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Abstract: A novel linear permanent magnet vernier generator (LPMVG) for small-power off-grid
wave power generation systems is proposed in this paper. Firstly, in order to reduce the cogging
force and the inherent edge effect of the linear generator, a staggered tooth modular structure is
proposed. Secondly, in order to improve the output power and efficiency of the LPMVG and reduce
the fluctuation coefficient of electromagnetic force, the relationship between the parameters of the
generator is studied, and a method combining multi-objective optimization and single parameter
scanning based on the response surface model and particle swarm optimization algorithm is proposed
to obtain the optimal structural parameters of the generator. Thirdly, the output power and efficiency
of the optimized generator are calculated and analyzed based on the two-dimensional finite element
method, and the effectiveness of the multi-objective optimization design method based on the
response surface model and particle swarm optimization algorithm is verified. Finally, a prototype is
developed, and the calculated results and the measured results are shown to be in good agreement.

Keywords: linear motors; permanent magnet vernier generator; particle swarm optimization;
response surface model; wave power generation system

1. Introduction

Traditional fossil energy releases greenhouse gases such as carbon dioxide in the
process of consumption, causing environmental problems. It has become a top priority to
vigorously develop and research renewable energies such as wave energy, solar energy, and
wind energy. As the most potentially valuable form of renewable energy, the importance of
wave energy is self-evident [1]. The current wave power generation system faces problems
such as the use of complex conversion devices, low power density, high costs, and difficult
maintenance. In order to improve the efficiency of wave energy, the direct-drive wave
power generation system is adopted, which eliminates the growth rate, hydraulic energy
storage, and other mechanisms, and reduces the size, weight, and cost of wave energy
conversion equipment [2,3].

In recent years, many scholars have studied the wave energy generator. The primary
permanent magnet vernier hybrid linear generator for wave power generation was in-
vented and developed in [4]. The fault-tolerant modular primary permanent magnet linear
generator was proposed; this generator has the advantages of simple secondary structure,
low cogging force, good sinusoidal voltage waveform during power generation, and good
power generation characteristics at low speed [5,6]. It is especially suitable for direct drive
wave power generation. The novel partitioned stator flux-reversal linear generator is
proposed for the linear direct drive wave power generation system. The new structure has
low cogging force, high permanent magnet utilization, and high efficiency under load [7].
A novel linear permanent magnet vernier generator suitable for low speeds is proposed,
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which is composed of a tubular stator and a tubular translator. The generator can offer the
advantages of high-force density and large no-load EMF [8].

In this paper, the staggered tooth module LPMVG is proposed. Based on the principle
of magnetic field modulation, the generator generates a harmonic magnetic field with
rapid change, has the characteristics of low speed and high thrust, and improves the power
density. The staggered tooth modular of LPMVG is proposed in order to reduce the cogging
force and the inherent edge end effect of the wave generator. The working principle of
modularization is analyzed, and the formula of edge force is derived. The influence of
a staggering angle on generator output characteristics is simulated and analyzed, and
the optimal staggering angle is determined. Multi-objective optimization is adopted to
optimize the output power, efficiency, and electromagnetic force fluctuation coefficient of
the staggered tooth module LPMVG. The output power, efficiency, and electromagnetic
force fluctuation coefficient before and after optimization are compared, and the optimal
results are selected as the structural parameters of the generator. Comparing the output
performance of the generator before and after optimization, the effectiveness of the opti-
mization method based on particle swarm optimization and single parameter scanning
is verified.

2. Principle and Deign of Generator
2.1. Structural Parameters of LPMVG

This paper proposes a bilateral linear permanent magnet vernier generator, as shown
in Figure 1. The generator adopts the double secondary mode, which makes the unilateral
normal forces at both ends offset each other and fundamentally eliminates the adverse
factors of the normal force on the generator [9].
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Figure 1. Bilateral linear permanent magnet vernier generator.

2.2. Working Principle of Generator

It is necessary to make some ideal assumptions before analyzing the working principle
of the LPMVG: (1) The hysteresis loss and eddy current loss of the generator are not
considered; (2) the influence of core saturation is ignored; (3) the relative permeability of
the permanent magnet is consistent with the vacuum permeability. The Fourier series form
of the magneto motive force FPM generated by the permanent magnet on the armature
tooth can be expressed as:

FPM(x) =
∞

∑
n,odd

Fn cos
[

npPM
2πx
Lp

]
(1)

where Fn is the harmonic amplitude, Lp is the primary length, and pPM is the effective pole
pair of the permanent magnet.

The Fourier form of the total magnetic conductivity of the generator is:

Λ(x, t) = Λ0 +
∞

∑
m=1

Λm cos
[

mnt
2π

Lp
(x− vpt− x0)

]
(2)
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where Λ0 is the amplitude of the fundamental wave of magnetic conductivity; Λm is the
harmonic amplitude of magnetic conductivity; nt is the number of secondary effective teeth;
and vp is the primary speed.

The air gap flux density generated by the permanent magnet at the primary teeth of
the generator can be expressed as the product of the magneto motive force and the total
magnetic conductivity. According to (1) and (2), the air gap flux density of the generator
can be expressed as

B(x, t) = FPM(x)Λ(x, t)

=
∞
∑

n,odd
FnΛ0 cos

[
npPM

2πx
Lp

]
+ 1

2

∞
∑

n,odd

∞
∑

m=1
FnΛm cos

[
2πx
Lp

(npPM + mnt)−
2πmnt(vpt+x0)

Lp

]
+ 1

2

∞
∑

n,odd

∞
∑

m=1
FnΛm cos

[
2πx
Lp

(npPM −mnt) +
2πmnt(vpt+x0)

Lp

]
(3)

The lower the order of the effective harmonic, the higher the amplitude; so in general,
n = 1, m = 1 is selected, and the polar logarithm of the effective harmonic at this time can be
expressed as

p1,1 = |pPM − nt| (4)

It can be seen from the previous analysis that when the number of harmonic poles
generated by the armature winding in the air gap is the same as the number of effective
harmonic poles generated by the permanent magnet, the fluctuation of the generator output
electromagnetic force is the smallest. There is a certain ratio between the generator effective
harmonic speed and the generator primary movement speed, as shown in (5).

vp =
nt

p1,1
vr = Gtvr (5)

As shown in Figure 2, the air gap flux density generated by the permanent magnet in
the air gap of the effective length of the generator can be obtained by Fourier decomposition
of the air gap flux density. The pole number of the permanent magnet is 18, and a large
second harmonic component is also generated in the air gap. The air gap flux density of the
generator when only the armature windings is considered is shown in Figure 3. It can be
clearly seen from the Fourier decomposition that the second harmonic of the magnetic field
generated by the armature winding is the main component and produces a higher 18th
harmonic. The effective number of secondary teeth in the generator design is 20. Through
simulation analysis, it can be seen that the relationship between the three satisfies (4). At the
same time, it also proves that the air gap magnetic field of the generator is jointly affected
by the permanent magnet and armature winding during operation, and it also proves the
correctness of the magnetic field modulation principle.
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Figure 2. Analysis of air gap flux density and harmonic generated by permanent magnet array: (a) Air
gap magnetic density (b) Harmonic content in air gap.
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Figure 3. Analysis of air gap flux density and its harmonic generated by armature winding: (a) Air
gap magnetic density (b) Harmonic content in air gap.

3. Design of Staggered Tooth Modular Generator
3.1. Structure of Modular LPMVG

A modular structure is proposed to reduce the cogging force of the linear permanent
magnet vernier wave generator [10].

3.2. Cogging Force of Actuator Modularization

The edge force of each module of the generator is as follows
FA_end =

∞
∑

n=1
Fn sin(2nπ x

τs
)

FB_end =
∞
∑

n=1
Fn sin(2nπ x

τs
+ 2π

3 )

FC_end =
∞
∑

n=1
Fn sin(2nπ x

τs
− 2π

3 )

(6)

where n is the number of harmonics, x is the relative position of the secondary and primary
teeth, and τs is the pole pitch of the secondary tooth. Therefore, the total edge cogging force
of the LPMVG is the sum of three module cogging forces, and can be expressed by

Ftotal_end = FA_end + FB_end + FC_end (7)

3.3. Modular Simulation Verification

The simulation results of cogging force and total cogging force of each module of
the LPMVG are shown in Figure 4. It can be seen that the peak-to-peak cogging force is
reduced from 377 N to 135 N, and the cogging force is greatly reduced.
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The simulation results are shown in Figures 5–7. It can be seen that when the no-load
back EMF is basically unchanged, the peak-to-peak cogging force is reduced from 216 N to
135 N, and the waveform distortion rate is changed from 13.06% to 4.85%, which greatly
improves the performance of the generator.
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3.4. Optimal Design and Analysis of Secondary Staggered Tooth

As shown in Figure 8, the staggered tooth LPMVG was proposed based on the original
modular LPMVG in order to lower the peak-to-peak cogging force of the LPMVG. The
bilateral secondary tooth is staggered by a certain distance, which causes the primary tooth
permanent magnet array to be staggered by a certain phase. The phase difference can be
expressed as “d·π/τ”. The simulation results of cogging force, no-load back EMF, and
output power and efficiency of the generator are shown in Table 1. Finally, considering
the output power, no-load back EMF, cogging force, normal force, and efficiency of the
generator, the bilateral tooth staggering angle of the generator is selected as 30◦.
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Table 1. Generator performance at different stagger angles.

Stagger Angle EMF (V) Cogging Force (N) Output Power (W) Efficiency (%)

0◦ 49.327 130.106 50.816 78.86
15◦ 49.037 124.169 49.49 78.81
30◦ 47 94.076 46.868 78.88
45◦ 45.578 65.87 42.624 78.84
60◦ 43.073 28.175 37.148 78.69

4. Multi-Objective Optimization of Staggered Tooth Module LPMVG (STMLPMVG)
4.1. Topology and Simulation Variables

As shown in Figure 9, 11 design variables of the STMLPMVG are presented in this
paper, which also includes other constant structural parameters related to the generator.
The multi-objective optimization flow chart is shown in Figure 10. The definition, initial
value, and variation range of each design variable are shown in Table 2. Table 3 shows the
structural parameters of the STMLPMVG that remain unchanged.
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Table 2. Optimization variables of STMLPMVG.

Variable Definition Initial Value Variation Range

wv Longitudinal permanent magnet length 4 mm 4~6 mm
wh Length of transverse permanent magnet 3 mm 2~4 mm

Kbp
Ratio of secondary tip wst to secondary

pole τs
0.3 0.2~0.4

Kbt
Ratio of secondary tooth end wsr to

secondary pole τs
0.5 0.4~0.6

Kph
Ratio of secondary tooth height hst to

secondary height hsh
0.5 0.4~0.6

hpm PM thickness 4 mm 3~5 mm
wmo Primary slot opening width 2 mm 1~3 mm
ht0 Primary slot opening height 10 mm 6~12 mm
ht1 Primary slot wedge height 4 mm 3~5 mm
ht2 Primary slot height 15 mm 13~17 mm
hcy Primary yoke thickness 10 mm 7~11 mm

Table 3. Constant structural parameters.

Invariant Parameter Definition Initial Value

Lar Effective length of generator 298 mm
τm Primary slot pitch 52.45 mm
τs Secondary pole pitch 14.7 mm
g0 Air gap width 1 mm

4.2. Sensitivity Analysis and Calculation
4.2.1. Determination of Optimization Objective

In order to improve the generator performance, the maximum value of output power
and efficiency and the minimum value of electromagnetic force fluctuation coefficient are
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taken as the optimization objective for the multi-objective optimization. The output power
can be expressed as

P0 = Uout Iout = 3
U0√

2
I0√

2
= 1.5U0 I0 (8)

where Um and Im are the amplitudes of generator voltage and current.
Power generation efficiency is the ratio of output power to input power, which is

also an important index to reflect the wave energy generation capacity and the energy
conversion efficiency of generators. The generation efficiency formula of the generator is:

η =
P

Pin
× 100% =

P
P + PCu + PFe

× 100% (9)

where Pin is the input power of generator, P is the output power of generator, PCu is the
generator copper loss, and PFe is the generator iron loss.

The fluctuation coefficient is the ratio of the peak value of electromagnetic force to
the average electromagnetic force. The staggered tooth module LPMVG works in a severe
marine environment. The fluctuation coefficient can reflect the reliability of the generator in
a difficult environment. It is one of the important indicators of the generator. The formula
is defined as follows

γ =
Fmax − Fmin

Fav
(10)

where Fmax is the maximum value of electromagnetic force, Fmin is the minimum value of
electromagnetic force, and Fav is the average value of electromagnetic force.

4.2.2. Calculation and Analysis of Sensitivity

There are 11 independent optimization variables of the STMLPMVG. If the BBD orthog-
onal matrix method is directly used, 177 discrete variables are also required. The simulation
time is too long. The sensitivity analysis method is used to reduce the simulation time,
increase efficiency, and improve the optimization accuracy of multi-objective optimization.

The sensitivity calculation formula can be expressed as follows

G(ni) =
∂g(ni)

∂ni
=

∆g(ni)/g(ni)

∆ni/ni
(11)

Each design variable has a different effect on the optimization target, and the com-
prehensive sensitivity of the motor is calculated by ranking and weighting the impor-
tance of the optimization target. The calculation formula of comprehensive sensitivity is
as follows [11]

s(ni) = λ1
∣∣Gp0

∣∣+ λ2|Gη|+ λ3|GFr | (12)

where λ1, λ2, and λ3 are the weight coefficients, and the sum of the three is one. Gp0
, Gη,

and GFr are the sensitive factors of the design variable ni to the optimized target output
power, generation efficiency, and electromagnetic force fluctuation.

The comprehensive sensitivity value shown in Table 4 and Figure 11 can be obtained
according to (12). The design variables of significant sensitivity for a comprehensive
sensitivity value greater than 0.4 contain the longitudinal magnetized permanent magnet
width, radial magnetized permanent magnet width, permanent magnet thickness, and
primary slot width. The comprehensive sensitivity value that is greater than 0.1 and
less than 0.4 is taken as the general sensitivity; that is, the tooth width coefficient of the
secondary tooth, the height of the primary slot, and the height of the primary slot opening
are the design variables of general sensitivity. Finally, the sensitivity value that is less
than 0.1 is regarded as insignificant sensitivity. Therefore, the multi-objective optimization
algorithm is used to obtain the optimal design value for the significant sensitivity, the single
objective optimization method is used to optimize the general sensitivity, and the initial
value can be used for the non-significant sensitivity variable without optimization, so as to
obtain the final result.
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Table 4. Sensitivity values of three design variables.

Variable GP Gη Gγ S(ni)

wv −0.442 -0.038 −1.535 0.649
wh −0.862 −0.039 −1.227 0.725
Kbp −0.064 −0.001 0.786 0.262
Kbt −0.033 0.011 −0.090 0.044
Kph −0.032 0.006 0.076 0.037
hpm 0.880 −0.009 −0.302 0.445
wmo 0.385 −1.303 0.030 0.554
ht0 −0.274 −0.008 0.357 0.219
ht1 −0.111 −0.023 −0.040 0.063
ht2 0.007 0.032 0.115 0.047
hcy 0.008 0.005 0.040 0.017
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4.3. BBD Orthogonal Experimental Matrix

The Box−Behnken design (BBD) method is a comprehensive DoE method used to
establish RS models which are suitable for 2–5 design variables [12]. The BBD method is
encoded by three factors, namely −1, 0, and 1, where −1 is the low level factor, 0 is the
center point factor, and 1 is the high level factor. There are four significant sensitivity design
variables for the STMLPMVG, and the values of design variables at each level are shown
in Table 5 [13]. The BBD orthogonal matrix is shown in Table 6. There are 29 experiments
in total, and the number of experiments for the four design variables is 34 = 81. It can be
seen that the BBD orthogonal matrix can effectively reduce the number of experiments and
simulation time [14].

Table 5. Design variable level value.

Level wv (mm) wh (mm) hp (mm) wm0 (mm)

−1 4 3 4 1.5
0 4.5 3.5 4.5 2
1 5 4 5 2.5

Table 6. BBD orthogonal test matrix.

Order Number wV wh hpm wm0 P (W) η (%) γ

1 4.5 3 4.5 1.5 47.97 78.342 0.351
2 4.5 3.5 5 2.5 48.39 78.339 0.308
3 4.5 3.5 4.5 2 41.23 78.129 0.344
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Table 6. Cont.

Order Number wV wh hpm wm0 P (W) η (%) γ

4 4 3.5 4.5 2.5 48.50 78.65 0.381
5 4.5 3.5 4 1.5 32.46 77.55 0.475
6 4.5 4 4.5 1.5 21.70 75.74 0.777
7 4.5 3.5 4.5 2 41.23 78.135 0.344
8 4.5 3.5 4.5 2 41.05 78.041 0.35
9 4.5 3.5 4 2.5 38.72 78.246 0.45
10 4 3.5 4 2 40.34 78.417 0.566
11 4 3.5 5 2 50.72 78.548 0.399
12 4.5 4 5 2 27.06 76.27 0.69
13 4 3.5 4.5 1.5 40.89 78.141 0.32
14 5 3.5 4.5 1.5 30.83 76.95 0.574
15 4.5 3.5 4.5 2 41.23 78.126 0.344
16 4 4 4.5 2 30.31 77.31 0.465
17 4.5 3.5 4.5 2 41.05 78.041 0.35
18 4.5 3 5 2 59.65 78.9 0.245
19 4.5 3 4 2 48.51 78.782 0.247
20 5 3.5 4.5 2.5 36.49 77.59 0.475
21 5 3 4.5 2 51.72 78.647 0.305
22 4 3 4.5 2 52.67 78.855 0.697
23 5 4 4.5 2 20.34 75.86 0.877
24 4.5 3.5 5 1.5 40.92 77.8 0.375
25 4.5 4 4.5 2.5 25.57 76.47 0.68
26 4.5 3 4.5 2.5 57.63 78.998 0.228
27 5 3.5 4 2 30.27 77.257 0.613
28 5 3.5 5 2 38.1 77.44 0.53
29 4.5 4 4 2 20.97 76.09 0.584

4.4. Surface Response Analysis

The second-order polynomial of the RS model can express as

G(t) = a0 +
4

∑
i=1

aiti +
4

∑
i=1

aiit2
i +

2

∑
i=1

4

∑
j>i

aijtitj + ε (13)

where G(t) is the response value and a0, ai, aij, and aii are the regression coefficients.
The fitting function of the optimization objective can be obtained by using the sim-

ulation data of the 29 models in Table 6. The second-order fitting function of the output
power is

P = −386.12 + 69.32wv + 95.61wh + 45.15hpm + 46.66wm0−
9.02wvwh − 2.55wvhpm − 1.95wvwm0 − 5.05whhpm − 5.8whwm0

+1.21hpmwm0 − 3.52wv
2 − 7.06wh

2 − 1.05hpm
2 − 4.07wm0

2

(14)

The second-order fitting function of generator efficiency is

η = +36.76 + 4.82wv + 16.16wh + 2.13hpm + 3.07wm0−
1.24wvwh + 0.05wvhpm + 0.13wvwm0 + 0.06whhpm + 0.07whwm0

−0.16hpmwm0 − 0.22wv
2 − 1.92wh

2 − 0.23hpm
2 − 0.65wm0

2

(15)

The second-order fitting function of the electromagnetic force fluctuation coefficient γ is

γ = +31.18− 7.04wv − 6.93wh − 1.75hpm + 0.49wm0+

0.8wvwh + 0.084wvhpm − 0.16wvwm0 + 0.11whhpm + 0.026whwm0

−0.042hpmwm0 + 0.47wv
2 + 0.44wh

2 + 0.11hpm
2 + 0.068wm0

2

(16)
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4.5. Particle Swarm Optimization Algorithm

In order to find the global optimal solutions for the three optimization objectives, the
method of Particle Swarm Optimization (PSO) is used to optimize the STMLPMVG [15].
The basic equation of PSO can be expressed by{

Vk+1
id = ωVk

id + c1r1(Pk
id − Xk

id) + c1r1(Qk
id − Xk

id)

Xk+1
id = Xk

id + Vk+1
id

(17)

where V is the particle velocity, X is the population size, ω is inertia weight, c1 and c2 are
acceleration coefficients, r1 and r2 are random numbers of [0, 1], and P and Q are individual
and global optimal points.

Through establishing the mathematical model of the STMLPMVG, the fitting curve
between the optimization objective and the design variable is obtained, and it is substituted
into the optimization objective function which is shown in (18). The global optimal solution
set obtained by the particle swarm optimization algorithm is shown in Table 7.

g(ni) = ω1
gPo(ni)

Po
′ + ω2

gη(ni)

η′
+ ω3

K′

gK(ni)
(18)

Table 7. Optimization results of design variables and objectives.

Variable Before Solution After Solution

wv (mm) 4 4.5
wh (mm) 3 3
hpm (mm) 4 5
wm0 (mm) 2 2.5

P (W) 47.04 63.05
η (%) 78.78 78.97

γ 0.71 0.222

4.6. Single Objective Optimization of General Sensitivity Variables

Figure 12 shows the relationship between output power and efficiency with the tooth
width coefficient of the secondary tooth. It can be seen that the generator efficiency basically
does not change much, and the output power first increases and then decreases with the
tooth width coefficient of the secondary tooth increasing. As shown in Figure 13, the
fluctuation coefficient decreases and then increases with the increase of the tooth width
coefficient of the secondary tooth. The fluctuation coefficient reaches the minimum point
when the tooth width coefficient of the secondary tooth is 0.3. The tooth width coefficient of
the secondary tooth is selected as 0.3 through the comprehensive analysis of Equation (18).

Figure 14 shows the relationship between output power and efficiency with the height
of the primary slot opening. It can be seen that the efficiency remains basically unchanged
with the increase of the height of the primary slot opening, while the output power de-
creases with the increase of the height of the primary slot opening. Figure 15 shows the
relationship between the fluctuation coefficient and the height of the primary slot opening.
The fluctuation coefficient generally shows an upward trend with the height of the primary
slot opening increasing. To sum up, the height of the primary slot opening is obtained by
6 mm.

As shown in Figure 16, the efficiency increases with the increase of the height of the
primary slot, while the output power first increases and then fluctuates with the increase of
the height of the primary slot. Figure 17 shows the relationship between the fluctuation
coefficient and the height of the primary slot. The fluctuation coefficient first decreases and
then increases with the height of the primary slot increasing. To sum up, the height of the
primary slot is obtained by 17 mm.
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Figure 17. Relationship between electromagnetic force pulsation coefficient and the height of
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4.7. Final Optimization Results and Comparison

The comparison of design variables and the values of the optimization objectives of
the STMLPMVG before and after optimization are shown in Table 8. It can be seen that
the amplitude of the load voltage greatly increased after optimization in Figures 18 and 19,
while the amplitude of the load current increased. The output power increased from
47.04 W to 75.25 W, and the efficiency of the generator also increased from 78.78% to 82.11%.
Figure 20 shows the comparison of electromagnetic force before and after optimization. It
can be seen that the electromagnetic force of the optimized STMLPMVG increased from
133 N to 206 N, and the fluctuation coefficient decreased from 0.71 to 0.171.

Table 8. Comparison results of the STMLPMVG.

Before Solution After Solution

wv (mm) 4 4.5
wh (mm) 3 3

Kbp 0.3 0.3
Kbt 0.5 0.5
Kph 0.5 0.5

hpm (mm) 4 5
wm0 (mm) 2 2.5
hst (mm) 10 12
ht0 (mm) 10 6
ht1 (mm) 4 4
ht2 (mm) 15 17
hcy (mm) 10 10

P (W) 47.04 75.25
η (%) 78.78 82.11

γ 0.71 0.171
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5. Exoeriment and Analysis Result

A prototype of the STMLPMVG motor based on the optimized parameters is manu-
factured. The mover, stator, and machine structure of the prototype motor are shown in
Figure 21.
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Figure 22 present the no-load back EMF waveforms of the STMLPMVG varying with
time at a speed of 0.4 m/s. It can be seen from Figure 23 that the experimental result is in
accord with the result of the FEM.

Energies 2023, 16, x FOR PEER REVIEW 18 of 19 
 

 

0.00 0.01 0.02 0.03 0.04
−60

−40

−20

0

20

40

60

N
o-

lo
ad

 b
ac

k 
EM

F(
V

)

Time(s)

 Phase A  Phase B  Phase C

 
Figure 22. STMLPMVG no-load back EMF. 

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
−60

−40

−20

0

20

40

60

Ba
ck

 E
M

F 
(V

)

Time(s)

 FEM  Experiment

 
Figure 23. Comparison of waveforms of no-load back-EMF. 

6. Conclusions 
A novel STMLPMVG for a small-power off-grid wave power generation system was 

proposed in this paper. The principle of magnetic field modulation was derived, and the 
correctness of the principle was verified by an analysis of the air gap magnetic density. A 
comprehensive framework of multi-objective optimization for the STMLPMVG based on 
a combination of RS models and PSO was proposed. The output power of the 
STMLPMVG after optimization is increased by 60%, the generation efficiency is increased 
by 4.2%, and the fluctuation coefficient is reduced by 82.9%. Finally, a prototype of the 
STMLPMVG was built and the experiment results showed good agreement with the sim-
ulation results. 

Figure 22. STMLPMVG no-load back EMF.



Energies 2023, 16, 3164 17 of 18

Energies 2023, 16, x FOR PEER REVIEW 18 of 19 
 

 

0.00 0.01 0.02 0.03 0.04
−60

−40

−20

0

20

40

60

N
o-

lo
ad

 b
ac

k 
EM

F(
V

)

Time(s)

 Phase A  Phase B  Phase C

 
Figure 22. STMLPMVG no-load back EMF. 

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
−60

−40

−20

0

20

40

60

Ba
ck

 E
M

F 
(V

)

Time(s)

 FEM  Experiment

 
Figure 23. Comparison of waveforms of no-load back-EMF. 

6. Conclusions 
A novel STMLPMVG for a small-power off-grid wave power generation system was 

proposed in this paper. The principle of magnetic field modulation was derived, and the 
correctness of the principle was verified by an analysis of the air gap magnetic density. A 
comprehensive framework of multi-objective optimization for the STMLPMVG based on 
a combination of RS models and PSO was proposed. The output power of the 
STMLPMVG after optimization is increased by 60%, the generation efficiency is increased 
by 4.2%, and the fluctuation coefficient is reduced by 82.9%. Finally, a prototype of the 
STMLPMVG was built and the experiment results showed good agreement with the sim-
ulation results. 

Figure 23. Comparison of waveforms of no-load back-EMF.

6. Conclusions

A novel STMLPMVG for a small-power off-grid wave power generation system was
proposed in this paper. The principle of magnetic field modulation was derived, and the
correctness of the principle was verified by an analysis of the air gap magnetic density. A
comprehensive framework of multi-objective optimization for the STMLPMVG based on a
combination of RS models and PSO was proposed. The output power of the STMLPMVG
after optimization is increased by 60%, the generation efficiency is increased by 4.2%, and
the fluctuation coefficient is reduced by 82.9%. Finally, a prototype of the STMLPMVG was
built and the experiment results showed good agreement with the simulation results.
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