density function of the random vectors can be obtained by taking partial
derivatives of both sides of (13).

h(x1, x2, . . . xn) = c(F1(x1), F2(x2), . . . , Fn(xn))
n

∏
i=1

fi(xi) (20)

3.3.2. Copula Model Selection

This paper uses the Kendall coefficient and Spearman rank correlation coefficient as
correlation evaluation pointers and calculates the Kendall coefficient and Spearman rank
correlation coefficient of the simulated data generated by sampling based on the Copula
function and the original data, respectively. If the correlation coefficients of the two are
closer, the better the Copula function is fitted.

The Kendall coefficient ρτ is calculated as,

ρτ = P[(V1 −V2)(U1 −U2) > 0]− P[(V1 −V2)(U1 −U2) < 0] (21)

The Spearman rank correlation coefficient ρs is calculated as,

ρs = 3{P[(V1 −V2)(U1 −U3) > 0− (V1 −V2)(U1 −U3) < 0]} (22)

where (V1, V2) and (U1, U2) are random vectors having the same distribution that are
independent of each other; P(·) is its probability density function.

3.3.3. Fluctuant Series Model Construction

The net load fluctuation ratio xnl,t is defined as,

xnl,t =
xnL,t

xL,t
(23)

The joint probability density function of net load fluctuating ratio to adjacent moment
t and t − 1 is solved based on Copula theory.

h(xnl,t, xnl,t−1) = c(Ft, Ft−1)× fk(xnl,t)× fk+1(xnl,t−1) (24)
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f (xnl,t|xnl,t−1) is solved based on the Bayesian formula and the probability model of
the fluctuant part of scenario generation is obtained. The fluctuant time series is generated
by sampling based on f (xnl,t|xnl,t−1). The results of our analysis show that the normal
Copula function has superior performance.

4. Scenario Generation and Assessment
4.1. Scenario Generation Method

The computational process of the scenario generation method proposed in this paper
is shown in Figure 2, and listed as follows:

(1) Input the original linear time series and fluctuating time series.
(2) Generate the linear time series scenario:

(1) Divide zones based on HGAVGL.
(2) Construct ARIMA model of each zone.
(3) ARIMA model is selected based on PE to generate linear partial scenarios.

(3) Generate fluctuating time series scenario:

(1) Calculate f (xnl,t|xnl,t−1) based on Copula function.
(2) Sample based on f (xnl,t|xnl,t−1) to generate fluctuating time series scenarios.

(4) Combine linear and fluctuating time series to generate time series scenario.
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4.2. Assessment Index

The generated scenarios characterize the uncertainty of the net load output and are
time-dependent and consistent with the actual scenarios.
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The time autocorrelation index σ, average offset rate index µ, climbing similarity index
Pe, and mean absolute percentage error (MAPE) are adopted to assess the data quality of
generated scenarios. The σ reflects the time correlation between the generated scenarios and
the original scenarios. The µ reflects the offset degree between the generated scenarios and
the actual running scenarios. The Pe reflects the climbing similarity between the generated
scenarios and the original scenarios. Additionally, the MAPE reflects the accuracy of the
ARIMA model.

(1) Time autocorrelation σ

Atime = |C history−Cgen

∣∣∣ (25)

σ =
∑ Aij

L
(26)

where A is the time autocorrelation approximation index matrix; Chistory is the historical
data time autocorrelation matrix; Cgen is the generated scenarios time autocorrelation
matrix; i and j are adjacent moments, i.e., |i-j| = 1; and L is the scenarios length.

(2) Average offset rate µ

µ =
1

NT

T

∑
t=1

N

∑
j=1

∣∣∣xj,t − xhistory,t

∣∣∣
xhistory,t

(27)

where xj,t is the net load value of the generated scenario at time t under the i-th generated
scenario; xhistory,t is the historical net load value at time t of the historical data; T is the
generated scenario time stamp; and N is the number of simulations.

(3) Climbing similarity Pe.

Pe = 1− 1
(T − 1)N

T

∑
t=1

N

∑
j=1

∣∣∣∆chistory,t+1,t − ∆cj,t+1,t

∣∣∣
xhistory,t

(28)

where ∆chistory,t+1,t is the historical climbing value from moment t to moment t + 1; ∆cj,t+1,t
is the generated scenario climbing value from moment t to moment t + 1.

(4) MAPE

MAPE =
1
l

l

∑
c=1

|x̂c − xc|
xc

(29)

where x̂c is the predicted result at test set; xc is the actual result at test set; l is the test set
length.

5. Case Study

The minimum value of chromosome fragment length is 128. The value is determined
by the experiment, which shows that 128 is the minimum to ensure the performance of
solution algorithm. Additionally, the chromosome individual constraints are set up to
ensure the accuracy of ARIMA model building. Two initial populations are set up. The
population I with chromosome length is 5 and population II is 10. The number of iterations
is 200, and the pop1 and pop2 are 40.

The PE of original linear time series is 3.46. Additionally, the PE is normalized and the
value is 0.76. The fitness curve during the iterative process is shown in Figure 3.
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the generated scenario climbing value from moment t to moment t + 1. 

(4) MAPE 

1
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MAPE

l
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x x

l x=

−
=   (29) 

where ˆ
cx  is the predicted result at test set; xc is the actual result at test set; l is the test set 

length. 
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Figure 3. Iteration curve of fitness.

The results converge after 172 times and the chromosome length of optimal solution is
6. The original linear time series is divided into six zones. The ARIMA model is constructed
for dividing the linear series. According to the existing research, the p and q orders of the
ARIMA model are usually small, and this paper sets the maximum p and q order to 5. The
fourth zone is analyzed as an example, and the construction series results of the ARIMA
model are shown in Figure 4. The ADF results are shown in Table 2, and the AIC results
are shown in Table 3. The ARIMA model parameters are shown in Table 4.
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Figure 4. Results of ARIMA model.

Table 2. Results of ADF.

ADF 0 1

d 0 1



Energies 2023, 16, 3180 11 of 16

Table 3. Results of ADC.

AIC p = 1 p = 2 p = 3 p = 4 p = 5

q = 1 −7049 −7075 −6850 −6809 −6807
q = 2 −6813 −6868 −7290 −6807 −6805
q = 3 −6811 −6866 −6807 −6805 −6803
q = 4 −7316 −6864 −6805 −6803 −6801
q = 5 −7241 −7253 −6746 −7132 −6902

Table 4. Parameter of ARIMA model.

Zone p1 p2 p3 q1 q2 q3 d

Zone 1 0.23 0.13 0 −0.47 0 0 0
Zone 2 0.96 0 0 −0.34 −0.42 0 1
Zone 3 −0.14 0.35 0.51 −0.31 −0.08 −0.21 0
Zone 4 −0.47 −0.64 0 1.07 1.01 0.93 1
Zone 5 −0.07 0.18 0.29 −0.09 −0.91 0 1
Zone 6 −0.46 0.13 0.36 1.46 0.48 0 2

Additionally, the values of length, PE and MAPE of each time section, are shown
in Table 5. The results verify that the length of time sections affects the accuracy of the
ARIMA model and the correlation between the distribution of PE and MAPE is positive.
The smaller MAPE indicate that the constructed ARIMA is more accurate.

Table 5. MAPE values and PE of each zone.

Zone Length MAPE PE

Zone 1 751 0.1024 1.38
Zone 2 1832 0.0145 1.32
Zone 3 385 0.0514 1.28
Zone 4 629 0.0283 1.31
Zone 5 128 0.0283 0.29
Zone 6 5035 0.2229 1.42

The value of net load ratio output at moment 1 and 2 is taken as an example, and the
marginal distribution of net load ratio at moment 1 is shown in Figure 5. The marginal
distribution is consistent with the Weibull distribution.
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The Kendall correlation coefficient and Spearman rank correlation coefficient are used
to compare the fitting effect of various types of Copula functions. The normal Copula
function fitted well. Hence, it was used. The results are shown in Figure 6.
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Figure 6. Results of Copula function.

According to Figure 6, the shape of the fitted joint probability density is the same
as the frequency histogram. The solutions of other adjacent moments joint probability
densities are the same as in moment 1 and 2. The h(x,y) is solved according to the Bayesian
formula to obtain the probability model of the fluctuant time series. The net load fluctuant
time series is obtained based on the probability model. A set of scenarios are generated
and shown in Figure 7.
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Figure 7. Results of scenario generation.

The Monte Carlo method, based on historical data, Copula function generation sce-
nario method, and the proposed approach are compared. The number of generated scenar-
ios is 1000. The k-means algorithm is used for scenario reduction and the results are shown
in Figures 8–10.
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In order to illustrate the advantages of the proposed approach, the Monte Carlo
sampling (MCS) method is carried out. The time autocorrelation σ, average offset rate µ,
and climbing similarity Pe of the two methods are calculated, as shown in Table 6.

Table 6. Results of evaluation indexes.

Method Time Autocorrelation σ Average Offset Rate µ Climbing Similarity Pe

MCS method 0.0110 0.4673 0.8273
Proposed approach 0.0515 0.0396 0.9035
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As for the time autocorrelation σ, the MCS method with the smaller value has little
similarity to that of the generated and original data. In contrast, the proposed approach can
better track the characteristics of original data. Additionally, Table 6 shows that the average
offset rate µ of the proposed approach is smaller than the MCS method, which verifies the
higher accuracy of the proposed approach. Furthermore, the proposed approach has better
performance in climbing similarity Pe when compared to the MCS method. The scenarios
generation method of Copula function satisfies the requirement of temporal correlation of
adjacent moments and the requirement of climbing similarity, but the resultant offset of its
generated scene is still not very satisfactory. Therefore, the proposed approach can generate
scenario results with the highest amount of accuracy and the corresponding climbing
similarity, which shows superior performance in reflecting the real situation of the net
load scenario.

6. Conclusions

This paper proposes a renewable scenario generation approach based on the HGAVCL.
With the use of the DWT, the original data are divided into the linear and fluctuant parts.
For the linear part, the HGAVCL is used to minimize the PE and divide the time series
into different time sections. This is modeled by the ARIMA. Additionally, the Copula
joint probability density function is used to model the fluctuant part. The scenarios are
generated by the Monte Carlo method, and the quantitative indices are established. The
comparative analysis is conducted to demonstrate the advantages of the proposed approach.
The proposed approach can improve the time autocorrelation σ and climbing similarity Pe,
and reduce the average offset rate µ. The results show that the proposed approach better
reflects the real situation of original data.

In future research, the optimal dispatching scheme for renewable energy sources,
based on the proposed scenario generation approach, will be presented.
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