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Abstract: The battery State of Charge (SoC) is critical information to overcome agricultural robots’
limitations related to battery and energy management. Although several SoC estimation methods
have been proposed in the literature, the performance of these methods has not been validated for
different battery chemistries in agricultural mobile robot applications. Compared to previous work,
this paper evaluates the limits of the SoC estimation using the RC model and the Thevenin model for
a Lithium Iron Phosphate (LFP) battery and a Sealed Lead Acid (SLA) battery. This evaluation used a
custom agricultural robot in a controlled indoor environment. Consequently, this work assessed the
limitations of two ECM-based SoC estimation methods using battery packs, low-cost sensors and
discharge cycles typically used in agricultural robot applications. Finally, the results indicate that the
RC model is not suitable for SoC estimation for LFP battery; however, it achieved a mean absolute
error (MAE) of 2.2% for the SLA battery. On the other hand, the Thevenin model performed properly
for both chemistries, achieving MAE lower than 1%.

Keywords: state of charge estimation; lithium iron phosphate; sealed lead acid; RC model; Thevenin
model; agricultural robots

1. Introduction

The growing demand for food and the mitigation of the effects of climate change are
leading to profound transformations in agricultural production. In this context, agricultural
production should be oriented towards practices and technologies with low greenhouse
gas emissions and high efficiency in the use of water and pesticides [1–3]. Furthermore,
a high degree of automation must be incorporated into new agricultural solutions due to
labor shortages, especially in developed countries [4,5].

Battery-powered agricultural robots could provide a solution to increase farms’ pro-
ductivity sustainably. In addition, agricultural robots can reduce the use of pesticides
and fertilizers, allowing farmers to optimize their resources and increase productivity [6].
Moreover, autonomous robots designed for precision agriculture can help workers in tasks
like weeding and seeding, offering a solution to labor shortage problems [7].

Nevertheless, more technological advances and research are needed in battery and
energy management to enlarge the application of robots on farms [8,9]. The battery State of
Charge (SoC) is essential information for the Battery Management System (BMS) and the
robot’s energy management. Therefore, the SoC can optimize the battery charging process
and operation of robots. Moreover, the BMS uses the battery SoC to avoid overcharge
and overdischarge, which can lead to electrolyte decomposition, capacity fade, battery
impedance increase, thermal runaway and fire [10,11]. However, one of the main challenges
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of obtaining the SoC is that it cannot be measured directly; instead, it must be estimated
using voltage, current, temperature and aging during operation [12].

Although SoC estimation methods usually use some or all of the parameters men-
tioned above, each type of battery (chemistry) presents an Open-Circuit Voltage (OCV) vs.
SoC characteristic curve. Thus, the studies performed for lithium nickel–manganese–cobalt
oxide or lithium nickel–cobalt–aluminium oxide batteries, which are widely used in Electric
Vehicles (EVs), cannot be directly extrapolated for their application in mobile robots. Sealed
Lead Acid (SLA) or Lithium Iron Phosphate (LFP) battery packages are preferred for agri-
cultural robots because of their lower price and low fire risk. For instance, SoC estimation
of LFP batteries represents a significant challenge due to its flat OCV vs. SOC relationship.
In addition, agricultural robots are low-cost devices with small battery packs and tight
hardware resources, particularly low-end microcontrollers and low-precision current and
voltage sensors. This leads to SoC estimation methods offering low performance.

Several conventional methods have been proposed to estimate the SoC of batteries.
For instance, the Coulomb counting method is a conventional online method that measures
the amount of charge transferred to and from the battery. However, this method is affected
by measurement errors, internal battery losses and the self-discharging phenomena, which
reduces the SoC estimation accuracy over time [13]. Therefore, unless providing some
feedback mechanism, the Coulomb counting method is impractical for estimating the
SoC [14]. Another approach is the OCV method, which performs an offline SoC estimation
using the relationship between the battery’s OCV and SoC. Nevertheless, this method
requires that the battery reaches a stable state requiring long rest time (over an hour).

Furthermore, several data-driven methods have been presented in the last ten years.
These methods are based mainly on Artificial Neural Networks (ANN), which employ data
from previous battery tests to model the battery behavior and estimate the SoC. To obtain a
consistent estimation, these ANNs require long training periods using high-performance
specialized processors and large datasets [15–17]. In general, the ANN accuracy was
validated through simulations using several driving cycles of EVs. Considering these
particularities, this approach is unfeasible for low-cost agricultural robots.

In addition, the SoC of batteries can also be estimated using model-based methods that
use an Electrical Circuit Model (ECM) and a state observer like the Kalman Filter (KF) [18],
the Extended Kalman Filter (EKF) [18–20] or the Unscented Kalman Filter (UKF) [21]. ECMs
consist of a circuit containing resistors, capacitors and voltage sources that models the
battery behavior. The RC model and the Thevenin model are among the most popular
ECMs. These methods offer an online high-accuracy SoC estimation and overcome the
limitations of the Coulomb counting method [22,23]. The performance of these methods
depends primarily on the accuracy of the model. However, a trade-off must be found
between the complexity of the model, the computational cost and the accuracy of the
model and SoC estimation, especially under cost and hardware constraints, as in the case
of low-cost embedded systems [24].

1.1. Related Work

Several SoC estimation methods based on ECM have been developed in recent years.
In [24], the state of charge of a battery cell for electric vehicles was estimated using an
adaptive EKF and the performance of the estimation was validated under EV drive cycle
tests conducted using a BTS-5V300A battery test bench. In [22], the SoC of a battery pack
intended for EV applications was estimated using the Luenberger observer. A Digatron
battery testing system, BTS-600, was used to perform the battery tests. Another ECM-based
SoC estimation for EV batteries is presented in [25], where the estimation is performed
using the UKF. The battery was discharged using a programmable electronic load, EL-9000
and a data acquisition unit NI-9229 and the computation of the estimation was executed
in Labview. A hybrid approach that combines Coulomb counting, OCV method and a
model-based approach was presented in [26]. The authors cycled a Lithium Manganese
Oxide (LMO) battery cell using the SBT0550 battery testbench using EV drive cycles. In
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general, the methods presented before were intended for EV applications. Moreover, the
validation was performed using specialized laboratory equipment and EV drive cycles to
discharge the battery. Therefore, the effects of noise and uncertainty were not evaluated
and the limitations of agricultural robots were not considered.

For low-cost mobile robots, few SoC estimation methods have been implemented and
validated. For example, in [21], the parameters of the RC model and SoC of the battery pack
were estimated using the UKF and the EKF, respectively. The proposed SoC estimation
approach was validated using a mobile robotic platform in a laboratory environment in a
narrow SoC band (90–98%). In [27], the SoC estimation for a transmission lines inspection
robot was performed adopting an RC model, whose parameters were obtained offline.
Then, the SoC estimation was obtained using the H∞ observer. The accuracy of this work
was validated only for a restricted range varying from 68% to 65% SoC. Considering the
limited range evaluated in these studies, there is a need to assess the performance of SoC
estimation methods designed for robots using different battery chemistries over a broader
range of SoC. Table 1 compares the previous SoC estimation methods in the literature
review with the presented research work.

As a result of the literature review, the following limitations were identified:

• Few studies focused on the limitations and challenges of SoC estimation for mobile
robots, specifically for agricultural robots.

• SoC estimation methods for robotic applications were validated in a narrow SoC range.
• Previous work has not considered the performance of the ECM-based SoC estimation

method using low-cost equipment and batteries typically used in robot applications.

Table 1. Comparison of presented work with previous research.

Ref. Battery Equivalent
Circuit Model

Convergence
Test

Low Cost
Equipment

SoC Validation
Range Validation Test

[21] 37 V 8 Ah Li-ion Battery Pack RC model No No 98% to 90% Robot discharge cycles
[27] 25 V 18 Ah Li-ion Battery Pack RC model No Yes 68% to 65% Robot discharge cycles
[24] 3.7 V 35 Ah Li-ion Battery Cell Thevenin model Yes No 100% to 20% EV drive cycle
[22] 56 V 105 Ah Battery Pack RC model No No 90 to 10% EV drive cycles
[25] 3.6 V 3.3 Ah LFP Battery Cell Thevenin model Yes No 100% to 20% EV drive cycles

[26] 4.2 V 15 Ah Lithium Manganese
Oxide Battery Cell Thevenin model No No 70% to 65% EV drive cycles

This work 12 V 5 Ah SLA Battery Pack and
12 V 6 Ah LFP Battery Pack

RC model and
Thevenin model Yes Yes 100% to 60%

100% to 20%
Agricultural Robot

discharge cycles

1.2. Contributions and Organization

Since the performance of an SoC estimation method is application dependent [28],
it is important to evaluate the limitations of the SoC estimation in an agricultural robot
application using battery packs instead of battery cells. Therefore, this paper provides an
analysis of the limits of two model-based SoC estimation methods for LFP and SLA 12 V
battery packs, which are commonly used in agricultural robot platforms. The two methods
analyzed are the RC model with KF and the 2 RC Thevenin model with UKF, which have
been used to estimate the SoC of battery cells for EVs [18,19]. This work evaluates the
performance of these models by using a custom agricultural robot, presented in Figure 1.
The methods were assessed in a broad range of SoC, from 100% SoC to the lower limit
recommended by the manufacturer, i.e., the maximum range of discharge. The results of
this paper can be used by designers to choose the correct SoC estimation method for a
particular low-cost mobile robot and battery chemistry.

The remainder of this paper is organized as follows. First, it introduces the RC ECM
and the Thevenin ECM in Section 2. Then, SoC estimation implementation for each model
is presented in Section 3. The results of the SoC estimation are presented in Section 4.
Finally, the concluding remarks of this work are provided in Section 5.
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Figure 1. Agricultural robot developed at the University of Quebec at Trois-Rivières.

2. Equivalent Circuit Model Parameter Estimation

The main advantage of using equivalent circuit models is their simplicity, which allows
the implementation of these approaches using low-cost hardware like microcontrollers.
Moreover, using these techniques, the drawbacks of conventional and data-driven methods
can be improved [28].

Previous research has demonstrated that the SoC estimation can be affected by the
accuracy of the battery model. Therefore, good accuracy is needed to improve the perfor-
mance of the SoC estimation process [29].

2.1. Battery Characterization Tests

This study used a 12 V 5 Ah SLA battery and a 12 V 6 Ah LFP battery. These batteries
were tested using a sequence of discharge pulses followed by a one-hour relaxation period
to ensure the batteries reached stable states to obtain the initial parameters of the equivalent
circuit models analyzed in this study. This test aims to characterize the battery’s dynamic
and the relationship between the battery’s OCV and the SoC. Pulse discharge tests have
been used to estimate the parameter of the ECM in several previous works [18–20,27].
Figure 2 shows a detailed explanation of each section of the test pulse. For the lead-acid
battery, seven pulses were applied to discharge the battery from 100% SoC to 40% SoC.
Lead-acid batteries should not be discharged more than 40% SoC to increase the battery
lifetime. During each pulse, the SLA battery was connected to 13.5 Ohms resistance for
30 min, then disconnected for 1 h until the next pulse. In the same way, the LFP battery
was connected to a 12 Ohms resistance to discharge the battery from 100% SoC to 16% SoC.
The resistance values were selected to discharge the battery 10% after each pulse. Figure 3a
and Figure 3b show the characterization tests performed on the SLA battery and the LFP
battery, respectively.

Transient
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Figure 2. Explanation of a single pulse of the pulse discharge characterization test.
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Figure 3. Pulse discharge test data from the batteries used in this work: (a) SLA battery pack. (b) LFP
battery pack.

2.2. RC Model—Offline Parameter Estimation

This ECM has been proposed by Saft [30]. Prior studies have used the RC model for
SoC estimation [18,27]. Figure 4a shows the RC model used in this study. This model
consists of a terminal resistance and two RC branches. The terminal resistance, Rt, models
the voltage drop presented when a load is connected to the battery. The surface capacitor, Cs,
and the surface resistance, Rs, model the battery’s surface and diffusion effects. The second
RC branch contains the bulk capacitor, Cb, and bulk resistance, Rb. The bulk capacitor
models the storage capacity of the battery; therefore, it is larger than the surface capacitor.
Moreover, the voltage across the bulk capacitor Vcb represents the battery’s OCV. Then, by
estimating the Vcb, the SoC of the battery can be estimated.

Rb Rs

Cb CsV V

Ib IIc

Vo

Rt

CsCb

(a)

Rt

Vocv Vo

R1

C1

R2

C2

I
V1 V2

(b)

Figure 4. (a) RC Equivalent Circuit Model [30]. (b) Thevenin Equivalent Circuit Model [31].

The RC model can be represented using the following state-space representation:

V̇cb
V̇cs
V̇o

 =

−
1

Cb(Rb+Rs)
1

Cb(Rb+Rs)
0

1
Cs(Rb+Rs)

− 1
Cs(Rb+Rs)

0
A3,1 0 A3,3


Vcb

Vcs
Vo

 +


Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)

B3,1

[I] (1)

[
Vo
]
=
[
0 0 1

]Vcb
Vcs
Vo

 (2)

A3,1 = − Rs

Cb(Rb + Rs)2 +
Rb

Cs(Rb + Rs)2

− R2
s

CbRb(Rb + Rs)
+

Rs

Cs(Rb + Rs)2

(3)

A3,3 =
Rs

CbRb(Rb + Rs)
− 1

Cs(Rb + Rs)
(4)
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B3,1 =
R2

b
Cs(Rb + Rs)2 −

RsRs

CbRb(Rb + Rs)

+
Rt

Cs(Rb + Rs)
+

RsRb
Cs(Rb + Rs)2

(5)

where I is the battery’s current and Vo is the battery’s terminal voltage. Vcb and Vcs are the
voltage of the bulk capacitor and surface capacitor, respectively.

The battery characterization tests are used to obtain the initial parameters of the
equivalent circuit model and the OCV vs. SoC curve by analyzing the test data as proposed
in [18,27]. The battery’s total resistance can be found by examining the instantaneous
response of the battery. The voltage difference (V1 −V2 from Figure 2) and the current pulse
magnitude are used to calculate the battery’s resistance value using the following expression:

Rtotal =
V2 −V1

Ipulse
. (6)

According to [18], the bulk and surface resistance values are equal to 75% of the
battery’s total resistance:

Rb = Rs = 0.75 ∗ Rtotal . (7)

After finding Rb and Rs, the terminal resistance Rt can be obtained using the following
expression:

Rt = Rtotal −
Rb
2

. (8)

The first 500 ms of each pulse are analyzed to obtain the value of the surface capacitor
Cs. Then, the time constant of the surface capacitor is obtained by performing a curve
fitting using the MATLAB fit function:

Vstart + (Vend −Vstart) ∗ (1− exp(−x/τ)). (9)

where Vstart is the battery’s voltage before the beginning of the current; Vend is the voltage
after 500 ms without load. Then, using the time constant τ obtained from the curve fitting,
Cs can be found as follows:

Cs =
τ

2Rs
. (10)

2.3. Thevenin—Offline Parameter Estimation

The second equivalent circuit model implemented in this study was the Thevenin model,
which has been widely used in several research articles in the last five years [25,26,32–34]. The
Thevenin model is shown in Figure 4b; the circuit has a terminal resistance Rt to model the
voltage drop when a load is connected to the battery. Moreover, it has one or more parallel RC
branches (from R1C1 to RnCn) connected in series to model the diffusion effects of the battery.
This model has a voltage source that depends on the battery’s SoC to model the OCV of the
battery. The addition of the dependent voltage source makes this model nonlinear; then, a
nonlinear KF is needed to estimate the SoC of the battery, adding computational complexity.

The complexity of this model can be minimized by reducing the number of RC circuits. To
illustrate this, Figure 5 compares a curve fitting with one and two time constants. Two RC circuits
were used in this study because this provides a good trade-off between accuracy and complexity.
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rr
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 (m
V
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0
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Time (s)
0 1000 2000 3000
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Figure 5. Performance comparison of one and two RC time constants.
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The behavior of this model can be described using the following equations:

˙SoC = −η I
Q

(11)

V̇1 = − V1

R1C1
+

I
C1

(12)

V̇2 = − V2

R2C2
+

I
C2

(13)

Vo = Vocv(SoC)−V1 −V2 − IRt (14)

where η is the Coulomb efficiency, also called charging efficiency. The charging efficiency is
assumed to be 1 when the battery discharges [35]. V1 and V2 are the voltages of the first and
second RC circuits, respectively. Vo is the battery terminal voltage. I is the input current.
For this model, the discharge current is positive and the charge current is negative. Vocv
is the battery OCV, which is a function of the battery’s SoC. Therefore, this model is not
linear because the Vocv is a function of one of the system states, then this model can be
represented with a nonlinear vector function:

xk = f (xk−1, uk−1) (15)

yk = h(xk, uk). (16)

Then, to estimate the SoC using the Thevenin model, a nonlinear KF such as the EKF
or UKF must be selected.

An initial estimation is performed with MATLAB and Simulink using a curve fit and
linear least square tools. For the estimation, each pulse of the battery characterization test is
analyzed separately and used to extract a set of parameters, as presented in [19]. Since the
battery is assumed to reach a stable state right before each pulse, the OCV vs. SoC curve
can be obtained using the voltage value before the beginning of each pulse. Moreover,
the model’s terminal resistance can be calculated by measuring the voltage when a pulse
is imposed on the battery. Equation (17) shows the expression used to find the battery
model’s terminal resistance Rt:

Rt =
V2 −V1

Ipulse
. (17)

After each pulse, there is a relaxation period of 1 h; this section of the test can be
used to obtain the time constants of the model. These time constants were obtained by
performing a curve fit using (18), as shown in Figure 6.

Vo = Vstart + V1e
−

t
τ1 + V2e

−
t

τ2 −V1 −V2. (18)

Curve Fitting
Battery VoltageVo

lta
ge

 (V
)

11.7

11.8

11.9

12

12.1

Time (s)
0 1000 2000 3000 4000

Figure 6. Curve Fitting performed to estimate the time constants of the 2RC Thevenin model for the
SLA battery.

The resistances and capacitances (R1C1 and R2C2) were calculated using the linear
least-squares function (lsqlin) in MATLAB. The lsqlin function estimates the model’s
parameters to minimize the error between the terminal voltage measurement. The results
of the initial parameter estimation are shown in Figure 7a. This initial set of parameters
can be refined using the nonlinear least-squares (lsqnonlin) solver, of Simulink Design
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Optimization Toolbox, to perform a data fitting of the nonlinear data. The initial parameter
estimation aims to avoid local minima during the optimization process. Each pulse was
analyzed separately to reduce the complexity of the optimization problem. Figure 7b shows
the battery voltage simulation with the final parameters estimated. At lower SoC levels,
the model error increases because the diffusion and surface effects are accentuated and the
2 RC Thevenin ECM cannot reproduce these effects.
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Figure 7. Parameter estimation process for the SLA battery. (a) Initial Parameter estimation using the
linear least-square method, (b) Final Parameter estimation using nonlinear-least square optimization.

3. SoC Estimation

The SoC of the SLA battery and the LFP battery was estimated using two methods
based on the ECMs presented before. The first method consists of a KF that estimates the
states of the RC model and the second one consists of a UKF that estimates the SoC using
the Thevenin model.

3.1. RC Model with Kalman Filter

The SoC of the battery can be estimated using the RC battery ECM and a KF. Firstly,
the SoC is estimated using a linear KF by estimating the voltage across the bulk capacitor
Vcb. Since the bulk capacitor voltage models the battery OCV, this method estimates the
SoC of the battery using the relationship between the battery’s OCV and SoC. Figure 8a,b
show the OCV vs. SoC curve for both batteries used in this research.

Vo
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 (V
)

12

12.5

13

SoC
0.4 0.6 0.8 1

(a)

Vo
cv

 (V
)

11

12

13

SoC
0 0.25 0.5 0.75 1

(b)

Figure 8. OCV vs. SoC curves of battery packs: (a) SLA battery pack. (b) LFP battery pack. The red
markers represent the OCV points obtained with the pulse discharge test, and the black line is the
curve obtained with a low current discharge test.

Since the state-space model obtained from the RC Equivalent Circuit model is linear, a
linear KF can be implemented. The KF computes the optimal state estimate considering the
sensors’ noise and model uncertainties [36]. The KF consists of six steps that can be divided
into three prediction steps and three correction steps. In the first three steps, a prediction of
the state using the previous state estimation is calculated.

x̂−k = Ak−1 x̂+k−1 + Bk−1uk−1. (19)

Then, the error covariance matrix provides information about the uncertainty of the
estimation and it is computed using (20).
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P−k = Ak−1P+
k−1 AT

k−1 + Q. (20)

The predicted output is calculated using the battery model and the measured current
in the final prediction step:

ŷk = Ck x̂−k + Dkuk. (21)

After finishing with the prediction steps of the KF, the Kalman gain is calculated in
the first correction step:

Kk = P+
k CT

k [CkP−k CT
k + R]−1. (22)

The state estimate is corrected using the Kalman gain and the error of the output
prediction:

x̂+k = x̂−k + Kk(yk − ŷk). (23)

Finally, the corrected error covariance matrix is calculated as follows:

P+
k = P−k − Kk[CkP−k CT

k + R]LT
K. (24)

The initial state estimation x0 equals the battery OCV at 100% of SoC. A trial-and-error
process tuned the measurement error covariance R and the process error covariance Q. The
values of these matrices are shown in (25).

Q =

0.00001 0 0
0 0.001 0
0 0 0.9

; R = 0.8 (25)

Figure 9 shows a summary of the six-step algorithm needed to implement a KF.

Predict State

Predict Error Covariance

Predict System output

Correct Error Covariance

Calculate Kalman Gain

Correct state estimate

Initialization

k=k+1

Figure 9. General steps of a KF.

3.2. Thevenin Model with Two RC Circuits with UKF

The Thevenin model with two RC circuits can be used to overcome the limitations of
the RC model when estimating the SoC of LFP batteries. Since the equations presented
in Section 2 show that the Thevenin model is not linear, the UKF was used to estimate
the SoC of the battery to provide better estimation results for systems with a high degree
of nonlinearity [37,38]. The UKF represents the uncertain variables using sigma points.
The calculation of these sigma points adds more computational complexity to the SoC
estimation algorithm. The UKF was implemented using MATLAB/Simulink. First, the
2N + 1 input sigma points are calculated:

Xk−1 =
[

x̂k−1, x̂k−1 + γ
√

Pk−1, x̂k−1 − γ
√

Pk−1

]
(26)

where γ is a constant parameter that can be tuned to improve the performance of the UKF;
it depends on the number of states N and λ

γ =
√

N + λ. (27)

After computing the input sigma point, the state-prediction sigma points are computed:

Xi,k = f (Xk−1, uk). (28)
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Then, the state prediction can be computed using the following equation:

x̂−k =
2n+1

∑
i=0

α
(m)
i Xi,k (29)

where α
(m)
0 and α

(m)
i are the weighting constants used to calculate the mean. For the UKF,

they are defined as:

α
(m)
0 =

γ

N + γ
(30)

α
(m)
i =

1
2(N + γ)

. (31)

Then the error covariance time update can be calculated using:

X̃−i,k = Xi,k − x̂−k (32)

Pk =
2n+1

∑
i=0

α
(c)
i (X̃−i,k)(X̃

−
i,k)

T (33)

where α
(c)
0 and α

(c)
i are the weighting constants used to calculate the covariance, defined as

follows:

α
(c)
0 =

γ

N + γ
(1− α2 + β) (34)

α
(c)
i =

1
2(N + 9γ)

. (35)

In the last prediction state, the predicted output of the system is calculated. First, the
output sigma points must be obtained as follows:

Yi,k = h(Xi,k, uk). (36)

Then, using the output sigma points, the output of the system can be computed:

ŷk =
2n+1

∑
i=0

α
(m)
i Yi,k. (37)

After finishing with the prediction steps, the Kalman gain can be calculated as follows:

Pỹ =
2n+1

∑
i=0

(Yi,k − ŷk)(Yi,k − ŷk)
T (38)

Px̃,ỹ =
2n+1

∑
i=0

(Xi,k − x̂k)(Yi,k − ŷk)
T (39)

Lk = PỹPx̃,ỹ. (40)

With the calculated estimator gain, the state estimate measurement is updated:

x̂+k = x̂−k + Lk(yk − ŷk). (41)

Finally, the error covariance measurement is updated:

Pk = Pk − LkPỹLT
k . (42)
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4. SoC Estimation Results

The two batteries (SLA and LFP) were discharged using an agricultural robot mobile
platform to validate the performance of the two SoC estimation methods implemented in
this study. This platform is a differential wheeled agricultural robot intended to be used as a
seeder robot, which consists of two 12 V Motors with a peak power of 514 W and a seeder
that can be deployed using two linear actuators. The tests were performed in an indoor
environment. The robot was controlled using and Radio Control transmitter to move forward
and backward under flat and sloping surfaces. During each test, the battery’s current and
voltage information is stored in a time series database using a STM32F411CEU6 to capture
the sensors’ data and a Raspberry Pi 4 as the database server. Wheel speeds in RPM and
acceleration data from the inertial measurement unit are also stored in the database. Then
the data are processed and the SoC is estimated in simulations using MATLAB and Simulink.
The components of the robot are presented in Table 2. In addition, the two model-based SoC
estimation methods are compared with the Coulomb counting method performed using a Hall
effect current sensor (CAS25-NP by LEM) with an accuracy of 0.8% at 25 ◦C and 2.5% at 85 ◦C.
The discharge tests were performed at ambient temperature. Since the error was integrated
over time, the maximum error at the end of the estimation is 83 mAh for the test performed
for the SLA battery. Considering the total battery capacity of 5000 mAh, the maximum error
at the end of the estimation is small, representing an error of 1.6% for the reference SoC. The
current and voltage data obtained for both batteries are presented in Figure 10a,b.

Table 2. Components of the agricultural robot mobile platform.

Element Description

Inertial measurement unit MPU-6050
Wheel Encoders US Digital E3-500-375-NE-E-D-3
Microcontroller STMicroelectronics STM32F411CEU6
Motor Controller Ampflow AF160
Motors Ampflow E30-150-12-G16
Linear Actuators Firgelli Automations FA-OS-240-12-6
SLA Battery AJC 12 V 5 Ah
LFP Battery RoyPow 12 V 6 Ah
Current Sensor LEM CAS 25-NP
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Figure 10. Measured current and voltage during tests with the robotic platform. (a) SLA battery pack.
(b) LFP battery pack.

4.1. SLA Battery Pack

Regarding the performance of the SoC estimation for the SLA battery using the RC
model with KF, Figure 11a presents the convergence of the filter to the SoC provided
by the current measurement. Although the initial estimation error is about 20%, the
filter converges to the reference SoC value after 500 s. The results of the SoC estimation,
performed using the Thevenin model with two RC networks and the UKF, show a higher
accuracy across all SoC levels. Regarding the voltage estimation for the SLA battery, the
voltage estimation error using the Thevenin model is higher than the RC model, as depicted
in Figure 11b. This model mismatch affected the convergence to the reference SoC when
the initial SoC estimation error is about 10%, as illustrated in Figure 12.
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Figure 11. Method performance validation using robot operation data for the SLA battery: (a) SoC
estimation performance of the RC model with KF (RC+KF) and the 2 RC Thevenin model with
UKF (T2RC+UKF). (b) Comparison of battery voltage estimation performance of RC model with KF
(RC+KF) and the 2 RC Thevenin model with UKF (T2RC+UKF).
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Figure 12. RC model with KF (RC+KF) and the 2 RC Thevenin model with UKF (T2RC+UKF)
convergence test under wrong SoC initialization for the SLA battery.

4.2. LFP Battery Pack

The battery SoC and voltage estimation results for the LFP battery pack SoC estimation
are shown in Figure 13a,b. Although the voltage estimation using the RC model performs well
in all SoC levels, the SoC estimation using the RC model and the KF method works only for low
SoC levels. The performance of this method for the LFP battery can be explained by analyzing
the OCV vs. SoC curve, which has two low slope regions. The first one starts at 98% and ends
at 75% of the SoC, where the voltage change is approximately 0.024 V. Moreover, the voltage
changes from 65% to 25% of the battery SoC is lower than 0.2 V. Therefore, since this method
relies on the OCV vs. SoC curve, small errors in the battery’s OCV estimation will produce
significant errors in the final SoC estimation. Regarding the results of the SoC estimation using
the Thevenin model and the UKF, the error is reduced since this model considers the SoC as
a state. Then the utilization of the Thevenin model with two RC circuits with the UKF can
overcome the limitations on the flat regions of the OCV vs. SoC curve for this battery.
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Figure 13. Method performance validation using robot operation data for the LFP battery pack:
(a) SoC estimation performance of the RC model with KF (RC+KF) and the 2 RC Thevenin model
with UKF (T2RC+UKF). (b) Comparison of battery voltage estimation performance of RC model with
KF (RC+KF) and the 2 RC Thevenin model with UKF (T2RC+UKF).



Energies 2023, 16, 3133 13 of 15

4.3. Managerial Impacts

The results of this work show that SoC estimation methods intended for other appli-
cations, such as EVs, may not perform appropriately for agricultural robot applications
because of the hardware and cost constraints presented in agricultural robots. Therefore,
developing new SoC estimation techniques intended for agricultural robots is still needed
to increase the presence of robots on farms. Further efforts are needed to implement and
validate these techniques in agricultural robot applications. Moreover, the lack of accurate
SoC estimation methods makes implementing robots in agriculture difficult because the
robots’ safe and continuous operation cannot be ensured and the energy consumption of
robots cannot be optimized, reducing efficiency.

5. Conclusions

This study analyzed the performance of two model-based SoC estimation methods
for SLA and LFP batteries using voltage and current measurements obtained using low-
cost measurement devices appropriated for small agricultural robots. The batteries were
discharged until the maximum depth of discharge to analyze the accuracy and convergence
of the methods in a wider SoC range. The SoC estimation using the RC model with Kalman
Filter (RC model with KF) demonstrated satisfactory performance for the SLA battery with
a maximum error of 5% and a mean absolute error (MAE) of 2.2% after convergence. In
addition, this method provides convergence to the reference SoC even if an incorrect initial
estimation has been performed. However, the SoC estimation using the RC model with KF
for the LFP battery performed poorly due to the broad flat region in the OCV vs. SoC curve
of this battery.

In contrast to the method based on the RC model, the method based on the Thevenin
model with two RC circuits with Unscented Kalman Filter (T2RC model with UKF) offered
good performance for the two types of batteries used in this study. The mean absolute
errors for the SLA and LFP batteries were 0.27% and 0.5%, respectively. In battery packs
for mobile robots, the estimation accuracy using this method was affected under incorrect
initialization because the estimation did not converge to the reference SoC. If the battery
has reached a stable state after several minutes of rest, the OCV method can be used to
obtain an accurate estimation; however, in the case of LFP batteries, the measurement
accuracy should be high to obtain a good initial estimation. On the other hand, two models
can be used during battery operation: one for continuous SoC estimation and another
for SoC initialization and correction. Regarding the results of this research, the Thevenin
model could be used for continuous operation and the RC model for SoC initialization
and correction.

Finally, the limitations of the methods presented in this work must be considered for
the design of full-range SoC estimation systems used in agricultural mobile robots. For
obtaining a more rigorous evaluation, the models should include non-modeled parameters
such as battery aging and temperature, improving the estimation accuracy in farm envi-
ronments where the temperature varies during operation and batteries are not replaced
periodically. Moreover, the performance of the SoC estimation algorithms implemented in a
low-cost microcontroller with low computational power for agricultural robot applications
should be validated.
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