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Abstract: The development of AC distribution systems provides for the seamless integration of
low-voltage microgrids with distributed energy resources (DERs). This poses new challenges for
the control of normal, emergency, and post-emergency states of microgrids, calling for the creation
and development of information and communications technology infrastructure. Power convert-
ers/inverters that are used to integrate renewable DERs lack inertia. Along with them, fossil fuel-fired
generation units are also being integrated into microgrids. These include gas generator sets, diesel
generator sets, and microturbines, having small (up to 1–2 s) values of mechanical inertia constants—
Tj. This leads to an increase in the rate of transients by a factor of 5–10. Under these conditions, the
technical requirements for the speed of automatic power flow control systems, as well as the methods
they rely on, have to be reconsidered. Microgrids include DC microgrids, AC microgrids, and hybrid
(AC-DC) microgrids. In the case of hybrid microgrids, DERs are connected to the DC grid and are
integrated into the AC grid through a common inverter. The complexity of the task of microgrid
control is due to the need to choose properly the type and extent of control actions so as to prevent the
emergence and development of accidents. The employed control methods must ensure the reliable
power supply to consumers and the quality of power in microgrids, as well as the reliable operation
of the external distribution systems into which they are integrated. The article gives an overview of
control methods for low-voltage AC and AC-DC microgrids, which allow one to tackle effectively
solve the tasks.

Keywords: microgrid; distributed energy resources; generating set; renewable energy sources;
inverter; converter; power flow control; control action

1. Introduction

Decentralization of generation in the power systems of many countries around the
globe is one of the trends of their development, that makes them live up to the environ-
mental, socio-economic, and ethical expectations on the part of society [1]. Sustainable
energy development is possible through the creation of modern technologies in the field of
distributed energy resources (DERs).

DERs [2] include generation units based on renewable energy sources (RES): pho-
tovoltaic modules, wind turbines, etc. DERs also include fossil fuel-fired generation
units—gas generator sets (GGS), diesel generator sets (DGS), microturbines, as well as
energy storage systems (ESS) of various types, and fuel cells (FC) [3].

Integration of different DERs into distribution systems makes it possible to form small
power systems, i.e., microgrids [4]. This allows mitigating the issues resulting from the
separate use of DERs, including renewable DERs whose power generation is intermittent in
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nature, ESSs and fuel cells with high capital costs, as well as GGSs, DGSs, and microturbines
with high maintenance and repair costs [5].

Reliability of power supply to consumers, power quality, and economic feasibility in
microgrids is ensured by the implementation of control algorithms that take into account
the features specific to different types of DERs. One of the features is the lack of inertia in
renewable DERs as well as ESS and fuel cells [6,7] due to their integration into microgrids
through power converters/inverters with almost zero inertia. Moreover, GGSs, DGSs, and
microturbines have low values (1–2 s) of mechanical inertia constants—Tj, which leads to
an increase in the rate of transients by 5–10 times [8]. Flexibility in microgrids is provided
by the implementation of various control algorithms adapted to both grid-connected mode
(operating in parallel to the external distribution grid) and islanded mode [9,10]. Switching
of microgrids from one mode to another must take place without disturbing the operation
of DERs and consumers. This is possible with the bumpless switching implemented by the
static switch [11]. This requires a revision of the technical requirements for the speed of
load-dispatching devices and the methods they use [12].

Microgrids can be built only on the basis of DC, AC, and AC-DC distribution sys-
tems [13]. The variety of types and configurations of networks requires the development
of new principles for designing automatic control systems (ACS) and power flow control
methods [14]. DC microgrids require a new grid infrastructure to supplement the AC grids
in operation, which is costly. The article studies the principles of design of ACSs for AC
and AC-DC microgrids. In the latter case, the DERs are combined over a DC grid, but are
integrated into the AC grid through a common inverter [15].

Microgrids come in many different network topologies, such as radial, ring-shaped,
and mesh structures, each with its advantages and disadvantages [16]. The most widespread
is the radial network topology, on the basis of which open-ring circuits are implemented [17].
The mesh topology requires the construction of additional transmission lines, with which
multiple network configurations can be implemented in microgrids. However, this con-
tributes to the greater complexity of the ACS of microgrids, as it leads to changes in fault
current levels, bi-directional power flows, load re-allocation between DERs, etc. [18].

Available review articles on the subject focused on its different facets, for example,
the analysis of engineering solutions and methods of microgrid power flow control with
their key advantages and downsides examined. Ref. [19] discussed the control principles
of microgrids with different DERs. The study covered their mathematical models and
recommendations for application in DC, AC, and AC-DC microgrids. However, the article
failed to address the technical limitations of the considered control methods in existing dis-
tribution grids. Ref. [20] analyzed the structures of centralized, decentralized, distributed,
and hierarchical control systems for microgrids, with examples of implementation of the
most common control methods. That being said, the article lacked an analysis of microgrid
structures and technical limitations on the application of the considered control methods.
Ref. [21] examined the structures of microgrids, taking into account different aspects of their
operation, and providing recommended practices for the implementation of various control
methods. Ref. [22] presented a classification of the methods of primary control applied to
microgrids. The classification was based on the (un)availability of communication links,
with the advantages and downsides of each method identified. However, the implemen-
tation of the reviewed microgrid control methods was considered only in the case of AC
grids. Ref. [23] addressed the issue of implementing a coordinated approach to the control
of DERs, including ESSs, in the AC grid. The study also listed the technical requirements to
be met by DERs to be able to control their voltage when operating as part of microgrids. In
addition, Ref. [23] presented a comparative analysis of various control and optimization
algorithms in microgrids, based on which control methods are adapted. However, the
scope of the study was limited to considering only centralized and decentralized ACSs
of microgrids. Ref. [24] provided a comprehensive review of AC-DC microgrid control
schemes, indicating the effect of the control schemes adopted on the stability of microgrids
but with the scope limited to AC-DC microgrids only. Thus, the existing review articles



Energies 2023, 16, 3153 3 of 35

have addressed a large number of important issues, but there remain those that will benefit
from additional analysis. In other words, the existing literature reviews considered various
algorithms and methods of control of microgrids, which in most cases were presented as
having a simplified topology, without taking into account the technical aspects that limit
their application.

This article analyzed the state-of-the-art principles of microgrid design that influence
the choice of microgrid power flow control methods, as well as power flow control methods
themselves. The approach adopted here allows for streamlining the process of designing
microgrid ACSs in existing distribution grids’ low-voltage AC and AC-DC microgrids. The
article aims to discuss the principles of step-by-step design of microgrid control systems
based on already-known approaches so as to prevent the improper application of algorithms
and methods in the design process.

Section 2 of the article deals with the principles of design and the main types of
microgrids. Section 3 describes the principles of design of microgrid control systems,
highlighting the main objectives behind their creation and the requirements stipulated
by the standards. In addition, we discuss the existing structures for building microgrid
control systems and analyze various approaches to their implementation. Section 4 gives an
overview of available algorithms and methods for controlling AC microgrids and AC-DC
microgrids (hybrid microgrids). Section 5 discusses practical examples of AC microgrid and
hybrid microgrid control implementations. Section 6 covers the application of algorithms
and methods for controlling AC microgrids and hybrid microgrids, taking into account
their optimal use. Section 7 provides recommendations for implementing microgrid control
systems and outlines future research in microgrid control. Section 8 wraps up the paper
with conclusions and the results of the review performed.

2. Microgrid Design Principles

Integration of microgrids into distribution systems has a positive effect on power
systems in terms of improved observability, controllability, power quality, and reliability of
power supply to consumers [25,26]. One of the challenges is to ensure the dynamic stability
of DERs in emergency and post-emergency states, which is due to the lack of small values
of Tj in DERs as this imposes restrictions on allowable load flows and control algorithms of
microgrids [27]. Therefore, microgrids must operate as subsystems within the distribution
grid control system. Subsystems must have a structure that meets the requirements for
ACSs of DERs in order to maximize their technical and economic performance.

2.1. Ways to Integrate DERs

The effective use of different DERs with heterogeneous characteristics is only possible
with predefined and standardized procedures for forming microgrids. In what follows
we consider the DC, AC, and AC-DC circuits used in the design of microgrids [28,29].
Discussions about the predominant use of one or another circuit have continued until
recently [30]. Lessons learned from designing microgrids indicated that the determining
factor is the type of current consumed by electrical loads, most of which are powered by an
alternating current. It is converted from alternating current to direct current in a number of
electrical loads, such as electric cars, lighting systems, ESSs, etc. All DERs can be divided
into two groups with respect to the way they are integrated into microgrids. The first
group is the DERs that are coupled directly, not requiring the use of power converters. The
group includes GGSs, DGSs, and wind turbines of the first, second, and third types [31].
The second group includes DERs integrated through inverters (converters). This group
includes PV modules, Type 4 wind turbines [31,32], microturbines, ESSs, and fuel cells.
Therefore, AC operation is preferable for the former group and DC operation for the latter.
This eliminates the power converter from the circuit, which helps reduce power losses and
capital costs, and increases the reliability of DERs.
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2.2. Optimal Structure of DERs in Microgrids

Key defining features of microgrids include the large-scale integration into them
of renewable DERs, as well as heterogeneous loads with intermittent power genera-
tion/consumption. This can cause short-term unbalances of active and reactive power,
which leads to decreased power quality parameters and unstable operation of micro-
grids [33,34]. To solve this problem, it is effective to use ESSs, but the capital and operating
costs of ESSs remain high. It is required to determine the allowable power of renewable
DERs as part of microgrids, as well as the optimal power and energy capacity of ESSs [35].

A proper design is paramount to the reliability of microgrids because when they
operate in the islanded mode it allows them to maintain the specified power quality
parameters with respect to voltage and frequency. To model uncertainties when scheduling
microgrid power flows, it is proposed to use a probabilistic power flow, usually calculated
by Monte Carlo simulation, which is computationally expensive [36]. An alternative to the
above method is the use of approximated and improved iterative algorithms [37], which
have good accuracy in estimating variables and probabilistic parameters while requiring
much fewer computational resources.

Selecting an optimal structure of DERs in microgrids should be backed by statistical
data on load profiles on different days (weekdays, weekends, holidays), values of economic
performance metrics of DERs, geographical conditions of DERs location, values of reliability
metrics of DERs, etc., as well as requirements for power supply reliability and power
quality [38,39].

The use of optimization methods with life cycle cost minimization serving as the
criterion makes it possible to determine the allowable capacity of renewable DERs, ESS
specifications, as well as the microgrid design scheme [40]. Various methods can be used in
the optimization process, the most common are methods based on heuristic algorithms,
mathematical programming algorithms, and interior points methods [38]. As a rule, it is
possible to achieve the stated goals by using equipment with extensive power flow control
capabilities as part of microgrids [40–42].

2.3. Switching Equipment of Microgrids

Microgrids can be integrated into medium- and low-voltage distribution grids, but
they are most often connected to low-voltage grids, given the widespread use of PV mod-
ules in households. Microgrids are connected to a point of common coupling (PCC) by
means of a static switch. The static switch position determines the mode of microgrid opera-
tion (grid-connected or islanded) and implements the transition between them [43,44]. The
static switch is a fast-acting switching device based on power semiconductor components,
such as triacs, which have high overload capacity [45].

Smart circuit breakers are used to provide high-speed control of DERs and critical
loads. To control non-critical loads, it is standard circuit breakers with external control that
are used more often [46].

2.4. Microgrid Structures

The optimal choice of the microgrid structure reduces power losses and grid modern-
ization costs, ensures efficient frequency and voltage control in the islanded mode, and
improves the reliability of power supply to consumers [30]. There are three main structures
of microgrids: DC, AC, and AC-DC microgrids [47].

2.4.1. DC Microgrids

Coupling of DERs into microgrids without the use of power converters eliminates
power losses that occur in their conversion in the amount of 10–25% [48]. Another ad-
vantage of DC microgrids (Figure 1) is that they maintain the values of power quality
parameters within the required range, regardless of the AC grid mode of operation [28,49].
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DC microgrids are integrated into the distribution grid through a bi-directional inter-
linking converter (IC). It provides bi-directional power transmission and galvanic isolation
of DC and AC grids. DERs are connected through AC-DC or DC-DC power electronic
converters (PEC) to maintain the DC voltage within the required range.

The transition of DC microgrids into the islanded mode takes place in the event of
disturbances in the AC grid when the DC grid voltage deviates by more than ±10%, and
there are ripples of more than ±5% [50].

The advantages of DC microgrids include a simple structure, lower construction costs,
independence from the AC grid power flow, ability to maintain the required values of
power quality parameters during AC grid accidents, easy voltage regulation, no reactive
power, lower power losses, and no need for a synchronization algorithm in the ACS
of microgrids.

The downsides of DC microgrids are the need to build a DC grid, the difficulty of
integration into the existing AC grid, and the implementation of protection functions due
to the lack of standards and hands-on experience [51,52]. Moreover, DC microgrids require
the use of special-purpose DC circuit breakers for high fault currents, electric motors are
impossible to integrate without the use of AC-DC PECs, reliability of power supply to
consumers is compromised due to the presence of a common IC.

2.4.2. AC Microgrids

The availability of existing AC grids makes it much easier to create microgrids based on
them. The microgrid structure proposed in the CERTS Microgrid Concept [53] is commonly
used. It provides the ability to switch microgrids to the islanded mode while maintaining
the power supply to the load. In this case, the main circuit breaker is connected to the
substation low voltage bus, and all DERs are connected to the microgrid via DC-AC and
AC/DC-DC/AC PECs [54,55] (Figure 2).

Figure 2 shows that there are three feeders in the microgrid: feeder 1 and feeder 2 serve
the critical load, and feeder 3 serves the non-critical load. The installed circuit breakers
allow the microgrid to be reconfigured to balance active and reactive power. The static
switch controls the mode of operation of the microgrid with the distribution grid, providing
switching to/from the islanded mode. Criteria for the switching of microgrids into the
islanded mode are frequency deviations of ±0.2 Hz and voltage deviations of ±5%, as
well as overcurrent of the transmission line equal to 30% [56,57]. In the islanded mode of
operation, critical loads are fed from DERs, and non-critical loads are fed from the external
distribution system.
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The operation of microgrids in the grid-connected mode contributes to the reliabil-
ity of power supply to consumers and facilitates load dispatching of DERs during load
surges/shedding [58]. The disadvantages include the presence of a large number of PECs,
which compromises the reliability and efficiency of AC microgrids. There are engineering
solutions that are known to improve the reliability of PECs, but their adoption is not
ubiquitous [59].

Considering the above, the AC microgrid structure is most in demand for integrating
DERs into existing distribution grids.

2.4.3. Hybrid (AC/DC) Microgrids

The joint use of DC and AC microgrids allows for a better structure of a hybrid AC-DC
microgrid to be implemented. This simplifies the integration of different DERs and DC and
AC consumers and contributes to the efficiency of their operation [28]. This case is shown
in Figure 3.
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In a hybrid microgrid, AC consumers are connected directly to the AC bus and DC
consumers through DC-DC PECs to adapt the voltage level at the bus to the voltage
level of the load. Connecting DERs and DC loads to the DC bus minimizes the effect of
harmonic content on the power quality parameters of the external distribution grid. Hybrid
microgrids reduce the total number of PECs, which helps reduce power losses and improve
the reliability of microgrids.

Creating a hybrid microgrid requires considerable expenses to build a DC grid and
install a static switch to connect the microgrid to the external distribution grid. It breaks
even faster as the number of DC DERs that are connected grows, because of the decreasing
number of PECs. At the same time, the task of controlling a hybrid microgrid becomes
more complicated due to the need to coordinate AC and DC grid control algorithms.

Hybrid microgrids combine the main advantages of DC and AC microgrids, allowing
for the optimal use of different DER technologies [60]. The hybrid microgrid structure
shown in Figure 3 is one of the possible topologies. Other structures differ in the way
AC-DC microgrids are connected, using one or two static switches connected in paral-
lel [55,61,62]. In addition, they can use power routers, solid-state transformers, and small-
sized flexible AC transmission systems. However, in hybrid microgrids it is recommended
to use a semi-regulated high-frequency resonant DC transformer, operating at a resonant
frequency, which provides the required active power transmission ratio with a constant
voltage conversion gain [63].

3. Design Principles of Microgrid ACS

One of the main tasks of creating ACSs of microgrids is to ensure optimal control
of electricity production and consumption, as well as the sale of electricity as governed
by market mechanisms. This enhances the investment appeal of microgrids acting as
aggregators of DERs as well as adjacent microgrids [64].

3.1. Tasks of Microgrid Control

The grid-connected and islanded modes of microgrids both have their unique features
in terms of control arrangement. In the former mode, the frequency and voltage are
determined by the external distribution grid, and in the latter mode, by the frequency-
operated generation unit. In addition, it is necessary to ensure bumpless transfer from one
mode to the other and back [65,66].

In the grid-connected mode, the tasks of maintaining the voltage at nodes, overload
management, reduction of power losses, as well as maintaining the required values of
power quality parameters (reduction of voltage sags, harmonic compensation, flicker
mitigation, etc.) are solved. Furthermore, the control of power flows between the microgrid
and the external distribution grid by controlling the load of DERs is implemented, as well
as a bumpless transfer from the grid connected to the islanded mode by the action of
automatic multiparameter partitioning devices [67].

Operation in the islanded mode solves the following problems:

• frequency and voltage regulation within a specified range for all topologies and
operating conditions by controlling the active and reactive power of DERs, while
respecting the available constraints;

• automatic synchronization with the external distribution grid when the load flow
parameters are normalized there;

• electricity sales based on market mechanisms through optimized load dispatching
of DERs;

• reliable power supply to critical loads as part of the microgrid for all topologies and
operating conditions;

• automatic “black start” of microgrids in case of blackout;
• optimization of operating costs for the generation and distribution of electric power to

consumers [68,69].
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The above tasks are divided into groups. These groups of tasks [70] are addressed at
three levels: the local level, the microgrid level, and the level of an external distribution
grid (Figure 4).
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The following features should be taken into account when completing control tasks:

• power flows: bi-directional power flows occur between microgrids and the external
distribution grid, depending on the modes of generation of DERs and consumption
within microgrids;

• stability: short-term fluctuations in power flow parameters can occur due to the inter-
action of different ACSs, as well as when microgrids switch from the grid-connected
mode to islanded mode;

• low inertia: the dynamic characteristics of DERs, especially of those connected through
PECs, differ significantly from the characteristics of high-power generation units
coupled directly. Low inertia in microgrids and lack of the spinning reserve can lead
to significant frequency and voltage deviations in the islanded mode;

• uncertainty: it results from the intermittent demand and generation of electricity by
renewable DERs, which requires the ACS of microgrids to factor in the current value
of generation, predicted electricity demand, and its price to ensure reliability and
cost-effectiveness.

Since microgrids have the features that make them stand apart, their design principles
should be adapted to the specified operating conditions, which differ from conventional
ones in distribution grids (load balance across phases; load constancy; X/R ratios of
transmission lines) [71,72].

3.2. Requirements for ACSs of Microgrids

A large number of topologies and operating conditions of microgrids require the
design of more advanced ACSs [73]. The creation of service-oriented ACSs is possible
through the use of modern information and communications technology infrastructure,
intelligent electronic devices, and integrated hardware and software systems [74].

Table 1 [75] lists the regulatory documents containing technical requirements and
recommended practices. These documents should be used for the design and operation of
microgrids as well as their ACSs, depending on the characteristics of microgrids (capacity;
topology; types of DERs; load mix).
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Table 1. Standards for the design of microgrids.

Application Scope Standard Short Description Reference

Electrical Safety

IEC 60364-1
«Low-voltage electrical

installations—Part 1: Fundamental
principles, assessment of general

characteristics, definitions»

Recommendations for design and
verification of electrical

installations of nominal voltages
up to 1000 VAC or 1500 VDC to

guarantee the safety

[76]

Electromagnetic
compatibility

IEC 61000-4-30
Electromagnetic compatibility
(EMC)—Part 4–30: Testing and

measurement techniques—Power
quality measurement methods»

Requirements for power quality
boundaries for AC and DC buses
(e.g., voltage unbalance is limited

to 3%)

[77]

Design of systems with DERs
IEC 61508 «Functional safety of elec-

trical/electronic/programmable
electronic safety-related systems»

Features of the design of electrical,
electronic, and programmable

systems that provide the required
reliability, efficiency, and

fault-free operation of microgrids
with DERs

[78]

Structures for control
system design IEC 61499 «Function blocks»

Distributed control structure;
standardized requirements for

software tools to ensure software
compatibility in intelligent

devices, machines, and systems

[79–81]

Creation of a general
information model

IEC 61970 «Energy management
system application program

interface (EMS-API)»

Requirements for the general
information model, equipment,

and other components of the
power system in the form of

classes, their properties, and links

[82]

IEC 61968 «Application integration
at electric utilities—System
interfaces for distribution

management»

Requirements for exchanging
asset management, work

scheduling, and billing data for
consumers in microgrids

[83]

Connecting microgrids to the
public grid

IEEE 1547
«Standard for Interconnection and

Interoperability of Distributed
Energy Resources with Associated
Electric Power Systems Interfaces»

Rules for the safe integration of
DERs (up to 10 MVA), allowable

load flows during microgrid
switching to the islanded mode,

and requirements for power
quality boundaries. Standardized
values of U, f, and phase angle at

the interface point

[56]

Power utility automation
IEC 61850 «Communication

networks and systems in
substations»

Rules for the communication
between microgrids and

substations, as well as intelligent
devices within microgrids

[84]

Information security

IEC 62351 «Power systems
management and associated

information exchange—Data and
communications security»

Requirements for information
security (data transfer and
communications design)

[85]

Power System
Management (PSM)

IEC TR 62357 «Power systems
management and associated

information exchange»

Requirements for power system
management processes and

related information exchange
[86,87]
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Table 1. Cont.

Application Scope Standard Short Description Reference

Energy Management
System (EMS)

IEEE Std P2030
«Guide for Smart Grid

Interoperability of Energy
Technology and Information

Technology Operation with the
Electric Power System (EPS),

End-Use Applications, and Loads»

EMS-based control layer
functions that are common to all

microgrids, regardless of their
structure, topology, or affiliation

[88]

Stand-alone DC power
suppliers

IEEE 2030.10
«Standard for DC Microgrids for

Rural and Remote Electricity Access
Applications»

The rules of operation of 48 VDC
microgrids in self-sustaining

communities. Recommendations
on DC grid control and

communication protocols

[89]

Medium voltage DC bus

IEEE 1709
«Recommended Practice for 1 kV to
35 kV Medium-Voltage DC Power

Systems on Ships»

Recommendations for
maintaining power quality

parameters in 1000 V to 35,000 V
grids within specified boundaries
(e.g., maximum acceptable ripple

and DC voltage tolerances)

[50]

Energy thermal efficiency
of buildings

ISO 52016-1
«Energy performance of

buildings—Energy needs for
heating and cooling, internal

temperatures and sensible and
latent heat loads—Part 1:
Calculation procedures»

Response time requirements in
low-voltage AC microgrids to

meet thermal performance
requirements for buildings (e.g.,
energy requirements for heating

and cooling)

[90]

Connection of electric
vehicles

IEC 61851
«Electric vehicle conductive

charging system—Part 23: DC
electric vehicle charging station»

Information about household
electric vehicle charging stations

in single-phase (250 V) and
three-phase

(480 V) systems

[91]

3.3. Structures of Microgrid ACSs

It is impossible to create a standardized design of a microgrid ACS [70]. This is due to
the wide variety of DERs, microgrid structures, types of electrical loads, etc. Therefore, the
structure of an ACS is formed on a case-by-case basis for each microgrid during its design.

The same approaches are used in the design of microgrid ACSs as those in the ACSs
of power systems. The distribution management system (DMS) is commonly used in
distribution grids. The DMS implements algorithms for monitoring the grid and DERs, as
well as those of grid reconfiguration and voltage regulation by controlling static reactive
power compensators and the largest generation units. However, the DMS does not provide
for the implementation of control actions on multiple DERs, which leads to compromised
reliability of distribution grids. When DERs are deeply integrated, controllability can only
be achieved by creating more advanced ACSs of microgrids [92].

The microgrid structure usually has a central controller as well as controllers of
DERs. Most often local controllers that combine their functions are used instead of the
latter [93–96].

Local controllers come either as separate devices or as a set of functions in intelligent
electronic devices (smart meters, PECs) with sufficient computing power. Local controllers
implement algorithms for monitoring and control, including the control of the power of
DERs, through control actions on PECs.

Information and communications technology infrastructure are not necessary for local
controllers to function. They implement decentralized algorithms based on frequency and
voltage droop control. This allows for the DERs power control based on local data, since
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the frequency is related to active power and voltage is related to reactive power [93]. This
approach is applicable to DERs based on synchronous generators, but its implementation
in DERs with PECs is not possible, given the features discussed below.

The central controller coordinates local controllers in the microgrid to improve techni-
cal and economic performance by implementing ancillary services and ensures microgrid
communication with the energy service company and distribution system operator. In
addition, the central controller calculates and issues setpoints and control actions to local
controllers. The central controller is usually designed as a separate unit installed in the
medium voltage substation but is sometimes integrated into the DMS [70].

3.3.1. Hierarchical Control in Microgrids

A large number of different DERs with different protection setpoints and allowable
operating ranges influence the nature and parameters of transients, which determines the
requirements for control algorithms in ACS microgrids [97]. It is important to note that the
different control algorithms are decoupled in time, since they require to be executed in a
certain sequence. Therefore, in microgrids, ACSs with a hierarchical structure, which is
also standardized, are widely used [98].

Hierarchical ACSs can have a different number of control levels. The most common
are the three-level ACSs:

• primary level: power, voltage, and current monitoring of DER. The level implements
the basic algorithms with setpoints specified by higher-level controllers via PECs [99];

• secondary level: monitoring of the execution of algorithms on the first level and
maintaining the required values of power quality parameters in the microgrid [100].
The level implements algorithms for microgrid switching from the grid-connected
mode to islanded mode and back, as well as control of the amount of power flows to
and from the external distribution grid (other microgrids);

• tertiary level: implements optimization algorithms to improve the economic per-
formance of microgrid operation. This requires information and communications
technology infrastructure, as well as intelligent algorithms for decision-making [101].

Thus, the tasks of power supply reliability and power quality are implemented at the
primary and secondary levels, and economic performance is ensured at the tertiary level
of control.

Separating control tasks by the time of their execution streamlines the analysis of
microgrid behavior, as well as modeling and forecasting processes. The transition to
higher-level tasks is accompanied by a decrease in the speed of algorithm execution [102]
(Figures 5 and 6).
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Coordinated management of DERs in microgrids can be implemented using cen-
tralized, decentralized, or distributed approaches to control (Figure 7). The choice of
a particular approach is determined by the goals of the creation of the microgrid and
the specifics of microgrid design, as well as the availability or accessibility of resources
(personnel, equipment, etc.).
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The degree of decentralization of control in microgrids depends on the functionality,
the control algorithms implemented, as well as the computing power of local controllers.

3.3.2. Centralized Control of Microgrids

The centralized approach to the arrangement of microgrid control (Figure 7a) is well-
researched because its implementation is based on the same principles as in the hierarchical
ACS. In the case of centralized control, all control functions are implemented in the central
microgrid controller, which analyzes the information from local controllers of DERs and
calculates and issues the control actions. The control actions are implemented by local
controllers, whose functions in AC and AC-DC microgrids are often performed by PECs.

Achieving maximum efficiency in microgrids is possible through coordinated control
of all DERs, which is attainable when centralized control is implemented. More DERs
operating in a microgrid require more processing power from the central controller, so this
approach to control is used in small microgrids.

Having one device performing all calculations in a microgrid requires reliable high-
speed broadband communication links between local controllers and the central controller.
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However, this does not guarantee high reliability of the entire ACS, since the employed
topology of the communication network (point-to-multipoint) in case of failure of the
communication interface of the central controller, leads to a complete failure of the ACS.

3.3.3. Decentralized Control of Microgrids

In the decentralized approach (Figure 7b), all control functions are implemented in
local controllers using only local information. There is no need for a central microgrid
controller and information and communications technology infrastructure. There is im-
plicit communication between the local controllers. It is due to the mutual influence of
the results of the implementation of algorithms by individual local controllers on the
change of load flow parameters in the microgrid. This reduces the computational load
on the local controllers since the completion of the control task is divided among the
individual components.

3.3.4. Distributed Control of Microgrids

The presence of two-way communication between neighboring local controllers allows
for the creation of the distributed ACS of microgrids (Figure 7c) to maximize the effect of
optimization algorithms.

The partial mesh topology of the communication network used in distributed control
allows it to remain operational in case of failure at any node. This communication network
topology simplifies the process of scaling it up since each individual node is essentially a
router. When connecting new DERs, it is not necessary to reconfigure the communication
network, and this allows for the use of plug-and-play technology. The distributed control
approach is more attractive than the centralized approach, presenting a holarchic control
architecture [103] with a holonic production system [104].

The hybrid approach to microgrid ACS implementation is to combine local controllers
of one cluster (several DERs connected close to each other) under the control of one
central controller connected to the central controller of another cluster in the microgrid.
This improves the coordination and efficiency of DER control in both grid-connected and
islanded modes [105].

4. Algorithms and Control Methods for Microgrids
4.1. Control Methods for PECs

Ref. [30] provided recommendations for the choice of structures and methods of
microgrid control using different communication links. The choice should take into account
the structure of the grid as well as the allowable power flows of microgrids. Existing
studies addressed the issue implementation techniques of bumpless switching to the
islanded mode, as well as those of economic scheduling, joint regulation of frequency
and voltage, improving the reliability of redundancy, preventive and emergency control,
synchronization and execution of automatic “black start” have been studied. Ref. [106]
reviewed practical examples of the construction and operation of microgrids based on a
hierarchical ACS.

Creating microgrids requires solving optimization problems, which fall into three
classes: optimal power flow, scheduling, and planning. Various metaheuristic methods
have been most widely used for their solution, since they show good results for solving
complex control problems, especially those characteristics of microgrids with intermittent
generation [107].

Metaheuristic methods include:

• evolutionary computations: methods that simulate the evolution of population mem-
bers (genetic algorithms, differential evolution);

• methods of swarm intelligence: methods capturing the properties of self-organizing
groups of biological organisms with “smart” global behavior (ant colonies, harmony
search algorithm, particle swarm optimization, etc.);
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• artificial immune systems: methods inspired by theoretical immunology and modeling
the processes used by the immune system to respond to external threats;

• non-population-based metaheuristics: methods based on finding a single solution,
i.e., temporarily taking the worst solution with a probability that decreases as more
iterations are run (simulated annealing, tabu search) [108].

The choice of the metaheuristic method is based on the available computational re-
sources and the number of function convergence estimates [109]. For example, evolutionary
computations based on genetic algorithms are applicable to any configurations of micro-
grids, allow the use of hybrid approaches, are easily scalable, and do not impose restrictions
on the functions they perform. However, the performance of the algorithm is determined
by the quality of the coding of the optimization problem, as well as by its sensitivity to
parameter setting [110]. The differential evolution method, which has a higher rate of
function convergence than the genetic algorithm, is a simple and reliable method applied
to optimization problems with constraints that require a relatively small number of con-
trol variables. However, this algorithm strongly depends on parameter setting, which
determines the convergence rate [111].

Issues with coding the algorithm are resolved due to the use of swarm intelligence
methods, such as the particle swarm optimization method. This method does not require
special coding, and its simplicity combined with efficiency makes it an ideal solution when
computational resources are limited [111].

Artificial immune systems are formed on the basis of a distributed model with no
control center, i.e., they use only local information. Therefore, these methods require a
minimal amount of computational resources, unlike population-based methods. However,
these methods require calibration to solve the optimization problem, unlike evolutionary
computation and swarm intelligence methods [112].

Non-population-based metaheuristic methods require the least computational re-
sources relative to other methods, but they also have the lowest accuracy [113].

The studies and examples reviewed here show that the key challenge is to ensure the
proper operation of the static switch through which the microgrid communicates with the
external distribution grid. In the grid-connected mode of operation, it must function as a
current source, providing power output and consumption from the external distribution
grid, and in the islanded mode, as a voltage source, creating a reference voltage of nominal
frequency for the microgrid [114].

4.1.1. Switching Microgrids to the Islanded Mode

The main difficulties in the implementation of the ACS of the static switch are time
delays that occur both in the dynamic response of the ACS and during its operation.
Compensators of voltage, active and reactive power are used to stabilize the external
characteristics of the static switch [115]. For example, when the microgrid switches to the
islanded mode, deviations are possible between the actual and reference voltage values
of the DC link static switch, in which case the output voltage compensator that sets the
reference current for the internal control loop is triggered [14].

4.1.2. Operation of Microgrids in the Islanded Mode

Switching of microgrids to the island mode takes place either in case of accidents or
during scheduled switching operations in the external distribution grid. Since the main
circuit breaker of the microgrid has high speed, the transfer to the islanded mode requires
rapid coordination of control algorithms of all DERs with PECs in the microgrid, so the
ACS needs to implement an algorithm to control microgrid operation modes.

The main goals of microgrid islanded mode control are as follows [116]:

• maintaining the necessary voltage value at the voltage source in the microgrid to
ensure proportional power allocation between DERs with PECs;

• maintaining the specified frequency at the voltage source in the microgrid, according
to the specified characteristic and droop coefficient.
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4.1.3. Synchronization of Microgrids with the External Distribution Grid

The main method used to synchronize microgrids with an external distribution grid
is the phase-locked loop technique [117]. In this technique, the phase angle of the voltage
vector is selected based on the microgrid voltage vector and the q-axis voltage vector at
the point of common coupling. Then, using a phase-locked loop, the angle between these
vectors at the voltage source is reduced to zero.

However, the phase-locked loop technique cannot be used in the presence of an
unbalanced (non-linear) load, as it is a source of interference to the execution of the
algorithm. Its operation provokes sudden changes (jumps) in the phase angle. In this
case, a modified phase-locked loop method should be used, which additionally uses a
second-order generalized integrator to adjust frequency [118]. To coordinate local microgrid
controllers relying on voltage and current control algorithms, as well as the phase-locked
loop technique, it is necessary to provide for the implementation of control actions from
the central microgrid controller or apply other methods [119].

4.2. Features Unique to Microgrid ACS Implementation
4.2.1. AC Microgrids

The microgrid ACS usually has a three-layer hierarchical structure. Primary control in
microgrids is implemented by local controllers acting on PECs of DERs, providing control
of their active and reactive power and allocation of power among DERs.

Control of DERs is implemented by algorithms that fall into several categories, depend-
ing on the selected current and voltage reference system: synchronously rotating system dq,
complex system αβ, and natural three-phase system abc [120]. In a synchronously rotating
system, proportional-integral (PI) regulators are used, in a complex system, proportional-
resonance (PR) regulators are used, and in a natural three-phase system, PI or PR regulators
are used. Output parameters of DERs are controlled through an external loop (for voltage
control) and an internal loop (for current control). Traditionally, linear and nonlinear
current regulators are used for this purpose [121].

Linear current controllers are used in PI controllers in DC grids because they can track
specified values with zero steady-state error. On the other hand, PR controllers are most
often used for control in AC grids.

Non-linear current regulators are based on hysteresis current control, sliding load flow
control, neural network algorithms, and fuzzy logic algorithms. Thus, nonlinear regulators
control the active and reactive power of DERs by regulating the current in the DC link of
PECs. Various problems may arise, which were discussed in detail in [122].

The most common method for controlling PECs of DERs are multi-parameter methods
and their various modifications, which improve the dynamic response when the microgrid
load flow changes and increase the tolerance to load uncertainty (non-linearity) [123–126].

Managing the allocation of power between DERs helps ensure the reliability of power
supply to consumers and the optimal operation of microgrids. To this end, droop-based
methods as well as methods that do not use droop are employed.

The droop is specified by the P-f and Q-f characteristics in order to regulate the
frequency and voltage in the microgrid islanded mode [127–131]. If Umg < 0 and E < δ
when integrating DERs through PECs with a small value of the angle δ, the magnitude
of active and reactive power when connected to a transmission line with predominantly
inductive reactance will be determined by Equations (1) and (2):

P =
U·E

X
·δ; (1)

Q =
U·E − U2

X
, (2)

where U is the PEC output voltage; E is the voltage at the point of common coupling.
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Given that in low- and medium-voltage power lines the ohmic resistance prevails,
expressions (1) and (2) are not applicable for these grids. The P-f droop characteristic
reduces the output voltage frequency with increasing output power of PECs of DERs, while
the Q-f droop characteristic reduces the output voltage amplitude with increasing reactive
power in the microgrid islanded mode.

Specifying the droop allows one to simulate the inertia of the synchronous machine
for DERs with PECs in order to maintain the balance of active power and frequency in the
islanded mode. In case of emergency disturbances, significant deviations of frequency and
voltage from the nominal values may occur, which leads to instability of regulation. For
voltage sources, the frequency and voltage values are set according to Equations (3) and (4):

ω = ω0 − D1·P; (3)

U = U0 − D2·Q, (4)

where ω0—nominal angular frequency at the voltage source; U0—nominal output voltage
of the voltage source; D1 —droop constant for the P-f characteristic; D2—droop constant for
Q-f characteristic. They can be specified: D1 = ωmax−ωmin

Pmax
and D2 = Umax−Umin

Qmax
, where ωmax

and ωmin are the maximum and minimum angular frequency values; Umax and Umin are
the maximum and minimum voltage values; Pmax and Qmax are the maximum allowable
values of active and reactive power of DERs.

The disadvantages of traditional droop-controlled methods were discussed in detail
in [130]. Some of the difficulties can be solved by modifying the techniques. Next, we
consider modified techniques for setting droop [131] relying on the following:

• static characteristic of voltage regulation as a function of active power (U-Ps) and
inverse static characteristic of frequency regulation as a function of reactive power (f-
Qis) [132,133]; static characteristic of reactive power regulation as a function of voltage
increment Q-U’ [134]; static angle regulation [135];

• transformation of the reference frame [136];
• virtual impedance [137,138], virtual inertia [139,140];
• unbalanced control of active and reactive power flows and non-linear load dispatch-

ing [141–143];
• adaptive (modified) droop control [144,145].

In what follows, we consider the principles of their implementation, as well as the
advantages and disadvantages.

Static characteristics of voltage regulation as a function of active power (U-Rs) and
inverse static characteristics of frequency regulation as a function of reactive power (f-Qis)
are used in low-voltage grids. In this case, the output voltage of PECs of DERs decreases
as the output power increases, while the frequency increases as the output reactive power
increases. This improves the power allocation in low-voltage grids but it depends on the
parameters of the grid. This approach is not applicable to grids with non-linear loads.

The static characteristic of reactive power regulation as a function of the voltage incre-
ment Q-U’ provides reactive power allocation between DERs regardless of the transmission
line impedance. The voltage restoration circuit maintains a constant output voltage by
maintaining a zero-voltage increment U’ = 0. This method depends on initial conditions
and also has low stability.

Static angle regulation has a significant low-frequency deviation compared to static
frequency regulation. The angular phase of the PECs output voltage can be used effectively,
provided that low bandwidth communication links are in place. However, the method
requires inductive reactance between the PECs and the microgrid AC bus. A larger angle
enhances the droop effect through an additional control loop in low-power microgrids in
order to increase the accuracy of load allocation between DERs.

The reference system transform method uses a linear orthogonal matrix to convert
the values of active and reactive power flows to a new reference system, where they do
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not depend on the transmission line impedance. In Equations (3) and (4), P and Q are
substituted for the transformed Pn and Qn, respectively. Similarly, the frequency and
amplitude of the output voltage are transformed into the variables ωn and En, which form
the PECs reference voltage and frequency for the control circuits.

The virtual impedance is used in the feedback circuit of the voltage regulation loop.
Thus, the PECs output voltage is generated by adjusting the virtual impedance Zu(s). The
output voltage of PECs (U) is defined as U = U∗

0 − Zu(s)·i0, where U∗
0 —output voltage

of PECs at no-load; i0 —output current; Zu —virtual impedance. If Zu(s) = sLu(s), the
output voltage decreases in proportion to the derivative of the output current. However, the
harmonic distortion of the output voltage will have large values when feeding a non-linear
load. To solve this problem, one has to use a high-pass filter instead of sLu.

The emulation of virtual inertia in microgrids prevents nuisance tripping of circuit
breakers during short-term frequency decreases/increases. The droop coefficient is modi-
fied as the function d f

dt , which is effective when d f
dt exceeds the threshold value B. The rule

of the modified droop control method takes the form:

ω∗
i = ωn − ci·(Pn,i − Pi), (5)

where ωi and Pi—voltage frequency and output active power of DERs, respectively; indices
“*” and “n”—reference and a nominal number of PECs; ci—droop coefficient, determined
by Equation (6):

ci =

cn,i − ω1 ·
∣∣∣ d f

dt

∣∣∣ω2
, for

∣∣∣ d f
dt

∣∣∣ ≥ B

cn,i, for
∣∣∣ d f

dt

∣∣∣ < B
, (6)

where cn,i—nominal droop gain, which changes if the rate of frequency change exceeds the
set value; ω1 and ω2—frequencies corresponding to the maximum PECs power and the
maximum allowable frequency change, respectively.

The virtual inertia emulation allows us to represent the voltage source as an equiva-
lent virtual synchronous machine (VSM) with a static frequency control characteristic in
microgrids [140] (Figure 8).
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Low-pass filtering of active power in the voltage source circuit also contributes to
virtual inertia, which improves stability and damping in microgrids. Simplified frequency
droop control P-f is implemented as per Equation (7):

Tf ·
1

mp
s·ω∗ = P0 − Pf −

1
mp

(
ω∗ − ωg

)
; (7)

where P0 = p0—reference value of active power; Tf —time constant of the low-pass filter;
Pf = pel—filtered output active power; mp = 1/kd, mp—frequency droop coefficient; kd —
damping coefficient of active power regulator; ω*—reference value of angular frequency;
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ωg—angular frequency at the point of connection to microgrid; pm—active power signal in
the feedback link; θ—angular position of VSM rotor.

The negative effect of unbalanced flows of active and reactive power in the transmis-
sion line can be compensated by applying a high-frequency signal, which was discussed in
detail in [141].

There is a method that provides current-sharing between the PECs of DERs connected
in parallel without coupling between them [142]. There is also a technique that has harmonic
voltages calculated based on the current harmonics and impedance of the PECs for each
frequency. The resulting voltage is then added to the reference voltage of PECs of DERs to
eliminate the effect of the harmonic voltage on the output voltage. At the same time, its
value must be calculated for each frequency for compensation purposes.

There is a technique that uses a negative virtual harmonic impedance to compensate
for the effect of transmission line impedance [143]. This makes it possible to share harmonic
energy without deteriorating the power quality of consumer buses. Harmonic separation
is achieved by reducing the transmission line impedance corresponding to a particular
harmonic and by reducing the voltage that is added to the reference voltage.

Adaptive voltage droop control improves the quality of voltage regulation by elimi-
nating the resistance between the voltage source and the point of common coupling [144].
In this case, the voltage drop across the resistance between the voltage source and the point
of common coupling is included in the standard Q-U static control procedure. This method
is highly effective at high loads in the microgrid, but at medium and low loads the effect of
its use decreases.

Modified adaptive droop control is implemented using Equations (8) and (9):

δ = −npP − ni

∫ t

∞
Pdτ − nd

dP
dt

, (8)

U0 = U − jQ − jd
dQ
dt

, (9)

where δ—power angle and frequency calculated from power angle derivative; np, ni and
nd—proportional, integral, and differential coefficients of output active power P; j and
jd—static and differential voltage droop coefficients; U0 and U—specified (nominal) and
regulated output voltage of PECs.

Modified adaptive droop control minimizes the transient circulating current between
PECs of DERs, thereby improving the transient characteristic [145]. This provides the
local microgrid controller with two degrees of freedom. Droop gain is used to control the
magnitude of voltage and frequency, and transient coefficients are adjusted to actively
suppress low-frequency power while it is shared among the PECs of DERs.

Droop is controlled by a proportional-integral-differential compensator that optimizes
the frequency characteristic of the filter using three gain factors: proportional, integral, and
differential. The first one is used for active power control, the second one is for power angle
control together with PI reactive power compensator, and the third one is for the output
voltage of PECs of DERs. Simulation results confirmed that when small signals are applied
to the compensator input, they are amplified in the transient, thus improving the response
of PECs of DERs.

When not using droop control, communication links between devices in the microgrid
are required. To improve the efficiency of control, it is justified to adopt a centralized
approach to control in microgrids as implemented in the following ways [71,146,147]:

• centralized control: local controllers transmit the data on the currents of all DERs
to the central microgrid controller, which also monitors the voltage in the external
distribution grid. The central controller calculates the contribution of each of the
DERs to the total current, taking into account their specifications. The setpoints are
also calculated from the output currents of DERs, which are transmitted from the
central controller to local controllers. This approach allows for effective damping of
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transients but depends entirely on the reliability of the microgrid’s information and
communications technology infrastructure [148,149];

• “master-slave”: the master PEC of the DER ensures that the microgrid maintains
voltage and frequency within acceptable ranges, while the slave PECs of DERs either
output or consume P and Q. This method is quite flexible, but its reliability is highly
dependent on the proper operation of the master PEC of the DER under all load
flows [150–152];

• voltage regulation and control of power allocation between PECs of DERs are per-
formed by the central microgrid controller via low bandwidth communication links.
In this case, local controllers provide harmonic and unbalance suppression [152–154].

Secondary control in microgrids is implemented through the EMS, which is responsible
for maintaining power quality parameter values as well as frequency and voltage restora-
tion when the primary control reserves prove insufficient [155,156]. The EMS provides
synchronization of the microgrid with the external distribution grid, as well as optimal
coordination of DERs in the microgrid. Secondary control can be implemented on the basis
of centralized, distributed, and decentralized principles.

In centralized secondary control, the central microgrid controller sets the power values
for local controllers [157]. Its main advantage is the online optimization of input parameters:
setpoints, boundary conditions, network parameters, and predicted load flow.

As the number of DERs in a microgrid grows, the need to use distributed control meth-
ods arises. This allows for effective interaction between microgrid components to improve
reliability, safety, and optimal performance [157]. In this case, the EMS communicates with
the distributed control system by issuing its active and reactive power settings.

This is realized in a potential secondary control method that requires communication
links. To this end, the central microgrid controller calculates the potential function for all
PECs of DERs, minimizing its value to arrive at the specified power values.

ϕi
(

xj
)
= ωdg ∑

mdg
k=1 pdg

k
(
xj
)
+ ωcn ∑mcn

k=1 pcn
k
(

xj
)
+ ωob pob

k
(
xj
)
, (10)

where ϕi —potential function; xj—measurement vector of the j-th element; pdg
k , pcn

k and
pob

k —partial-potential measurement functions of the k-th component of the microgrid; ωdg,
ωcn and ωob—weights of partial-potential functions.

The advantage of distributed control systems is that local controllers have more
autonomy and can make decisions based on their interaction with each other. In distributed
control, the control actions are formed taking into account both local load flow parameters
and the microgrid operation mode as a whole [158].

Next, we consider the main categories of distributed control systems.
In agent-based systems, agents can be both physical and virtual entities, capable of

responding to changes in the microgrid. Agents have intelligent algorithms that allow them
to interact to solve common problems [159]. Agent-based systems use algorithms for micro-
grid state control, multicriteria assessment, and market competition [160]. The Java Agent
Development Environment [161] is used to develop agents and ensure their coordination.

The predictive control method uses the forecast data on power consumption and
generation in the microgrid, as well as the variables dependent on them [162]. This
method allows one to solve multicriteria optimization problems using feedback mechanism
predictions and controllable system constraints. The voltage prediction approach avoids
voltage instability by controlling reactive power generation in the microgrid islanded mode.

A two-layer model of predictive control of hybrid energy complexes with renewable
DERs makes microgrid operation more resilient to uncertainties [163]. When solving a
problem with boundary variables, the reference settings of the on/off time of the GGS
(DGS) are used, taking into account the deviations of the PV module power generation
from the predicted values [164]. The calculation of the GGS (DGS) on/off time offset takes
into account the microgrid state, load prediction data, and the current PV module power.
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In distributed control systems, consensus-based methods can be applied to solve
optimization problems to obtain a convergent solution for loading PECs of DERs. The
multi-agent algorithm is implemented based on the average-consensus theorem for a
group of agents that are designed to interact in the microgrid [165]. The application of the
dynamic-consensus method optimizes the sharing of the negative sequence current under
unbalanced load conditions.

Tertiary control is the slowest type of control, allowing for the coordination of sev-
eral microgrids, so as to conform with the requirements of the external distribution
grid [166,167]. When the specified values of active and reactive power are obtained from
the DMS, control actions are formed within microgrids, taking into account the actual
values of the generated power. The control of active and reactive power flows between
microgrids and the external distribution grid contributes to solving the problem of the
optimization of microgrid operation.

The application of intelligent control methods for power convert-based microgrids
was discussed in a large number of studies [168,169]. One of the intelligent control methods
is based on fuzzy inference, which includes:

• a fuzzifier—maps crisp (real-valued) input information into fuzzy information (fuzzy
subset);

• an inference engine;
• a defuzzifier—converts the fuzzy output of the rule-based inference engine into crisp

(real-valued) information to implement fuzzy inference control of the spatial vector
of pulse-width modulation of the power converter. This provides the values of the
magnitude and angle of the reference voltage vector needed to calculate switching
moments and select switching algorithms.

The method of frequency control in primary regulation based on fuzzy inference is
applicable to variable-speed wind turbines [170]. A fuzzy logic operator sets the pitch angle
and power of the wind turbine inverter over the entire range of wind speeds. An advantage
of this approach is that the primary power reserve is maintained independent of the current
wind speed by controlling the pitch angle and torque of the generator, determined by
fuzzy inference control. However, this does not take into account sudden load changes and
possible damage in the microgrid [171]. The combination of fuzzy inference and swarm
optimization was used to implement secondary frequency control in AC microgrids [172].

Another method of intelligent control is based on the use of artificial neural net-
works [173]. This method has been successfully applied to the estimation of load flow
parameters, load forecasting, identification of islanding away of microgrids and switching
control. Adaptive neuro-fuzzy ACS, for example, can be implemented in a frequency and
voltage droop controller. This allows for the independence of ACS decision-making from
the parameters of the power line and microgrid configuration, but it significantly increases
the computational load [172].

Next, we list the features that are unique to ACS implementation in AC microgrids:

• selection of the type of ACS should be made on the basis of microgrid parameters
(number of DERs, grid structure, etc.) and possible operating conditions;

• If ohmic resistance prevails in the power transmission line connecting the microgrid
with the external distribution grid, then the ACS should use the static characteristic of
voltage regulation as a function of active power (U-P) and the inverse static character-
istic of frequency regulation as a function of reactive power (f-Q), which will provide
the required quality of regulation;

• the ACS, which has a hierarchical structure, provides a more accurate distribution of
active and reactive power between PECs of DERs, as well as the required quality of
frequency and voltage regulation in microgrids;

• if there are unbalanced flows of active and reactive power in the transmission line
connecting the microgrid with the external distribution grid, due to the presence of
non-linear load in the microgrid, the ACS should employ state-of-the-art methods.
These methods involve the following: applying a high-frequency signal, allocating
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harmonic current between PECs of DERS connected in parallel without coupling
between them, and adding a negative virtual harmonic impedance in order to allocate
active and reactive power more accurately between PECs of DERs;

• control algorithms without communication links, which are based on frequency and
voltage droop control, do not depend on the location of DERs and loads in the micro-
grid, but they are less efficient due to the lack of information exchange between PECs
of DERs;

• ACS based on decentralized algorithms are increasingly being used because of the
reduced risk of ACS failure due to damage to a single component, as opposed to
centralized or agent-based ACSs.

4.2.2. Control Methods for Hybrid Microgrids

Hybrid microgrids have DC and AC networks connected to each other through a
common inverter.

Refs. [14,21,24,61] listed the following challenges faced by hybrid microgrids:

• the ACS has a more complex structure and control algorithms due to the absence of a
system-wide variable used for power allocation and frequency and voltage regulation;

• in the stand-alone, or islanded mode, power allocation between DC and AC microgrids
cannot be ensured by droop-based algorithms;

• when there is a nonlinear load in the microgrid, it is necessary to ensure that the
harmonic content power is distributed among the DERs;

• it is necessary to trade off the allocation of reactive power flows against voltage
regulation at microgrid nodes under different operation conditions;

• droop control must not depend on the impedance of the power transmission line
between the voltage source and the point of common coupling for optimal power
allocation between DC and AC DERs;

• a hybrid microgrid requires the use of a reliable EMS to ensure reliability and the
best performance;

• to provide online control of hybrid microgrid load flows, it is required to use hybrid
ESSs for compensation of short-term unbalances of active power in the presence of
pulsed loads.

Creating ACS and arranging the operation of hybrid microgrids is more complicated
than it is in DC and AC microgrids. A hierarchical ACS of hybrid microgrids, as a rule, has
three layers to implement the algorithms of primary, secondary, and tertiary control [174].

Centralized primary control is used in stand-alone hybrid microgrids with PV modules,
wind turbines, and DGSs equipped with intelligent power regulators [175]. The regulators
implement the maximum power point tracking (MPPT) function. In centralized ACSs, the
central microgrid controller provides power balancing by determining the reference voltage
and current values for local controllers. The power balancing algorithms are based on the
principles of the grid following (the current loop controls the DC bus voltage) and source
following (the current loop controls the active power of the grid, and the DC bus voltage is
maintained by controlling the DERs). Experiments have confirmed the advantage of the
source-following strategy [176]. In both cases, the algorithms of power allocation between
DERs fail to take into account the presence of non-linear and unbalanced loads.

Applying the method of coordinated control of a hybrid microgrid with heterogeneous
DERs equipped with multi-level power converters allows for taking into account the effect
of a non-linear and unbalanced load. The DERs in this case are controlled by a multi-
proportional resonant (MPR) controller.

Decentralized primary control of hybrid microgrids is realized by using a droop
converter with the I-U characteristic for proportional power allocation between DC and
AC converters operating in parallel [177]. The current control is implemented in the MPR
controller, and the voltage control is implemented in the PI controller. The I-U droop
coefficient is given by Vdc = Vdcre f − idcRvd, where Vdc—DC bus voltage; Vdcre f —DC bus
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voltage reference value; idc—DC bus current, Rvd—virtual impedance, which is maintained
within the acceptable range according to Equation (11):

Rvd ≤

[(
Vdcmax − Vdcmrg

)
−
(

Vdcmin + Vdcmrg

)]
Idc( f l)

, (11)

where Vdcmax—maximum voltage; Vdcmin—minimum voltage; Vdcmrg—design voltage re-
serve; Idc( f l)—full-load current on the DC side.

This approach does not take into account the AC grid voltage droop control of the
hybrid microgrid, which is used in implementing bi-directional power droop control based
on normalized and general proportional power allocation [178] (Figure 9).

Energies 2023, 16, x FOR PEER REVIEW 23 of 36 
 

 

f ' 

f IC

AC to DC

PmaxPIC0P'IC-Pmax

f 

DC to AC

 
Figure 9. Bi-directional static P-f control of a hybrid microgrid. 

The normalization technique is used to combine the static characteristics of AC and 
DC grids that use different values. Thus, the normalized frequency in the AC grid and the 
DC bus voltage are calculated as per Equations (12) and (13). 𝑁𝑓 = ∗( )/ ; (12)

𝑁𝑉 = ∗(   )/ , (13)

where Nf and NVpu—normalized values of frequency in the AC grid and DC bus voltage; 𝑓∗ = (𝑓 + 𝑓 ) /2—nominal frequency value; 𝑉∗ = (𝑉  +  𝑉 )/2 ; fmax and fmin—
maximum and minimum frequency in the AC grid; Vmax and Vmin—maximum and mini-
mum voltages in the DC grid. 

The two-stage bi-directional droop control method in a hybrid microgrid for optimal 
power allocation is based on the application of the AC-DC hybrid droop controller [179]. 
The principle of setting droop in a hybrid microgrid is presented in Figure 10. 

AC microgrid

ωAC,pu VDC,pu

PAC PDC

ωAC,pu,tk

ωAC,pu,t0

VDC,pu,t0

VDC,pu,t(k+1)
ξs,t0 

ξs,tk 
ξs,t0 

ξs,t(k+1)

Microgrid controller

DC microgrid

 
Figure 10. The principle of setting droop in a hybrid microgrid. 

Figure 9. Bi-directional static P-f control of a hybrid microgrid.

The normalization technique is used to combine the static characteristics of AC and
DC grids that use different values. Thus, the normalized frequency in the AC grid and the
DC bus voltage are calculated as per Equations (12) and (13).

N f =
f − f ∗

( fmax − fmin)/2
; (12)

NVdc =
V − V∗

dc
(Vmax − Vmin)/2

, (13)

where Nf and NVpu—normalized values of frequency in the AC grid and DC bus volt-
age; f ∗ = ( fmax + fmin)/2—nominal frequency value; V∗

dc = (Vmax + Vmin)/2; fmax and
fmin—maximum and minimum frequency in the AC grid; Vmax and Vmin—maximum and
minimum voltages in the DC grid.

The two-stage bi-directional droop control method in a hybrid microgrid for optimal
power allocation is based on the application of the AC-DC hybrid droop controller [179].
The principle of setting droop in a hybrid microgrid is presented in Figure 10.
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The hybrid droop controller uses the Vdc-P and ω-P characteristics implemented in
the intermediate converter. At the beginning of the operation, the hybrid controller of
microgrids gets the initial operating conditions from the AC and DC microgrids (indicated
by the black dots in Figure 10). According to the droop control principle, achieving a
proportional power allocation between AC and DC microgrids meansωac,pu= Vdc,pu = ξs
(the red horizontal line in Figure 10). Thus, as the AC and DC loads in the microgrids
change, the value of the active power PMC, tk+1 to be allocated will update according to the
following rule:

PMC, tk+1 =
1

kac + kdc

(
Vdc,pu,tk+1

–ωac,pu,tk+1

)
, k ≥ 0, (14)

where kac and kdc—droop coefficients for AC and DC microgrids, respectively; Vdc,pu,tk+1
—

measured DC voltage at time t = tk+1; ωac,pu,tk+1—measured AC frequency at time t = tk+1.
Centralized secondary control is implemented through:

• supervisory control based on optimization algorithms;
• coordinated control of DC and AC grids as part of a hybrid microgrid;
• intelligent supervisory control [180].

Supervisory control based on optimization algorithms makes it possible to maximize
the use of renewable DERs and minimize the load of DGSs. This takes into account the fore-
casting error of electricity generation of renewable DERs and its intermittent nature. This
extends the battery life of the ESS battery storage by optimizing the charging/discharging
processes, as well as reduces the load of the common inverter between the DC and AC
grids [181].

Coordinated control allows for efficient control of the hybrid microgrid in both grid-
connected and islanded modes of operation. At the same time, the ACS provides MPPT
operation of wind turbines and PV modules in the grid-connected mode of microgrid oper-
ation [182,183]. In the islanded mode, on-MPPT and off-MPPT modes can be used by wind
turbines and PV modules, depending on the control actions of the power control system.

Intelligent supervisory control is implemented by a fuzzy controller that uses a set
of rules to control the operation of DC and AC grids as part of a hybrid microgrid [184].
Known practical solutions for EMS implementation make it possible to effectively solve
optimization problems aimed at minimizing operating costs in microgrids by means of
intelligent charging/discharging control of ESSs [185]. Moreover, the fuzzy controller
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responds even to small changes in power consumption in hybrid microgrids by adjusting
the setpoints for the amount of power output by the fuel-fired DERs.

Decentralized secondary control in hybrid microgrids is effective when distributed
ESSs are available, which allows for the implementation of algorithms for local, system-
wide, and individual allocation of ESS power [186]. In this case, the central microgrid
controller is replaced by a multilevel ACS.

Hierarchical coordinated control is based on the agent-based approach. To this end,
the hybrid microgrid is modeled using a differential hybrid Petri net [187,188]. Switching
control is implemented at local and system-wide levels with voltage control, including in
transients associated with changes in microgrid load flows under emergency disturbances.

Decentralized secondary control in hybrid microgrids can be implemented based
on the modified droop for five operating states: ESS charging/discharging, limited ESS
charging, limited PV module power, switched off ESSs, and limited power output delivered
to the external distribution grid [189,190].

Distributed secondary control can be implemented with communication between
PECs of DERs (local controllers) for frequency and voltage regulation in microgrids.

Hierarchical control with a multi-agent structure and consensus-based economic
scheduling was proposed and implemented through a case study of a reconfigurable
hybrid microgrid.

The agents are:

• energy service company—ensures the safe and reliable operation of the external
distribution grid;

• microgrid: responsible for monitoring, economic scheduling, and management of
DERs within the microgrid;

• DER: responsible for monitoring, protecting, and implementing primary control func-
tions of each DER [191].

In stand-alone hybrid microgrids, a two-layer multi-agent frequency regulation struc-
ture based on an optimized average-consensus algorithm can be implemented in the AC
grid. Agents manage both generating DERs and loads. The ACS implements a multi-stage
load shedding to restore the frequency in the microgrid when the primary control reserve
is exhausted. The advantage of this approach is the efficient exchange of information, as
well as quick decision-making when the circuit topology and operating conditions change.

Distributed coordinated control of renewable DERs using subgradients is based on a
multi-agent approach. Renewable DERs exchange information with neighboring agents
and receive frequency information from the microgrid. Renewable DERs implement bi-
level control, with the upper level predicting the amount of active power generation and
the lower level controlling the active power. Fuel-fired generating units act as auxiliary
sources to regulate the voltage in microgrids, provided that the load profile is served by
the output of renewable DERs. When there is a shortage of power from renewable DERs,
fuel-fired generating plants serve as the main sources. Frequency measurements are used to
set the amount of generation by the fuel-fired generation units, and information about the
generation of adjacent DERs is used to obtain information about the amount of the active
power reserve [192]. Agent-based control facilitates the reliability of hybrid microgrids
through parallel computing. Since communication between agents is prone to security
threats, it requires the implementation of measures to ensure information security [193].

Hybrid microgrids have unique features that make them stand apart with respect to
the principles of ACS design to be conformed to:

• reliable and efficient management of power flows requires the implementation of a
sophisticated control strategy [194];

• they require an additional intermediate converter between the DC and AC grid, which
is necessary to maintain the balance of power in the microgrid, both in grid-connected
and islanded modes [195];
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• the absence of a system-wide variable used for power allocation and frequency and
voltage regulation necessitates the use of an ACS with a more elaborate structure and
control algorithms [196].

A new trend in the design of modern ACSs of hybrid microgrids is the use of hybrid
AC-DC droop, as well as unified frequency and voltage control on both sides (DC and AC
grids) [197,198].

5. Experimental Microgrids and Test Systems

Microgrids have a wide geographic range of applications, which is due to innovative
research and development of various components for microgrid control systems. To this
end, experimental microgrids were built for the specific purpose of determining their
design criteria and evaluating the performance of their specifications during operation. The
results of research in the field of microgrid testing were reported in [56], where the main
recommendations for the design, operation, and integration of microgrids in distribution
networks were presented. Microgrid testing can be performed with a demonstration
microgrid or a laboratory microgrid emulator. However, laboratory microgrid emulators
used for testing, despite the relatively low cost of their design and development, are not
very popular [199].

At present, there are two basic concepts for the design of microgrid control systems:
the American one, developed by CERTS [53], and the European one, implemented in the
MICROGRIDS and MORE MICROGRIDS projects [200]. The key difference between them
is that the first concept addresses the issues of heating in addition to the issues of power
supply. Other microgrids projects are known to have been implemented around the world:

• NEDO (India [201]): adoption of microgrids at the national level using centralized
control systems implemented in the context of poor information and communication
infrastructure (TWACS and GPRS communication technologies were used);

• Microgrid UW-Madison [202]: a study of modeling and control problems of microgrids
containing generating units connected via PECs in the case of integrating diesel gensets
into them;

• DISPOWER, Am Steinweg [203]: a study of the operation of microgrids in a residential
complex using a Power Operation and Power Quality Management System (PoMS).
The PoMS implements optimization algorithms to control the operation of microgrids,
controllers of DERs, and demand response. A key defining feature of the PoMS is a
central unit and several decentralized control units;

• Kythnos island microgrid (Greece) [70]: testing of a decentralized approach to mi-
crogrid control. An agent-based load controller was used to monitor the state of the
island’s microgrid by making voltage, current, and frequency measurements. The
measurement data were used to coordinate power consumption management in the
island’s microgrid;

• University of Manchester microgrid/flywheel energy storage laboratory prototype [204]:
a study of the joint operation of a synchronous generator and an induction motor
coupled together and acting as a single electrical installation, as well as a flywheel
storage unit integrated into the microgrid through an inverter. A unique feature of
the above topology is the connection of the flywheel storage by means of two inverter
units through a line reactance and a coupling transformer. The flywheel storage forms
the reference voltage and frequency in the microgrid and provides the necessary fault
current for the protection devices to trip.

To maintain the voltage and frequency in experimental and test microgrid circuits, differ-
ent approaches are used to implement their control systems: centralized control [70,201,204],
decentralized control [53,202], and distributed control based on multi-agent systems [200,203].
References [205,206] provided generalized conclusions on the approaches that are deemed
preferable in microgrid control systems. Asian countries use centralized control, in contrast
to North American countries where decentralized control is employed, and European
countries use both centralized and distributed control based on multi-agent systems.
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6. Discussion

Microgrid design technology studies are one of the key areas in the expansion plan-
ning of power grids, as they make it possible to improve the reliability of power supply
to consumers and power quality without significant investment outlays. The highly dis-
persed integration of diversified DERs poses challenges to the implementation of microgrid
control systems.

The availability of different approaches to building microgrid control systems (cen-
tralized, decentralized, and distributed) [70] inhibits the formation of a holistic perception
of this field, as many contributions try to improve on previously developed solutions, for
example, by adding new ways of collecting and processing information. The presence of
a hierarchical control system, as the single possible control arrangement [70,98], comes
down to a number of variations in its implementation. Therefore, the choice of an approach
to the arrangement of microgrid control comes down to the state of the information and
communications technology infrastructure. However, when it is poorly developed [201], a
centralized approach to microgrid control is implemented. This streamlines the process of
interaction with the power system, given that this technology is the most mature at present.
If there is no technical possibility to implement centralized control of microgrids, decentral-
ized approaches based on droop control [132,133] and its modifications [134,135,144,145]
are applied. A number of studies showed interest in applying algorithms that use virtual
impedance [137,138] and virtual inertia [139,140].

Extra difficulties arise when building hybrid microgrids, in which the basic known con-
trol algorithms cannot be implemented due to the lack of frequency and certain peculiarities
of DC network parameters [172], so one has to rely on two-parameter algorithms [178].

7. Recommendations and Future Research

When choosing an approach to building a microgrid control system, one has to solve a
multi-parameter problem, which does not lend itself to the treatment based on conventional
criteria (simplicity, convenience, speed). The choice of the microgrid control system should
be considered from the standpoint of holonic architectures [103], where each microgrid
component is both a stand-alone unit and a part of the microgrid. This principle is well-
aligned with the distributed approach to control.

To implement holarchic control [104] on the basis of the distributed approach it is
necessary to create digital twins of components and microgrids as a whole. Their use in
metaheuristic algorithms will form both predictive and look-ahead controls. The develop-
ment of quantum computing [207] may allow this concept to be implemented in future
research in this field.

8. Conclusions

In the context of large-scale development of DERs, in order to ensure the ability to
control power grids of distribution grids, microgrids should be formed so as to mitigate
the challenges presented by the intermittent power generation by DERs and consumption
by heterogeneous loads.

The optimal choice of structure for microgrids (DC, AC, or AC-DC) reduces power
losses and grid modernization costs, ensures efficient frequency and voltage regulation,
and maintains power quality parameters within required boundaries, as well as increases
the reliability of power supply to consumers.

Microgrids stand apart in that it is impossible to design a standardized ACS structure,
which is due to the great variety of DERs, microgrid structures, types of electrical loads,
and other factors. Therefore, the ACS structure is formed on a case-by-case basis for each
microgrid during its design, taking into account the pros and cons of possible options.

It is possible to ensure the reliable operation of DERs and electrical loads of consumers
in the grid-connected and islanded modes of microgrid operation only if the choice of the
structure of DERs is optimal.
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This article analyzed the state-of-the-art principles of microgrid design that influence
the choice of microgrid power flow control methods, as well as power flow control methods
themselves. The analysis will prove instrumental in streamlining the process of creating
ACSs of microgrids in existing distribution grids of low-voltage AC and AC-DC microgrids.
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DER distributed energy resources
RES renewable energy sources
ESS energy storage systems
FC fuel cell
GGS gas generator sets
DGS diesel generator sets
ACS automatic control systems
PCC point of common coupling
IC interlinking converter
PEC power electronic converters
DMS distribution management system
PI proportional-integral
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MPPT maximum power point tracking
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VSM virtual synchronous machine
PoMS power flow and power quality management system
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