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Abstract: Geothermal energy is considered an essential renewable resource to generate flexible
electricity. Geothermal resource assessments conducted by the U.S. Geological Survey showed that
the southwestern basins in the U.S. have a significant geothermal potential for meeting domestic
electricity demand. Within these southwestern basins, play fairway analysis (PFA), funded by the
U.S. Department of Energy’s (DOE) Geothermal Technologies Office, identified that the Tularosa
Basin in New Mexico has significant geothermal potential. This short communication paper presents
a machine learning (ML) methodology for curating and analyzing the PFA data from the DOE’s
geothermal data repository. The proposed approach to identify potential geothermal sites in the
Tularosa Basin is based on an unsupervised ML method called non-negative matrix factorization
with custom k-means clustering. This methodology is available in our open-source ML framework,
GeoThermalCloud (GTC). Using this GTC framework, we discover prospective geothermal locations
and find key parameters defining these prospects. Our ML analysis found that these prospects
are consistent with the existing Tularosa Basin’s PFA studies. This instills confidence in our GTC
framework to accelerate geothermal exploration and resource development, which is generally
time-consuming.

Keywords: geothermal exploration; geothermal resource signatures; machine learning; play fairway
analysis; Tularosa Basin

1. Introduction

Geothermal is a rapidly growing renewable resource that can be flexibly utilized with
other energy sources. Currently, in the U.S., approximately 3.7 GJ/year (<1%) of electricity
is generated from geothermal resources [1]. It is estimated that more than 2026 GJ/year of
energy can be extracted with efficient geothermal exploration [2,3]. Significant technical and
non-technical challenges must be overcome to secure such energy while reducing the risks
and costs of exploration and development [4,5]. When there is no surface heat signature,
geothermal resources are often hidden, requiring expensive and risky exploration [2,6,7].
The U.S. Department of Energy’s (DOE’s) Geothermal Technologies Office funded a series
of play fairway analysis (PFA) projects to overcome this challenge [5].

The PFA concept, adapted from the oil and gas industry, is performed for geother-
mal exploration and development [4]. PFA integrates available geologic, geophysical,
and geochemical attributes indicative of geothermal activity [8–14]. In this short pa-
per, we provide a machine learning (ML)-enhanced data-driven concept that quantifies
the important attributes for geothermal resource characterization. Specifically, the ML-
enhanced PFA novelty is that it quantifies the relative importance of each attribute [15,16].
Our ML analysis is based on an open-source framework called GeoThermalCloud https:
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//github.com/SmartTensors/GeoThermalCloud.jl (accessed on 21 March 2023), which
simultaneously analyzes available attributes, finds geothermal prospects, and discovers
critical parameters defining prospective locations [17,18].

The GeoThermalCloud (GTC) [18] utilizes various ML methods to (1) analyze large
field datasets and fill data gaps, (2) assimilate model simulations (large inputs and outputs),
(3) process sparse datasets, (4) perform transfer learning (between sites with different
exploratory levels) [19], (5) extract hidden geothermal signatures in the field and sim-
ulation data, (6) label geothermal resources and processes, (7) identify high-value data
acquisition targets, and (8) guide geothermal exploration and production by selecting
optimal exploration, production, and drilling strategies. A key algorithm used in GTC
to perform this ML analysis is called non-negative matrix factorization with customized
k-means clustering (NMFk) [20,21]. This NMFk is available in the SmartTensors AI platform
https://github.com/SmartTensors (accessed on 21 March 2023). This paper uses this NMFk
method to analyze the Tularosa Basin, New Mexico, PFA dataset.

The Tularosa Basin is located in the Basin and Range Province, an area that is highly
favorable for the occurrence of geothermal resources due to the high heat flow related to
the Rio Grande rift (see Figure 1). Several geothermal facilities have been developed within
the Basin and Range Province [22,23]. This basin has been the subject of geothermal studies
in the past decade through Phase-I and Phase-II DOE-GTO PFA funding [11]. Traditional
PFA studies have demonstrated the basin’s high geothermal potential, prompting interest
from the U.S. Army [24] in using the geothermal resource as an energy source for the White
Sands Missile Test Range and McGregor Range [25–27].

Figure 1. Location of Tularosa Basin within New Mexico: This figure shows a schematic of the region
within New Mexico. The left figure shows the basin of interest for geothermal exploration. The right
figure shows a schematic of the geology (cross-section AA’) of the fault-bounded basin with two
half-grabens. The eastern part is bounded by the west-dipping Alamogordo fault zone, while the
west part is bounded by the west-dipping Jarilla fault zone. The western edge of the basin is defined
by the San Andres Fault. Courtesy of Newton and Land [28].

Geologically, the Tularosa Basin is situated on the eastern flank of the Rio Grande rift
zone and is a north-trending intermontane graben located in south-central New Mexico.
The Tularosa Basin is bounded to the east by the uplifted Sacramento Mountains and to the
west by the uplifted Organ and San Andres Mountains. Faults related to the Rio Grande
rift with several thousand feet of displacement separate the basin from the surrounding,
uplifted mountains (see Figure 1). Stratigraphically, the Tularosa Basin consists of Paleozoic
limestones and shales of Tertiary age [25–27,29], which contain lithium deposits. Rifting
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during the Paleogene resulted in high heat flow in south-central New Mexico [11,23]. This
high heat flow makes the southern part of the Tularosa Basin favorable for geothermal
exploration. Through DOE-GTO funding, PFA data were collected by Ruby Mountain,
Inc. in the past decade to develop geothermal fields in the Tularosa Basin [24,30]. This
PFA demonstrated favorable geothermal prospectivity within the basin. The collected data
included geological, geophysical, geothermal, and geochemical attributes. In this study, we
curated the PFA data (available from the DOE Geothermal Data Repository [31]) and then
used the data in our GTC-based ML pipeline. Such an ML study provides insight into the
relationship between the attributes and prospective geothermal locations.

This paper is outlined as follows: Section 2 provides the ML methods used to curate
and analyze the geothermal data. Section 3 describes the geothermal data, attributes, and
the locations of the wells where the data were collected during Phase-I and Phase-II of the
PFA. Section 4 provides the ML results and discussion. Conclusions are drawn in Section 5.

2. Methods

Given observational data X with non-negative values and of size (n, m), where m
is the number of data locations and n is the number of data attributes observed at each
site, the first step in the NMFk analysis is to decompose this matrix X into a non-negative
‘attribute’ matrix W of size (n, k) and the non-negative ‘location’ matrix H of size (k, m):

X = W × H + ε(k), (1)

where k is the unknown number of signals (features) present in the data, and ε(k) is the
reconstruction error matrix for the k-th signal. The attribute matrix W represents how the
extracted features are related to the attributes. The location matrix H expresses how the
hidden features are related to the locations.

The optimal number of hidden signals kopt is unknown and is estimated by performing a
series of non-negative matrix factorizations for different values of k, where k = 2, 3, · · · , n. The
maximum value k cannot be expected to exceed n or m. This is achieved by minimizing the
following objective functionO based on the Frobenius norm for all possible values of k [32]:

O = ||X−W × H||F such that W, H ≥ 0 ∀ n, m, k. (2)

For each k value in the range of 2, 3, · · · , n, a non-negative matrix factorization is
performed multiple times (typically on the order of 1000 times) based on random initial
guesses for W and H matrices. The best estimate of O for a given k from all of these runs is
applied to define the reconstruction error for each k value: O(k). The magnitude of O(k)
typically declines with an increase in k. As the number of signals increases, the number
of unknowns (elements of W and H matrices) to be estimated also increases, resulting
in higher degrees of freedom. The number of known elements (i.e., the number of non-
missing elements of X) remains constant. The resulting multiple solutions of H (or W;
typically, it is preferred to cluster the smaller matrix) are clustered into k clusters using
customized k-means clustering. In our case, we have 10 data attributes and 120 locations.
The resulting sizes of W (signature matrix) and H (location matrix) are 10× k and k× 120,
respectively. Within each specified k, the data for custom k-means clustering are from W as
it is a smaller matrix.

The location matrix H (size k× 120) contains information on site locations. We have
k different weights for each location corresponding to the extracted signatures. The site
is assigned a specific signature based on the maximum value among these weights. For
example, if k = 4, we have four signatures (say S1, S2, S3, S4) and corresponding weights
(say w1, w2, w3, w4). For site-1, let us assume w2 is the maximum value among the
weights. Then the site is assigned signature S2. For site-10, if the maximum value among
the calculated weights is w3, the site is predominantly described by signature S3.

We enforce the condition that each k cluster contains an equal number of members
during clustering, which is equivalent to the number of performed multiple random runs
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(e.g., in our case it is 1000 runs) [33]. After clustering, the average silhouette width S(k) is
computed [34]. This metric measures how well the random NMF solutions are clustered for
a given value of k. The values of S(k) theoretically can vary from −1 to 1. Typically, S(k)
declines sharply after an optimal number, kopt, is reached. The kopt value is selected to be
equal to the maximum number of signals that can accurately reconstruct the observational
data matrix X, as estimated by O(kopt), and has an average silhouette width S(kopt) that
is close to 1. In this way, selecting the optimal number of signals targets parsimonious
solutions with fewer signals. More details on the NMFk algorithm and its implementation
are discussed in References [35,36].

We also note that the analyzed data can include negative entries (for example, ampli-
tude values of seismic or acoustic signals). In such cases, the NMFk workflow allows for
two alternative approaches. The first one is to pre-process the data by applying mathe-
matical transformations to make them non-negative. An alternative method in NMFk is
to relax some of the non-negativity constraints in the matrix decomposition process (e.g.,
non-negativity constraints can be applied to only specific elements of the decomposed
matrices). Detailed discussions of the NMFk capabilities and features are provided via
our SmartTensors AI Platform websites https://smarttensors.github.io (including tests,
examples, and Jupyter notebooks; accessed on 21 March 2023). The NMFk is one of the
algorithms within our SmartTensors AI Platform (http://tensors.lanl.gov; accessed on 21
March 2023) that is used for unsupervised, semi-supervised, and physics-informed ML.
Figure 2 summarizes our proposed approach.

X W H

1. Geothermal data 2. SmartTensors AI 
Platform

3. ML analysis building on 
subject matter experts

GeoThermalCloud for Exploration

Figure 2. GeoThermalCloud for exploration: This figure summarizes our proposed approach using
GTC to analyze geothermal data for enhanced exploration. We collect and curate the geothermal data
for ML analysis in the first step. The NMFk method in the SmartTensors AI platform is used for this
ML analysis, which is the second step. To understand the geothermal potential within the region of
interest, subject matter experts should analyze the obtained attribute and location matrices, which is
the final step.

3. Data

This study used ten attributes: Temperature at 2 m depth (temperature @2 m), heat
flow, NaK-Giggenbach geothermometer, K-Mg geothermometer, NaK-Fournier geother-
mometer, silica geothermometer, gravity, fault distance, Quaternary fault density, and the
Li concentration, which were all sampled at ≈ 200 m below ground level and sampled in
the same formation. All of these attributes are critical for geothermal resource discovery
and exploration. Heat flow describes the transfer of heat to a potential geothermal reservoir
from the deep subsurface. Geothermometers (NaK-Giggenbach geothermometer, K-Mg
geothermometer, NaK-Fournier geothermometer, and silica geothermometer) are used to
estimate temperature and geochemical processes in the subsurface [37]. These geother-
mometers help estimate potential reservoir temperatures (see the section on geothermome-
try methods) [38], leading to less exploratory drilling. Gravity may represent secondary
mineralization and help characterize the geologic structure [39]. Faults can act as conduits
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for (1) subsurface groundwater flow from deep to shallow and (2) groundwater recharge.
Two fault attributes were used in the NMFk analysis: fault distance and Quaternary fault
density. Fault distance represents the distance from the fault to the data point. Fault density
(Quaternary) is the number of faults per square meter of an area. Finally, Li concentration
is a geochemical element that may represent deep fluid circulation (Figure 10 in the results
section) [38], which may indicate that geothermal waters have undergone mixing with shal-
low non-geothermal groundwater. All 10 of the aforementioned attributes were collected
or estimated at 120 locations shown in Figure 3.

Only temperature @2m was present at all 120 locations, as such, we applied differ-
ent interpolation techniques to estimate the attributes not collected at certain locations.
For heat flow, NaK-Giggenbach geothermometer, K-Mg geothermometer, NaK-Fournier
geothermometer, silica geothermometer, gravity, and Li concentration, interpolation was
performed based on block mean, kriging, and inverse distance weighting. Next, the R2-
score was computed based on interpolated and actual values. We found that all methods
provide equivalent R2-scores. Block means was selected as the optimal interpolation
method because it takes the least time to execute. The nearest neighbor algorithm used
the interpolated values to sample values at 120 locations. The nearest neighbor algorithm
finds the mean value based on either the radius or the number of points around a specified
point. Here, we used radius to find the mean value. The radius was calculated based on a
variogram study of the data.

Fault distance and fault density were estimated using different approaches. First, we
generated a regular raster on ArcMap to calculate fault distance. Then, we converted the
raster to points. Next, we used a near coverage tool on ArcMap to compute the distance of
each point from the closest faults. We also generated regular raster and converted points to
estimate fault density, The near coverage tool was used to find the distance from a point to
the closest fault. Finally, the kernel density function was used to calculate the fault density
(SI unit is m/m2).

Figure 3. Data: This figure shows the data locations and Quaternary faults in the study area. The
data were collected during the Phase-I and Phase-II PFAs within this region. The collected data were
downloaded from the DOE’s GDR and curated using the SmartTensors AI platform.
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4. Results and Discussion

Figure 4 shows the reconstruction quality O(k) and average silhouette width S(k) for
a range of geothermal signatures, k. O(k) values exponentially decrease with the increase
in the number of signatures. However, this same trend is only sometimes true for S(k).
Although optimal solutions have low O(k) and high S(k) values, their optimal values
are not theoretically established. Generally, low O(k) and S(k) > 0.25 can be considered
acceptable. Here, the solutions for k = 2, 3, 4, 5, and 6 were accepted, while the k = 8
to 10 solutions were rejected by the ML algorithm. This conclusion is based on the high
S(k) values (> 0.25) and the O(k) decline curve (Figure 4). The k = 4 solution is optimal
because of its low O(k) and high S(k) values. The solution with k < 4 is an underfitting
representation, while k > 3 is an overfitting representation of data. In the following
paragraphs, we will describe each signature of the k = 4 solution (Figure 5a,b).

Silhouette width, S(k)

Reconstruction error, O(k)

Figure 4. Metrics for geothermal signal discovery: This figure shows the metrics and ML results from
the NMFk analysis. We show the normalized reconstruction quality/fit O(k) in red. The solution
robustness is based on the average silhouette S(k) width of the clusters and is shown in blue (for
different numbers of signals k).

Figure 5a shows a heatmap of the signatures found by NMFk. Each signature captures
specific characteristics in the dataset. The colors in each signature represent the contribution
of each attribute. Green, yellow, and brown–red colors represent minor, moderate, and
significant contributions. Note that minor and significant contributions also mean low and
high attribute values in the dataset.

The dominant attributes of Signature A are heat flow, K-Mg geothermometer, silica
geothermometer, and Quaternary fault density (Figure 5a). Heat flow is one of the leading
geothermal attributes, while K-Mg and silica geothermometers suggest high reservoir tem-
peratures. Low contributions from NaK-Giggenbach and NaK-Fournier geothermometers
suggest that Na-enriched minerals do not control geochemical processes in the reservoir.
The high contribution of Quaternary fault density may indicate elevated secondary perme-
ability. The contribution of temperature @2m is moderately consistent with high heat flow.
Another critical component of this signature is the low contribution from fault distance.
Low fault distance means the fault is close to the locations associated with this signature,
which may lead to elevated secondary permeability. All of these factors are good indicators
for high geothermal prospects; therefore, the locations associated with Signature A have a
high chance of having geothermal resources (Figure 5b).

The dominant attributes of Signature B are temperature @2m, heat flow, Quaternary
fault density, and Li concentration (Figure 5a). Temperature @2m and heat flow are the
two main geothermal attributes. The high contribution of the Quaternary fault density
may indicate elevated secondary permeability. The high contribution from Li suggests a
potential fluid circulation from the deep subsurface, which is a characteristic of geothermal
resources in NM (Figure 10 in the results section) [38]. The contribution from fault distance
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is also low. A low fault distance means faults are close to the locations associated with this
signature. All of these factors are good indicators for high geothermal prospects; therefore,
the locations associated with Signature B also have a high chance of potential geothermal
resources (Figure 5b). However, no geothermometers had significant contributions to this
signature except a moderate contribution from a silica geothermometer, suggesting the
geothermal potential is not as high as Signature A. A careful and detailed analysis should
be undertaken before deciding on the geothermal resource development associated with
this signature.

No geothermal attributes contributed significantly to Signature C; therefore, we con-
clude that the locations associated with it have a low chance of possessing geothermal
resources. In Signature D, the dominant attributes are NaK-Giggenbach and NaK-Fournier
geothermometers. These attributes suggest that the reservoir has a high temperature. The
moderate and high contributions of the Quaternary fault density and Li concentration
suggest elevated secondary permeability and deep fluid circulation, which are also indi-
cators of potential geothermal resources. On the other hand, temperature @2m and heat
flow had low contributions. All of these factors suggest that the geothermal prospectivity
of locations associated with Signature D (Figure 5b) is inconclusive. However, because
of its proximity to Signature A (a high prospective signature), there is some potential
for sustainable geothermal resources in the locations associated with Signature A. We
note that the prospective geothermal locations are consistent with Ruby Mountain’s PFA
prospects [9,10,24].

The NMFk results and Table 1, coupled with the subject matter analysis, allow us to dis-
cover potential geothermal resources and their spatial locations. Regional hydrogeological
and geothermal conditions would facilitate a better understanding of whether a long-term
geothermal facility can be developed here. We can use physics-informed ML methods to
compute aquifer temperature, viscous heat flux, vadose heat flux, and advective heat flux to
obtain such results. Among these four attributes, viscous heat flux and advective heat flux
could be used to estimate the potential time to heat the geothermal reservoir temperature
during energy production and injection, hence, assessing the viability and sustainability of
geothermal reservoirs.

Table 1. Dominant attributes of each hidden geothermal signature and corresponding resource
prospectivity.

Signature Dominant Attributes Geothermal Resource
Prospectivity

A

Heat flow, K-Mg
geothermometer, Highsilica geothermometer,

quaternary fault density

B

Temperature at 2 m, heat flow,
gravity, Highquaternary fault density,

Lithium concentration

C Fault distance Low

D

NaK-Giggenbach
geothermometer, gravity,

ModerateNaK-Fournier
geothermometer, Lithium

concentration
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PFA identified plays: Phase 1 and 2

Figure 5. NMFk analysis and comparison with traditional PFA: The top left figure shows the
geothermal signature heatmap (a) and their spatial distribution (b). Each signature captures specific
characteristics in the geothermal data. Here, Signatures A and B represent highly prospective
geothermal signatures. Green, golden, and red colors in (a) represent low, medium, and high
contributions. The bottom figure shows the regions identified by the traditional Tularosa Basin’s PFA
in Phases I and II (courtesy of (and modified from) Reference [24]). The comparison between the ML
spatial plot and the PFA study shows that NMFk can identify geothermal plays of interest.

5. Conclusions

The Tularosa Basin has potential as a geothermal resource that could support several
federal facilities located in the area. To find geothermal prospects, we studied 10 attributes
at 120 locations (sampled at≈200 m depth). Attributes include temperature @2 m, heat flow,
NaK-Giggenbach geothermometer, K-Mg geothermometer, NaK-Fournier geothermometer,
silica geothermometer, gravity, fault distance, Quaternary fault density, and Li concentra-
tion. The dataset was used as input parameters to the GTC-based ML framework. The ML
approach found four signatures (A, B, C, and D), two of which are potential geothermal sig-
natures. The locations associated with Signatures A and B have high geothermal resource
prospects that are spatially consistent with the well locations from the PFA study. We also
found that the locations associated with Signature D are less prospective than Signatures A
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and B. Still, they might assist with a sustainable geothermal reservoir in the area around the
locations of Signature A. The key attributes defining the geothermal resources are heat flow,
K-Mg geothermometer, silica geothermometer, Quaternary fault density, temperature @2m,
fault density, and Li concentration. These key attribute–location pairs instill confidence in
our proposed ML methodology to better explore geothermal resources within the Tularosa
Basin in New Mexico, USA. Future work will involve the interpolation results within the
basin and corresponding performance metrics. In Reference [19], Ahmmed and Vesselinov
performed such an analysis for the Great Basin region.
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