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Abstract: In recent years, with the increasing impact of extreme weather events on energy security,
energy vulnerability has increased significantly, and more and more international institutions and
departments have begun to incorporate resilience governance into energy security. This paper focuses
on China’s inter-provincial energy security assessment. Compared with existing relevant research,
the significant features of our work are (i) introducing the concept of energy resilience and presenting
its evolution mechanism and evaluation criteria, (ii) developing a gray relational projection model
by using the level difference maximization and optimization theory, (iii) measuring the energy
resilience of 30 Chinese provinces over space and time. Our results show that the spatial–temporal
patterns of energy resilience in China changed significantly from 2005 to 2018. High energy resilience
moved from provinces with abundant nonrenewable energy before 2010 to provinces with high
energy diversity. Energy endowment is a primary condition to ensure a region’s energy resilience.
Renewable energy development, energy investment, economic development, and policy coordination
play vital roles in ensuring regional energy resilience. Energy investment and economic development
can effectively improve the energy resilience of resource-poor areas. This study’s results will serve as
a reference for China and contribute to expanding knowledge in this field.

Keywords: energy resilience; optimizing weight; gray relational projection model; spatial–temporal pattern

1. Introduction

Energy resilience is one of the major standards to measure energy security. Facing
the increasingly complex background of COVID-19 and globalization, especially with
the conflict between Russia and Ukraine and the natural gas crisis in Europe, energy
security is attracting more and more attention from the international community. With
the rapid development of China’s economy, energy resilience has become particularly
important. As the major emerging economy and the largest energy-consuming country
globally [1], the gap between China’s energy supply and demand is increasing [2]. In 2020,
China’s dependence on foreign oil and natural gas reached 72% and 43%, respectively [3].
It is estimated that by 2030, China’s energy imports will surpass Europe’s and become
the world’s largest energy importer [4], thus placing great pressure on China’s energy
security. More importantly, China is also accelerating the process of carbon peaking and
carbon neutralization. The threats facing the energy system in the future will be more
difficult to predict, such as technology and power system flexibility and so on. The Chinese
government attaches great importance to energy security; energy supply risk aversion has
been included in the national energy security strategy since 1996. For the first time, energy
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security has been included in China’s 14th five-year plan for national economic and social
development. However, the traditional concept of energy security emphasizes the security
of supply and the availability of abundant fossil fuels, such as oil, natural gas, and coal [5].
Therefore, it is of great value to explore China’s energy resilience to mitigate the new risks
and challenges of energy security in the process of achieving the dual-carbon goal.

The word “resilience” has been in the English language for hundreds of years; its
original meaning is the ability to recover from adversity [6]. Since the 1980s, ongoing global
changes have generated considerable interest in research on resilience [7]. “Resilience
thinking” is a new scientific and political paradigm [8] widely used in disaster reduction,
engineering, ecology, and other fields [9]. Energy resilience research started relatively late
and was accompanied by research on energy security. In recent years, many scholars have
paid attention to energy resilience, for example, Yergin pointed out that resilience is a
“margin of security” in energy supply systems, which provides a buffer to withstand shocks
and promote recovery after interruptions [10]. Further, Thomas and Kerner characterized
the need for energy resilience metrics [11]. McLellan et al. incorporated the concept of
energy elasticity into sustainability; the authors foresaw a triangular relationship between
resilience, sustainability, and risk management in response to disasters [12]. The resilience
of a system is not solely dependent on physical disruptions but also on dynamic factors,
such as societal and geo-political influences. Roege adopted a matrix format and proposed
a framework for measuring energy resilience from four aspects: physical, information, cog-
nitive, and social [13]. Additionally, Sandia National Laboratories proposed a seven-step
resilience framework for local and national energy infrastructure [14]. Ding et al. pointed
out that due to the low resilience of the natural gas importation network to import disrup-
tions, China should increase the natural gas storage for sudden demand shortages [15].
Bento et al. discussed the concept of resilience in the oil and gas industry [16]. Abdin et al.
reported that considering resilience during the planning process can significantly increase
energy systems’ resilience [17]. Durán-Romero et al. proposed a framework for action to
governments, businesses, and society based on the contribution of the Circular Economy
(CE) towards sustainability [18]. Some scholars believe that energy diversity is the key to
improving energy resilience [19]; when there are redundant and diverse parameters, the
energy system’s resilience will be enhanced, and the supply risk will be reduced [20].

Most of the literature mentioned above are largely qualitative studies, which focused
on the energy resilience of a specific region or community, or discussed the energy resilience
of different social sectors. It is worth mentioning that, as early as 2009, Kruyt et al. pointed
out that assessments are fundamental to providing adequate resilient actions [21]. Jansen
also noted that integrating methods to assess society’s resilience could meet their need
for energy services in a longer time frame [22]. Multi-Criteria Decision Analysis (MCDA)
is most commonly used for addressing multiple conflicting objectives [23]. However,
quantitative research on energy resilience is still lacking [24,25], a unified evaluation
standard for resilience has not been formed, and scholars have not reached a consensus on
the definition of energy resilience. Moreover, research on the mechanism of energy resilience
has not yet been reported, quantitative research methods for energy system resilience are
lacking, and scholars have not studied China’s energy resilience at the provincial level.
Based on the scholars’ research mentioned above, this article proposed a definition of
energy resilience as a vital attribute of energy security. It is the shock absorber of a regional
energy system that can alleviate the system’s complexity resulting from political, economic,
technological, and environmental issues. It can also predict the negative consequences of
unexpected interference of factors to ensure the operation of the energy system or minimize
negative consequences. Hence, this paper attempts to explore the spatial and temporal
evolution characteristics of energy resilience in 30 provinces of China from 2005 to 2018.
Due to the limitation of data availability, four provinces of Hong Kong, Macau, Taiwan,
and Tibet are excluded in this paper. The remarkable contributions of this paper can be
clearly illustrated as follows: First, this paper proposes the energy resilience evolution
mechanism and constructs an energy resilience index for 30 Chinese provinces. Second,
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this paper constructs an improved gray relational projection evaluation model. This model
overcomes the limitations of the single evaluation and gray correlation methods. Third,
this paper furnishes key information on energy resilience in 30 provinces in China.

The remainder of this paper is organized as follows: Section 2 provides the evolution
mechanism of energy resilience, the selection process of the energy resilience index, and
the evaluation method in detail. Section 3 lays out the ranking, evolution trend, and spatial
evolution law of energy resilience of each province. Section 4 discusses the results of this
paper considering relevant research. Section 5 concludes the paper.

2. Methodology
2.1. The Evolution Mechanism of Energy Resilience

The basis of, and key to, investigating energy resilience is the evolution mechanism of
energy resilience. A region should consider the following capabilities during the energy-
planning process to improve energy resilience: first, improving energy efficiency to conserve
resources and minimize energy supply costs; second, increasing the diversity of the energy
supply to reduce energy supply risks; third, maintaining spare capacity or redundancy to
manage unexpected surges in demand or interference from sources of uncertainty. These
three methods increase the energy system’s ability to absorb interference, improve the
energy system’s flexibility, and reduce the risk of sudden disturbances to the energy supply.
How are these capabilities measured? What should the core required capabilities of energy
resilience building be for a region? There is not yet a consensus on these issues [26]. The
concept of energy resilience has not been formed in China and most other countries. In
order to comprehensively evaluate China’s energy resilience, this article proposes a four-
stage energy resilience evolution mechanism: “preparation, absorption, mitigation, and
adaptation” (see Figure 1). The closest reference to this article is the work of Chen et at [27].
The basic ideas and methods of our evaluation mechanism are as follows:

Preparation 0 < t < t1. At this stage, the energy system is in a state of resilience. Set
energy resilience in this period as S. Predict and prepare for disruption using various
planning and design measures (by identifying and improving critical thresholds) designed
to avoid and withstand potential disruptions and keep energy services available and
assets functioning during emergency disturbances to achieve reliable energy services.
Specifically, this includes strengthening energy resource reserves, maintaining energy
infrastructures, and ensuring energy investments. Sufficient investment is a priority for
resilient systems [28]. Additionally, it also includes minimizing the impact of the energy
system on the environment [29].
Absorption t1 ≤ t < t2. The main purpose of this stage is to examine the affordability of
the energy system. Regardless of how well the energy system is prepared to withstand
disturbances, potential shocks may exceed the system’s resistance threshold. When the
system’s disaster-bearing capacity is insufficient to absorb the impact from t1, a disturbance
occurs, and the energy system’s performance begins to decline. The energy system’s
self-sufficiency rate, energy investment, the utilization efficiency of energy facilities, and
other indicators are related to the regional energy system’s affordability. Efficient use
of existing facilities can also reduce demand for new facilities and improve the energy
system’s economic and environmental resilience [30].
Mitigation t2 ≤ t < t3. This stage means that the energy system recovers to the preparation
stage after the disturbance. In this stage, we should establish a risk-management method to
rapidly restore the availability of all system operations and services to achieve efficiency in
advance. Ideally, planning for the recovery process should begin before a disruptive event
occurs. If the planning and absorption activities are appropriately implemented, the recov-
ery process can be accelerated. Human intervention measures to reduce greenhouse gas
and pollutant emissions decrease energy use, improve the diversity of energy production,
help shorten the mitigation time after disturbances, and improve the energy system [31].
Adaptation T ≥ t3. In this stage, adaptation is related to the degree of disturbance, policy
support from the government, and recovery time. After an energy crisis, the state and
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affected departments should introduce more policies, build more effective crisis-response
mechanisms, and support the resilient development of the energy system by learning and
absorbing the experience and lessons from a disaster. Specifically, it includes increasing local
energy reserves and improving the level of energy diversification [32]. The performance of
the energy system is improved from the lessons learned from interference to achieve higher
energy resilience (S+).
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2.2. Energy Resilience Evaluation Index Construction

The evaluation index system of energy resilience should include four stages of the
evolution mechanism of energy resilience. The four-stage energy resilience evolution
mechanisms are mutual influence and promotion, a closed-loop process [33,34]. Therefore,
in the design process of an energy resilience and evaluation index system, we should
fully consider the four stages in Figure 1. Energy resilience is also an interdisciplinary
concept [35,36]. In the current context of rapidly increasing complexities and deep uncer-
tainty, the concepts of resilience and sustainability are poorly or too narrowly defined in
the urban context and can be used interchangeably [37]. To the best of our knowledge, so
far, no studies have clearly clarified the boundaries of resilience and sustainability.

Moreover, many energy security indicators also apply to resilient environments [38–40].
The main difference between energy resilience and energy security indicators is that energy
security indicators include all energy resilience indicators, but resilience indicators are
only one type of energy security indicator. Resilience indicators focus on the energy
system’s resistance to destructive events and indicators to improve the system’s ability to
rebuild. Therefore, based on this analysis and guided by the resilience requirements in the
international sustainable development goals, referring to the national academies [41,42],
the interactions of energy resilience with society, economy, and governance should be
considered comprehensively according to the actual conditions in each province in China
and the data availability. China’s energy resilience index (CERI) is measured by five
dimensions: availability, diversity, economic resilience, environmental resilience, and
technological resilience. Figure 2 provides the visual relationship between the evolution
mechanism of energy resilience and its performance indicators. The detailed calculation
process of each indicator is shown in Table 1.
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Table 1. The calculation process of each indicator and sources for CERI.

Dimensions Indicators No. Attribute Equations Variable Description Indicator
Source

Availability

Reserve and
production
ratio

I1 Positive ∑
i

pisi

pi: the ratio of energy reserve
to production in each province.
si: the proportion of the ith,
energy in the province’s total
energy production.

[43–45]

Energy
self-sufficiency I2 Positive epro/econ

epro: total energy production
in each province.
econ: total energy consumption
in each province.

[46–48]

Diversity

Production
diversity index I3 Positive

√
n
∑

i=1
s2

i

si: the proportion of the ith
energy in the province’s total
energy production.

[46,49,50]

Consumption
diversity index I4 Positive SWI =

−∑
I

Ci ln(Ci)

ci: the proportion of the ith
energy in the province’s total
energy consumption.

[51–53]

Economic
resilience

Energy
investment I5 Positive ——

Each province’s investment in
fixed assets of the
energy industry.

[54–56]

Environmental
resilience

GDP energy
intensity I6 Negative econ/GDP

econ: total energy consumption
in each province.
GDP: gross domestic product
in each province.

[48,50,53,57]

Technical
resilience

Utilization time
of power
generation
equipment

I7 Positive tpow/htot

tpow: annual operating hours
of power plants in
each province.
htot: total annual hours in
each province.

[47–49,58]

Distribution
loss of power
system

I8 Negative —— —— [48,53,58]
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2.3. Energy Resilience Evaluation Model Construction

In this subsection, our main objective is to develop a dynamic evaluation model
for the evolution of energy resilience. Due to grey relational analysis (GRA) being an
evaluation model based on the data of the influencing factors of the research object, this
method uses mathematical methods to study the geometric correspondence between the
factors to determine the order of each research project [59,60]. One of the main advantages
of GRA is that it uses a relatively small amount of data or elements with considerable
variability to produce satisfactory results. It has been widely used in agriculture, industry,
and energy and has achieved significant results [61–64]. However, this method only
obtains the energy resilience ranking of each province but cannot accurately assess each
province’s energy resilience strength. Traditional comprehensive evaluation methods based
on a combination of indicators and weights that were calculated by principal component
analysis (PCA) [65] and the entropy method [66,67] can obtain accurate evaluation values
of energy resilience. However, when solving complex high-latitude problems, they are
easily affected by outliers and lack robustness. In this paper, we thoroughly considered the
advantages and disadvantages of GRA and comprehensively evaluated techniques [68],
based on the fusion of five methods: PCA, gray correlation, entropy, mean square error,
and projection methods [69]; thus, to a certain extent, this paper can be regarded as the
development of the GRA model by improving a gray relational projection model that
maximizes the level differences. The flowchart of the proposed improved gray relational
model is shown in Figure 3. The key calculation steps of the improved gray relational
projection model are as follows.
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If the index value corresponding to the j (j = 1, 2, . . . n) evaluation indicator of a
i (i = 1, 2, . . . m) evaluation object at time t is xij (t), then according to the indicator
data’s characteristics, as referenced by [70], in this paper, we use the following formula to
normalize each indicator:

bij=
xij − xj

sj
(1)

where xj and sj (j = 1, 2, . . . , m) are the sample averages and mean square deviation of the
observation value of the jth indicator, respectively.

Let the decision matrix after normalization be B(t), then

B(t) =


b11(t) . . . b1j(t)
· · · · · · · · ·

bi1(t) · · · bij(t)

. . . b1n(t)
· · · · · ·
· · · bin(t)

· · · · · · · · ·
bm1(t) · · · bmj(t)

· · · . . .
· · · bmn(t)

 (2)

Among the eight indicators used in this paper, there are six positive and two negative
indicators. At time t, we assume that the indicator values of the positive and negative ideal
objects are b+ (t) and b− (t), then

b+(t) =
[
b+

01(t) . . . b+
0j (t) . . . b+

0n(t)
]

(3)

b−(t) =
[
b−01(t) . . . b−0j (t) . . . b−0n(t)

]
(4)

According to the gray relational analysis, the correlation coefficient hij (t) is

hij(t) =
minmin
1≤i≤m1≤j≤m

{
∆ij(t)

}
+ ρmaxmax

1≤i≤m1≤j≤m
{

∆ij(t)
}

∆ij(t) + ρmaxmax
1≤i≤m1≤j≤m

{
∆ij(t)

} (5)

where ∆ijt =
∣∣∣bij(t)− b∗ij(t)

∣∣∣ and minmin
1≤i≤m1≤j≤m

{
∆ij(t)

}
and maxmax

1≤i≤m1≤j≤m
{

∆ij(t)
}

are the
smallest secondary and largest secondary errors, respectively, and ρ ∈ [0, 1] is the resolu-
tion coefficient.

When b∗ij(t) is b+
ij (t), hij(t) = h+

ij (t), and, at time t, the positive ideal gray incidence
coefficient matrix is H+(t), then

H+(t) =


h+

11(t) . . . h+
1j (t)

. . . . . . . . .
h+

i1(t) . . . h+
ij (t)

. . . h+
1n(t)

· · · · · ·
· · · h+

in(t)
· · · · · · · · ·

h+
m1(t) · · · h+

mj(t)
· · · . . .
· · · h+

mn(t)

 (6)

When b∗ij(t) is b−ij (t), hij(t) = h−ij (t), and, at time t, the negative ideal gray incidence
coefficient matrix is H−(t), then

H−(t) =


h−11(t) . . . h−1j (t)
· · · · · · · · ·

h−i1(t) · · · h−ij (t)

. . . h−1n(t)
· · · · · ·
· · · h−in(t)

· · · · · · · · ·
h−m1(t) · · · h−mj(t)

· · · . . .
· · · h−mn(t)

 (7)
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We use PCA, entropy, and mean square error methods to calculate the target weight of
each indicator, then the weight matrix is U(t) is given by

U(t) =


u11(t) . . .

. . . . . .
ug1(t) . . .

u1j(t) . . . u1n(t)
. . . . . . . . .

ugj(t) . . . ugn(t)
. . . . . .

uk1(t) . . .
. . . . . . . . .

ukj(t) . . . ukn(t)

 (8)

where ugj (t) is the weight of the jth index under the gth weighting method at time t, g = 1,
2, . . . , 3, and j = 1, 2, . . . , n.

If the combined weight to be solved at time t is w(t), then the reasonable interval of
the combined weight of the jth indicator is expressed as

wj(t) ∈
[
u−1

j (t), u+1
j (t)

]
(9)

If Z(t) = w(t)X(t) = [w(t)x1(t) . . . w(t)xi(t) . . . w(t)xm(t)] (10)

Let x0(t) = 1
m [x1(t) + x2(t)+, . . . ,+xm(t)] and the mean value of Z(t) is Z(t), then

Z(t) = 1
m [w(t)x1(t) + w(t)x2(t)+, . . . ,+w(t)xm(t)]
= 1

m w(t)[x1(t) + x2(t)+, . . . ,+xm(t)]
= w(t)x0(t)

(11)

Suppose x∗i (t) = xi(t)− x0(t) and the variance of Z(t) is [S(t)]2, then

[S(t)]2 = 1
m−1

m
∑

i=1
[w(t)xi(t)−w(t)x0(t)]

2

= 1
m−1 ∑m

i=1[w(t)x∗i (t)]
2

= 1
m−1 ∑m

i=1 w(t)x∗i (t)[w(t)x∗i (t)]
T

= 1
m−1 ∑m

i=1 w(t)
{

x∗i (t)x
∗
i (t)

T
}
[w(t)]T

(12)

Using [S(t)]2 max as the objective function, the reasonable weight interval determined
by the sum of the combined weights is 1, the maximum level difference model is constructed,
and the optimal combination weight of each indicator is obtained. Then, we have the
following control system:

max
1

m− 1 ∑m
i=1 w(t)

{
x∗i (t)x

∗
i (t)

T
}
[w(t)]T (13)

s.t.

{
∑n

j=1 wj(t) = 1
u−1

j (t) ≤ wj(t) ≤ u+1
j (t)

Accordingly, at time t, one can obtain the following positive and negative ideal
weighted gray correlation coefficient matrix F+(t) and F−(t):

F+(t) =



h+
11w1(t) . . . h+

1j wj
(t)

· · · · · · · · ·
h+

i1w1(t) · · · h+
ij w

j
(t)

. . . h+
1nwn(t)

· · · · · ·
· · · h+

inwn(t)

· · · · · · · · ·
h+

m1w1(t) · · · h+
mjwj

(t)
· · · . . .

· · · h+
mnwn(t)

 (14)
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F−(t) =



h−11w1(t) . . . h−1j wj
(t)

· · · · · · · · ·
h−i1w1(t) · · · h−ij w

j
(t)

. . . h−1nwn(t)
· · · · · ·

· · · h−inwn(t)

· · · · · · · · ·
h−m1w1(t) · · · h−mjwj

(t)
· · · . . .

· · · h−mnwn(t)

 (15)

Each province is regarded as a row vector, and the energy resilience of the ith province
in year t is expressed as

Fi(t) =
[
hi1(t)w1(t) . . . hij(t)wj(t) . . . hin(t)wn(t)

]
(16)

Using the least squares criterion, we establish the following objective function:

minF(yi(t) = [yi(t)]
2.D+

i (t)−D+
i (t)]

2
+
[
1− yi(t).D

−
i (t)−D−i (t)

]2 (17)

Differentiating the above expression F(yi(t)) with respect to yi(t), one can obtain

yi(t) =

[
D+

i (t)
]2[

D+
i (t)

]2
+
[
D−i (t)

]2 (18)

where 0 < yi(t) < 1. The closer yi(t) is to 1, the higher the energy resilience.
Finally, the dynamic change rate of energy resilience is used to measure the relative

change degree of energy resilience in various provinces in different years. Let the dynamic
change rate (%) of energy resilience of each province be di(t),

di(t) =
yi+1(t)− yi(t)

yi(t)
(19)

2.4. Evaluation Criterion and Data

The CERI represents the ability of a region’s energy supply system to prevent interrup-
tion in the event of uncertainty or sudden interference, and its value range is [0, 1]. Com-
bining with the evolution mechanism of energy resilience, referring to Zhao et al. [71,72]
and following the step length of 0.2, the corresponding level of energy resilience is divided
into five grades, as shown in Table 2.

Table 2. Energy resilience level table.

Number Security Grade Score Range Basic Characteristics

1 I 0.8–1 When it is disturbed by uncertainty, the energy supply in the area is in a safe state
2 II 0.6–0.8 When it is disturbed by uncertainty, the energy supply in the area is basically safe

3 III 0.4–0.6 When disturbed by uncertainty, individual energy sources with high external
dependence may be slightly short of supply during a specific period

4 IV 0.2–0.4 When disturbed by uncertainty, individual energy sources with high external
dependence may be in short supply during a specific period

5 V 0–0.2 When disturbed by uncertainty, the energy system in the region is very tight

Data: Associated data from 2005 to 2018 were collected from the 30 provinces examined in this study: Shaanxi,
Ningxia, Xinjiang, Qinghai, Gansu, Inner Mongolia, Shanxi, Beijing, Tianjin, Hebei, Jilin, Liaoning, Heilongjiang,
Henan, Hunan, Hubei, Guangdong, Guangxi, Hainan, Sichuan, Yunnan, Chongqing, Guizhou, Shandong, Fujian,
Jiangsu, Jiangxi, Shanghai, Zhejiang, and Anhui. There are 31 provinces in China, but data for Xizang province
were not available. The relevant operation data of indicators I1, I2, I3, I4, and I5 were obtained from the respective
Statistical Yearbooks from the 30 provinces (2000–2020) and the China National Bureau of Statistics Database [3].
The relevant operation data of indicator I6 were obtained from the China Statistics Yearbook (2000–2020), and the
power generation equipment utilization times and distribution losses data were acquired from the Wind Database.
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3. Results
3.1. Optimal Weight of Each Indicator

From Section 2.3, we can obtain the optimal combination weight of each indicator, as
shown in Figure 4 (u1, u2, and u3 represent the indicator weights obtained using the mean
square error, PCA, and the entropy weight methods, respectively, and ut represents the
optimal combination weight of each indicator). Simultaneously, we also use the vertical
line chart to clearly show the dynamic change of the optimal weight of each indicator in
Figure 5.
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Figure 4 shows that the weights of each indicator calculated using the three methods
were different, but the optimal combination weight is better distinguished. The optimal
combination weights of the six positive indicators I1, I2, I3, I4, I5, and I7 were closer to
the maximum value of their single weights. Conversely, the optimal combination weights
of the two negative indicators I6 and I8 were closer to the minimum value of their single
weights. Therefore, the optimal combination weights of the eight indicators in this paper
fully reflected the importance of each indicator on China’s overall energy resilience.

Figure 5 clearly shows that, from 2005 to 2018, the optimal combination weight of
each indicator had an unstable dynamic state of change. Before 2011, the weights of each
indicator varied significantly in different years. After 2012, this characteristic changed
significantly, and the average weight of the eight indicators was 0.13 in 2012 and 2013.
After 2013, the changing trend of each indicator’s weight became obvious. The weights of
the energy self-sufficiency, production diversity index, GDP energy intensity, and energy
investment were higher than the other indicators. In particular, the weights of the energy
investment indicators increased rapidly after 2014 and were far higher than the other
indicators. The utilization time of power generation equipment and distribution loss
decreased significantly compared with the prior years. On the one hand, this decrease
reflected the improvement of power plant efficiency in China; on the other hand, it also
reflected that these two indicators have reached a fairly high level and will not threaten the
power interruption in China.

3.2. Suitability of the Proposed Improved Gray Relational Projection Model

This paper used the improved grey model to calculate the energy resilience ranking
of 30 provinces in China, and compared it with the traditional grey model, which is seen
in Table 3 (R1—energy resilience ranking of each province calculated by gray relational
analysis, R2—energy resilience ranking of each province calculated by improved gray
relational analysis). The results showed that the energy resilience of the five provinces
of Shaanxi, Shanxi, Inner Mongolia, Ningxia, and Xinjiang ranked in the top five in most
years, and Shaanxi and Shanxi ranked in the top two in most years. In contrast, in most
years, Zhejiang, Hunan, Hubei, Gansu, and Hainan Provinces ranked in the bottom five.
Except for Sichuan Province, the ranking results of the gray relational analysis and the
improved gray relational analysis are the same. This result supports the suitability of the
improved gray relational analysis constructed in this study, which is also in line with the
actual situation.

Sichuan is a province with a high degree of energy diversification. Hydropower
accounts for more than 75% of total energy consumption. It is the largest hydropower
development base in China. In recent years, many natural gas resources have been dis-
covered, which effectively guarantees the energy supply in the region and large amounts
of energy are exported to other provinces each year. Moreover, in R2 ranking, Shanghai
also ranked slightly higher than R1, which is in line with the actual situation. Although
Shanghai lacks energy, it has a large energy investment and low energy consumption per
unit GDP. In the past, when Shanghai suffered from extreme weather events, there was no
energy shortage. Therefore, the improved grey relational analysis results are closer to the
reality of each province in China, making them suitable for this article.
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Table 3. Energy resilience ranking of each province in China by comparison of two gray relational analyses.

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
Province R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Yunnan 9 6 8 11 14 4 5 4 9 12 7 9 3 1 8 2 2 4 4 29 3 24 9 27 7 20 1 11
Heilongjiang 10 4 7 7 5 12 6 20 10 14 12 27 6 20 9 9 10 2 12 2 10 8 11 8 8 11 10 19

Shaanxi 1 11 2 5 3 9 2 17 3 10 1 3 2 11 1 28 4 29 1 25 1 30 2 30 1 25 3 30
Shanghai 29 19 11 21 30 20 25 12 29 11 28 12 29 28 25 19 29 21 28 24 28 21 18 15 26 29 25 25

Chongqing 11 5 21 14 13 23 17 16 13 25 11 30 13 26 15 18 12 15 11 7 9 5 15 10 14 30 12 18
Qinghai 5 15 12 19 11 19 8 29 7 18 6 29 9 30 2 27 6 27 8 23 7 16 7 9 6 6 4 9

Inner Mongolia 6 9 5 2 1 5 10 9 5 3 3 5 5 27 6 13 1 17 7 27 8 4 4 4 5 8 8 5
Guizhou 12 8 13 10 15 6 11 6 15 1 10 1 11 6 28 7 11 14 10 10 12 25 14 25 9 3 11 16

Jilin 13 27 25 27 16 27 12 26 14 22 13 21 17 17 12 22 13 20 15 19 14 18 10 29 10 19 13 14
Zhejiang 30 25 27 30 8 14 30 7 24 5 29 6 28 3 27 6 30 3 29 21 30 14 30 19 28 14 30 22
Liaoning 14 12 4 8 6 22 13 15 16 24 16 24 12 14 11 11 14 10 16 18 13 26 12 26 11 26 18 28

Shandong 15 16 23 17 17 29 19 24 19 28 17 26 14 23 13 24 16 24 13 16 15 11 13 18 15 24 20 23
Henan 16 13 6 12 18 8 18 27 11 27 14 11 15 29 14 30 17 30 18 28 16 29 17 20 17 13 19 8
Shanxi 2 3 1 9 2 7 1 8 4 30 2 19 1 10 3 1 5 9 3 5 4 12 1 7 3 1 5 6
Hunan 27 28 19 29 24 21 24 13 23 17 27 14 27 21 29 17 28 26 26 22 27 23 16 21 29 17 26 12
Fujian 17 24 14 24 21 24 14 23 17 15 15 15 16 9 16 20 15 6 14 12 18 13 23 23 16 21 22 17

Guangdong 18 30 30 13 9 13 21 21 12 16 18 20 19 22 17 21 19 22 17 17 19 20 24 12 23 7 14 1
Hubei 28 26 26 26 29 30 29 25 25 9 22 25 30 19 26 16 26 16 27 8 29 9 19 28 25 28 29 27

Jiangsu 19 17 20 20 19 15 20 11 18 23 24 22 21 18 19 4 18 11 19 6 17 19 25 14 20 15 15 13
Sichuan 3 7 22 1 7 2 3 3 6 6 5 8 7 16 5 3 7 5 5 3 6 1 3 1 12 2 7 4
Guangxi 20 14 24 15 20 18 22 22 26 19 23 16 18 8 20 23 21 25 22 11 20 10 26 3 19 5 21 7
Ningxia 4 2 10 4 10 1 7 5 2 7 4 4 10 13 10 14 3 13 6 14 2 22 5 17 2 16 6 10
Xinjiang 7 1 17 6 12 3 4 2 1 4 9 2 4 4 4 26 8 23 2 26 5 28 6 24 4 22 2 21
Beijing 21 21 16 23 25 26 15 30 20 20 19 28 20 12 21 8 22 18 20 20 22 7 22 5 18 10 16 29
Gansu 26 18 15 28 28 17 28 28 28 26 26 18 23 24 30 25 24 19 30 15 26 17 27 16 27 9 27 3
Tianjin 22 22 9 22 22 25 16 10 21 2 20 7 22 5 18 12 20 7 21 4 24 2 21 6 22 12 17 15
Anhui 8 10 3 3 4 11 9 19 8 29 8 23 8 25 7 29 9 28 9 30 11 27 8 22 13 27 9 26
Hebei 23 23 29 25 27 10 23 1 27 8 25 10 26 2 23 5 25 8 24 9 23 3 20 2 21 4 23 2
Jiangxi 24 20 18 16 23 16 27 14 22 21 21 17 24 15 24 15 27 12 23 13 21 15 29 13 24 23 24 20
Hainan 25 29 28 18 26 28 26 18 30 13 30 13 25 7 22 10 23 1 25 1 25 6 28 11 30 18 28 24
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3.2.1. Energy Resilience of the 30 Chinese Provinces

As shown in Figure 6, from 2005 to 2018, the energy resilience of 30 provinces in China
showed significant dynamics and differences. The energy resilience in most provinces is
greater than 0.6, and the resilience level is above level II. The results indicate that if it is
disturbed by uncertain emergencies, China’s overall energy system will not be interrupted
and will be in a safe supply state. Specifically, the five provinces of Sichuan, Xinjiang,
Shanxi, Inner Mongolia, and Shaanxi, show significantly higher resilience figures than
the other provinces; the energy resilience of these provinces is above 0.8 in most years,
indicating that the energy supply of these five provinces is sufficient and not affected by
sudden disturbances. Except for Sichuan, Xinjiang, Shanxi, Beijing, Tianjin, Hebei, Inner
Mongolia, and Shaanxi, the energy resilience of most provinces is unstable.
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Energy resilience in Beijing, Tianjin, and Hebei has been maintained at around 0.6 for
many years, reflecting the lack of significant improvement in energy resilience in these
regions. The trend of energy resilience changes in the three provinces of Chongqing,
Guizhou, and Yunnan, which showed a high degree of consistency before 2013, with a
significant “W”-shaped trend, and after 2013, a significant “V”-shaped trend. Although
after 2013 the volatility of these three provinces was high, in comparison, Yunnan Province
has gradually improved since 2016. The ten provinces in eastern and southern China
and Gansu Province in western China have significantly higher fluctuations than other
provinces. The energy resilience of the nine provinces of Yunnan in the southwest, Xinjiang
and Qinghai in the northwest, Inner Mongolia in the north, Heilongjiang and Jilin in the
northeast, Anhui and Fujian in the east, and Henan in the central region experienced
fluctuations before 2015, and they have seen an upward trend in the past three years. The
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energy resilience of Chongqing and Guizhou in the southwest, Gansu in the northwest,
and Hainan and Shaanxi in the south have also declined slightly in recent years. The five
provinces of Liaoning, Fujian, Jiangxi, Hunan, and Hubei showed a downward trend. If
disturbed by uncertain factors, the energy systems of these regions will show significant
vulnerabilities. In eight provinces in the eastern region and three provinces in the central
region, energy resilience has been concentrated in the range of 0.4–0.6 for most years.
If disturbed by sudden uncertain factors, these regions are prone to a short supply of
energy with high external dependence for some time. In particular, in the five provinces
of Chongqing, Gansu, Hainan, Hunan, and Zhejiang, the energy resilience in the sample
interval was sometimes lower than 0.4, indicating that they are more susceptible to energy
supply interruptions. These results require the attention of the government.

3.2.2. Spatial Evolution of the 30 Chinese Provinces

From the research results in Figure 6, we explored the spatial–temporal changes in
the CERI scores across 30 Chinese provinces in 2005, 2010, 2015, and 2018 as shown in
Figures 7–10. The figures indicated that Jilin, Liaoning, Hebei, Henan, Hubei, Hunan, and
Guangxi formed a clear dividing line from 2005 to 2010. Northwest of this dividing line
were provinces with better energy resilience, which are also China’s energy-rich areas,
except for Ningxia and Qinghai. In 2010, the energy resilience in provinces northwest of
this dividing line did not change significantly, except for Qinghai and Ningxia. However,
southeast of the dividing line, the number of provinces with energy resilience higher than
0.6 decreased, and the number of provinces with energy resilience lower than 0.4 increased.
For example, the energy resilience in Guangdong and Hainan in 2010 improved compared
with 2005, and the energy resilience of Shandong, Jiangsu, Henan, and the other provinces
decreased to below 0.6 in 2010.
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In 2015, the spatial–temporal patterns of China’s energy resilience changed signifi-
cantly. In provinces that mainly rely on nonrenewable energy, such as Inner Mongolia and
Qinghai, the energy resilience declined. Conversely, in provinces that focused on diversi-
fied energy development, such as Yunnan, Guangxi, and Anhui, the energy resilience has
greatly improved. In 2018, the number of provinces with energy resilience 0.8–1 remained
unchanged, while the number of provinces with energy resilience lower than 0.4 increased
by one. The energy resilience of more than half of China, such as Shaanxi and Shanxi
Provinces, is lower than in 2015. Among them, Guangxi and Chongqing have changed the
most. The energy resilience of these two provinces was reduced from level II in 2015 to
level III in 2018. From 2015 to 2018, China’s energy resilience has slowly declined, and its
spatial distribution has shown significant imbalance. Regions with well-developed energy
diversification have shown higher energy resilience.

4. Discussion
4.1. Key Factors Affecting Energy Resilience

This paper developed five dimensions of reliability, diversity, economic resilience,
environmental resilience, and technological resilience to evaluate energy resilience; these
five dimensions are intertwined. Most of the indicators of the five dimensions are helpful
to improve energy resilience and can also help to improve the level of energy supply
security [73]. Energy self-sufficiency is the key indicator of energy reliability and the basic
element of energy resilience. Exner emphasizes the significance of energy self-sufficiency
for energy reliability. In this paper, Shaanxi, Shanxi, Inner Mongolia, Xinjiang, and other
provinces with abundant energy resources have a high energy supply security level and
high energy resilience [74]. In contrast, Hainan Province and Gansu Province lack energy,
and their energy resilience is low. Energy diversity is the key factor in increasing regional
energy resilience and improving the adaptability and resistance of the energy system. In the
context of climate change, improving regional energy diversity is of great significance for
indirectly improving regional environmental resilience. In recent years, energy investment
has been significant for energy resilience.
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Weak energy infrastructure is the key factor influencing energy resilience, especially
in underdeveloped areas in Hunan, Guizhou, Guangxi, etc. Therefore, it is vulnerable
to extreme weather events, and the year of extreme weather events showed poor energy
resilience. On the one hand, it reflects the lack of redundancy in China’s energy transfor-
mation policy, which leads to the lack of reliability of energy systems and seasonal supply
interruption. On the other hand, it reflects that China’s energy transformation is faster than
expected. Ultimately, this will be of great help to China’s achievement of the carbon-neutral
goals for 2030 and 2060. Energy self-sufficiency, production diversity index, GDP energy
intensity, and energy investment are the most significant factors affecting energy resilience
in a region, and they are also interrelated, reflecting the complexity of energy resilience as a
synergistic concept. It also shows the importance and necessity of using comprehensive
evaluation methods to evaluate energy resilience.

4.2. Energy Resilience and Sustainable Development

The concept of resilience is still under development, and it is not static. Especially in
the energy sector, the concept of energy resilience is undergoing continuous development
and may involve significant energy policy issues, such as energy vulnerability, security,
poverty, and justice. The concept of energy resilience proposed in this paper is consistent
with the viewpoints of the Editorial of Nature Sustainability [75,76], and other institutions
and scholars who believe that energy resilience cannot exist independently. Energy re-
silience is closely related to sustainable development factors such as economic development
and social ecosystems. Compared with the energy system’s resilience, the concept of sus-
tainable energy development mainly emphasizes the intergenerational equity of energy
development and its impact on the environment, rather than the impact of external shocks
on the energy system. Energy resilience refers to the adaptability and resistance of the
energy system with full consideration of social, political, economic, and other uncertain
factors. Energy resilience emphasizes the stability of the energy system during the impact.

4.3. Economic Development and Energy Resilience

Economic development and energy resilience complement each other. For the areas
that lack energy resources, the rapid development of the economy will also impact the
energy resilience of the region at the initial stage; a typical case is Guangdong Province.
From 2005 to 2007, the energy resilience of most provinces in China was above 0.8, and
those with energy resilience below 0.4 only appeared twice in Guangdong Province, where
the economy was developing rapidly. This paper further collates the energy resilience
trends of the top and bottom three provinces, as shown in Figures 11 and 12, to confirm
this result. The study results showed that from 2005 to 2018, the energy resilience of the top
three cities in China, Beijing, Shanghai, and Tianjin, was approximately 0.6. All Shanghai’s
energy resources were supplied from other places, but this city’s energy resilience is not
the worst. However, it was evident that the energy resilience of the three provinces of
Gansu, Yunnan, and Guizhou showed greater fluctuations, indicating that energy systems
in economically underdeveloped regions are more susceptible to the impact of uncertainty.
Energy resource endowment is the basic condition to ensure energy resilience; economic
stability is dependent on the effective functioning and resilience of energy systems, and
at the national level, investment scale played the dominant role [77]. The advantages
of economic and social green development in the eastern region also help to improve
energy resilience [78–80]. This is particularly noticeable in Germany, as their energy
transition implies deep transformations in the economy, technology, and politics, and in
the paramount fields of transition economies and rentier states [81]. Conversely, countries
with poor economic development are more likely to cause people to worry about energy
resilience [82].
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Energy resilience is a complex scientific issue. Due to the difficulties of research
methods and limitation of data, the results of this study have certain limitations. In the
future, we will also continue to study it to explore more scientific decision-making methods
for energy resilience.

5. Conclusions and Policy Implications

China is a typical representative developing country that uses coal as its energy source.
Under the constraints of carbon neutrality goals, China is in a critical period of energy tran-
sition, and new problems may arise during the transition process, bringing new challenges
to energy security. It is very important to investigate China’s energy resilience for China’s
energy security and the energy security of coal-based developing countries such as China.
This paper introduced the concept of regional energy resilience, presented the evolution
mechanism and evaluation criteria of energy resilience, and constructed an improved
gray relational projection model to measure the energy resilience of 30 provinces in China.
We also analyzed the spatial evolution of energy resilience in various provinces and the
relationship between energy resilience and regional economic development. The results
indicated that the spatial–temporal patterns of energy resilience in China changed signif-
icantly from 2005 to 2018. High-energy resilience moved from provinces with abundant
nonrenewable energy before 2010 to provinces with high energy diversity. Energy endow-
ment is a primary condition to ensure a region’s energy resilience. Energy investment
and economic development can effectively improve the energy resilience of resource-poor
areas. Due to the limitation of data availability, the indicators selected in this paper cannot
represent all the indicators for evaluating energy resilience. However, the results of this
study are consistent with the actual conditions of various provinces in China, indicating
the reliability of the research in this paper. The research results of this paper may serve as a
reference for the Chinese government and other countries.

Although energy resilience is different from sustainable development, in recent years,
the rapid decline in energy resilience in individual provinces in China is mainly due to en-
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ergy transformation and extreme weather events. Climate issues have become the primary
factor affecting energy resilience in China’s provinces. Therefore, China’s future provincial
energy resilience construction plans should be combined with sustainable development
goals and carbon-neutral goals. Factors such as energy self-sufficiency, production diversity
index, and energy investment are the main factors affecting energy resilience. In the context
of increasing uncertainty and interference, economic development and policy coordination
are important guarantees for stabilizing regional energy resilience. Provincial disparities
in economic development are significant. In some economically developed areas, despite
the lack of energy resources, their policy is highly adaptable. When encountering extreme
interference, they can maintain the stability of the energy system in the region. Therefore,
while considering the source of energy supply, each province should strengthen policy
coordination. Policy coordination among provinces and between provinces and energy
companies should be strengthened. Provinces with developed economies but with a lack of
energy should provide financial support to provinces with rich energy resources but poor
infrastructure or energy. This can not only improve the energy resilience of these areas with
poor infrastructure, but also ensure the energy supply of economically developed cities. At
the same time, it is crucial to set up appropriate province-specific emission peak targets
and raise province-specific emission reduction policies by considering the local realities.

With the development of the energy system towards complete de-carbonization, natu-
ral gas may play an important role in ensuring energy toughness with relatively low carbon
characteristics and enough supply. Additionally, greater focus should be placed on the
value of gas storage. Technological progress is an important method of improving energy
resilience. According to the data analysis method, the Chinese government should establish
an early warning mechanism for energy supplies, and collect and monitor data on energy
supplies, energy consumption, and environmental emissions to optimize the frequency of
energy data sharing. The Chinese government should also invest in exascale computing
technology and advanced artificial intelligence methods for weather and climate forecasting
so that the energy sector can better prepare for emergencies and extreme weather events.
Moreover, the Chinese government should continue to develop carbon capture and storage
technology, and general technology such as bioenergy to better conserve energy, protect
the environment, and ameliorate the effects of extreme weather events and other events
through the integration of multiple technologies to improve China’s energy resilience.
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