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Abstract: Worldwide, the demand for power load forecasting is increasing. A multi-step power-load
forecasting model is established based on Informer, which takes the historical load data as the input
to realize the prediction of the power load in the future. The constructed model abandons the
common recurrent neural network to deal with time-series problems, and uses the seq2seq structure
with sparse self-attention mechanism as the main body, supplemented by specific input and output
modules to deal with the long-range relationship in the time series, and makes effective use of the
parallel advantages of the self-attention mechanism, so as to improve the prediction accuracy and
prediction efficiency. The model is trained, verified and tested by using the power-load dataset of
the Taoyuan substation in Nanchang. Compared with RNN, LSTM and LSTM with the attention
mechanism and other common models based on a cyclic neural network, the results show that the
prediction accuracy and efficiency of the Informer-based power-load forecasting model in 1440 time
steps have certain advantages over cyclic neural network models.

Keywords: power-load forecasting; self-attention mechanism; time series; Informer; deep learning

1. Introduction

An accurate and scientific power-load forecast is a prerequisite for scientific dispatch-
ing of schemes and power generation plans. In recent years, the large-scale intermittent new
energy generation systems connected to the grid, and the widespread access to new load
types such as electric vehicles and demand-side response bring more highly stochastic and
dynamic variability to the electric load, which places new demands on the accuracy and
time scale of electric-load forecasting [1–6]. How to improve the accuracy of electric-load
forecasting models in long-time series electric-load forecasting is an important current
research direction.

Common power-load forecasting methods are divided into two main categories. The
first category is the traditional load-forecasting method based on mathematical statistics.
The second category is intelligent load-prediction methods represented by deep learning.
The first category is mainly based on historical load data to establish the function model of
the predicted object; the literature [7] used the optimized ARIMA model for load prediction,
and the prediction accuracy can reach the prediction level of a neural network, which
also proves the good performance of the time-series method represented by ARIMA for
load prediction. However, the time-series method requires high smoothness of the load,
and if the load is influenced by other unstable factors, the prediction effect will be greatly
reduced. In the literature [8], the key variables of the multiple nonlinear regression model
were selected based on sensitivity analysis to obtain high-precision cooling load-prediction
results, and in the literature [9], a short-term-load prediction model combining wavelet
transform and Kalman filter was proposed. The wavelet transform coefficients are estimated
by the Kalman filter, and the inverse of the wavelet transform is the final prediction result.
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In the literature [10], a gray model optimized by a rolling mechanism with parameters
determined by Ant Lion Optimizer (1, 1) was proposed to improve the prediction accuracy
and was validated with an electric-load dataset. However, the first type of method has
the limitation of low prediction accuracy due to the nonlinear characteristics of the electric
load. The second type is the intelligent-load forecasting method represented by a neural
network, which is better able to perform the task of electric-load forecasting because of its
powerful nonlinear fitting ability [11–14]. The literature [15] used support vector machines
(SVM) in load prediction and obtained better prediction results than BPNN networks. The
literature [16] proposed a kernel-combined SVM prediction model with higher prediction
accuracy compared to the conventional SVM model. In the literature [17], an expert
system based on fuzzy logic was developed and applied to power-load forecasting. The
literature [18,19] used the PSO algorithm to optimize the neural network and solved the
problem of slow convergence of the traditional BP neural network. However, the common
recurrent neural network-type models used for power-load forecasting have the limitation
of difficulty in capturing long-time series patterns due to the long paths between points.

Transformer [20] is a Seq2seq structural model based on a self-attention mechanism
proposed by the Google team, which is commonly used in machine translation. Trans-
former has the advantage of a distance of 1 between points, which can avoid information
loss due to recursive information transfer [21] in the loop structure. However, the op-
eration of calculating the self-attention weights in Transformer gives it the limitation of
quadratic complexity. To solve this problem, Kitaevn et al. [22] improved some structures
in the Transformer and proposed the Reformer model to reduce the computational effort
and memory overhead. Child et al. and Beltagy et al. [23,24] reduced the complexity
from O

(
L2
)

to O(L(logL)) using the heuristic assumption. Li et al. [25] reduced the com-

plexity of Transformer to O(L(logL)2) and used it for the time series prediction problem.
Zhang et al. [26] sparsed the attention to reduce the computational complexity and memory
usage and applied it to an urban railcar axle temperature prediction and obtained higher
prediction accuracy.

In this paper, we use Informer [27] for fine-grained forecasting of electric loads, which
is a model based on Transformer improved for a class of problems in long-time series
forecasting. Informer provides a uniform representation of the input characteristics of time
series, reduces the complexity of the Transformer from O

(
L2
)

to O(L(logL)) by sparsity,
adds a “distillation” mechanism to the encoder and uses a generative decoder to make
the model better-adapted to the input and output of long-time series. The effectiveness of
Informer in improving prediction accuracy and prediction efficiency compared to common
recurrent neural networks was verified by conducting experiments with the power-load
dataset of the Taoyuan substation in Nanchang City. The main contributions of this paper
are described as follows:

(1) To address the squared increase of memory overhead in the computation of self-
attentive weights in the Transformer model, this paper reduces the complexity of each
layer from O(L2) to O(L lnL) by sparsifying the self-attentive matrix and optimizes
the memory overhead of the self-attentive weight matrix.

(2) To address the problem that the Transformer model encoder–decoder does not adapt
to long-time series power-load prediction, this paper optimizes the feature-map
generation method of the encoder and the output structure of the decoder, which
reduces the memory overhead of the encoder and improves the output speed of
the decoder.

(3) In this paper, we experimentally investigate the optimal solutions of the main param-
eters in the sparse self-attentive model and compare the optimized parameters with
several other common power-load forecasting models using the Nanchang Taoyuan
substation dataset. The results of the measured data show that the model based on
the sparse self-attentive mechanism has obvious advantages in terms of prediction
accuracy and training efficiency compared with the recurrent neural-network-type
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model, which provides a real case reference under a new solution idea for solving the
long-time series power-load forecasting problem.

2. Informer Model
2.1. Input Structure of Informer

In the RNN class of models, the model relies on the cyclic structure as well as times-
tamps to capture the regularity of the time series. Transformer, on the other hand, relies on
the attention mechanism and timestamps to capture the context of the current location. In
time-series forecasting problems, global information such as timestamps of different levels
(week, month, year) and timestamps of unexpected events (holidays, events) are needed if
long-range patterns of data need to be captured. However, this information is difficult to
reflect in the self-attention dot product calculation, which tends to cause potential accuracy
degradation, so a unified input representation is used in Informer to solve this problem.

In the sparse self-attention model for long-time series power-load forecasting, the
input part consists of three components as shown in Figure 1.
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Figure 1. Composition structure of Informer model input.

The first step is the mapping of the electric-load data to higher dimensions, which is
obtained by one-dimensional convolution of the original data. Next, the position encoding
is performed, and the formula for this part is the same as the position encoding in Trans-
former. The third part is the timestamp information of the data, which is converted into
high-dimensional information using a fully connected layer, and finally the above three
parts are summed to obtain the final input. As the following equation shows:

xt
f eed[i] = αut

i + PE(Lx×(t−1)+i) + ∑
p
[SE(Lx×(t−1)+i)]

p

(1)

where i ∈ {1, . . . , Lx}, α is the hyper parameter used to balance the high-dimensional map-
ping of the power-load data with the location and timestamp high-dimensional mapping,
and α can take the value of 1 if the data have been normalized.

2.2. Self-Attention Mechanism

Self-attention is based on the probability p(k j
∣∣qi) and combined with Value values

to obtain the output, which requires a total of O
(

LQLK
)

memory usage for dot-product
computation. To reduce the complexity, a selective counting strategy can be used to count
only the attentions that have a large impact on the results. Informer uses the Kullback–
Leibler divergence (hereafter KL divergence) to assess the importance of attention.
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The formula for KL divergence with the constant term removed can be written as:

M(qi, K) = ln
LK

∑
j=1

e
qikj

T
√

d − 1
LK

LK

∑
j=1

qikT
j√
d

(2)

The first part of M(qi, K) is in Log-Sum-Exp form with respect to qi, and the second
part is the arithmetic mean. If the ith query yields a larger M(qi, K), then it is more likely
to contain dot-product pairs with dominant positions. Based on the above evaluation, the
dot-product pairing computation in the self-attention layer can be sparse by letting only
the key and µ dominant queries perform the dot product:

Attention(Q, K, V) = Softmax

(
QKT
√

d

)
V (3)

where Q is the matrix after sparsification and has the same size as matrix q. It is combined
from the first few with larger weights selected from µ queries after sparsification; µ is
controlled by the hyperparameter c, µ = c· ln LQ as shown in Figure 2:
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Such sparse self-attention requires only O
(
ln LQ

)
dot products for query-key lookups,

and the memory usage is O
(

LQ ln LK
)
. Because the multi-headed self-attention mecha-

nism is able to capture the features of each dimension, it actually does not cause serious
information loss after sparsifying self-attention. However, when iterating over the queries
to compute M(qi, K), it is necessary to compute the dot product with a complexity of
O
(

LQLK
)
, which is equivalent to not improving the computational efficiency, so an empiri-

cal method is used in Informer to obtain the criteria for query sparsification.
The maximum value of M(qi, K) is deduced in Informer:

M(qi, K) = max

{
qikT

j√
d

}
− 1

LK

LK

∑
j=1

qikT
j√
d

(4)

Then the derivation continues through Informer to the following conclusion:
Suppose k j~N (µ, Σ), let qki represent {(qikT

j )/
√

d| j = 1, . . . , LK} and ∀M m =

maxi M(qi , K), then there exists k > 0, ∀q1, q2 ∈ {q|M(qi , K) ∈ [Mm , Mm − k)}. If
M(q1, K) > M(q2, K) and Var(qk1) > Var(qk2), then with high probability M(q1, K) >
M(q2, K).

According to the above conclusion, under the premise that the attention distribution
conforms to the long-tail distribution, it is possible not to compute M(qi, K) sequentially,
but only to randomly sample U = LK ln LQ dot-product pairing for computing M(qi, K),
and the other dot-product pairings are replaced with 0. This generates the sparse matrix Q,
and in practice the queries and keys are usually the same, i.e., LQ = LK = L, then the time
complexity and space complexity of the sparse self-attention becomes O(L ln L).

2.3. Distillation Mechanism in the Encoder

As a result of sparse self-attention, the feature map obtained by the encoder contains
many redundant combinations of V values, and the feature map can be reduced by extract-
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ing some dominant features through convolution and pooling, a step called Distilling in
Informer [27]. The equation for the distillation operation to transform layer j to layer j + 1
is as follows:

Xt
j+1 = MaxPool

(
ELU

(
Conv1d

([
Xt

j

]
AB

)))
(5)

where [.]AB represents the attention block, which is exactly the same structure as the atten-
tion block in Transformer, except that the multi-headed self-attention layer is replaced by a
sparse multi-headed self-attention layer. Figure 3 shows the structure of the encoder part.
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The light blue layer represents the Conv1d convolutional layer, which uses the ELU
activation function to perform one-dimensional convolution in the time dimension and then
pooling so that it downsamples to 1/2 of the original length. To improve the robustness of
the distillation operation and to prevent excessive information loss, the input is copied at
the beginning and only half of it is taken at a time, and then the output of the feature map is
aligned by gradually reducing one attention block. The length of the sequence for each copy
is L, 1/2 L, 1/4 L, 1/8 L . . . summed to 2 − ε, i.e., the memory usage is O((2− ε)LlnL).
The output feature maps are stitched and aligned to obtain the final output hidden layer of
the encoder.

2.4. One-Step Generative Decoder

In Informer, the decoder is similar to the decoder in Transformer and contains two
identical multi-headed self-attention layers. Inspired by the effective use of Start-token
in natural language dynamic decoders [28], Informer also uses Start-token here to turn
dynamic output results into one-step generation results. Masked multi-headed attention
is applied in sparse self-attentiveness by setting a mask on the dot product. The mask in
the decoder is a lower triangular matrix, and the mask enables the model to obtain only
the already predicted results and not the later unpredicted results, which can prevent the
model from self-regression.

Enter the following parameters into the decoder:

Xt
de = Concat

(
Xt

token, Xt
0
)
∈ R(Ltoken+Ly)×dmodel (6)

where Xt
token ∈ RLtoken×dmodel stands for Start-token, which can also be interpreted as the

sequence to be predicted, and Xt
0 ∈ RLy×dmodel is the target sequence here all set to 0 as a

placeholder. Instead of using a particular flag as a token, here L_token of them are copied



Energies 2023, 16, 3086 6 of 14

from the input sequence as the Start-token, for example, the previous segment of the output
sequence.

Figure 4 shows the schematic diagram of Start-token.
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At this point, the overall structure of Informer has been introduced, and the structure
of the model is shown in Figure 5:
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3. Data Correlation Analysis

This paper selects the power-load data of Taoyuan substation in Nanchang City. The
dataset spans 1 January 2019 to 1 June 2020, sampling every 15 min and sampling 96 points
a day for a total of 49,720 electrical load data. This dataset is a highly refined dataset
compared to common power-load datasets and is suitable for exploring the performance of
the model in long-time series power-load forecasting. The dataset comes from the online
grid platform of the National Grid, which can guarantee the authenticity and reliability
of the data. Since this paper is to investigate the performance of the proposed improved
models for long-term load forecasting, only a single factor of electric load is considered for
all models, and no other environmental factors are considered.

Taoyuan substation is a 220 kV substation with two main transformers of 180 MVA
capacity, carrying the power supply load of 110 kV substations such as Tengwangge,
Chaoyang, Fengshan, Xihu, Taoyuan and Yunfei. The load area of Taoyuan is the old city
of Nanchang, which is a typical urban civil load and commercial load.
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The power-load data of Taoyuan substation were pre-processed and the full picture of
the dataset was drawn after correcting the abnormal data as shown in Figure 6. It can be
seen that the load data of Taoyuan substation have obvious seasonal periodicity, showing
high load in summer and winter, low load in autumn and spring and peak of electric load
in summer.
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The autocorrelation coefficient is the degree of correlation between the same event
in different periods. It can also be understood as the correlation between the past and
present of the same individual. The equation for the autocorrelation coefficient is shown in
Equation (7):

ρ(t, s) =
E(xt − µt)(xs − µs)√

Dxtxs
(7)

where E is the expectation, D is the variance.
Electricity load is somewhat cyclical, following the previous rule of variation, and

the load data within a certain period have a certain correlation. Due to the large dataset,
in order to explore the autocorrelation of electric loads, Figure 7 selects the load data of
Taoyuan substation in Nanchang City, which records the electric-load data every 15 min,
and selects 1440 data, i.e., one month’s electric load, and draws the following electric-load
autocorrelation coefficient graph.
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Figure 7. Autocorrelation coefficient diagram of power load of Taoyuan substation in Nanchang.

The closer the correlation coefficient is to 1, the greater is the correlation. From the
figure, it can be seen that the electric load shows a high correlation between adjacent points;
in particular, the autocorrelation coefficient is as high as 0.9 between all five adjacent points,
as shown in Table 1.
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Table 1. Correlation analysis of power load in five adjacent time steps.

Delay Autocorrelation True Value Ljung-Box Test

1 0.995 140.83 1429.059
2 0.984 133.18 2826.708
3 0.966 127.61 4176.199
4 0.943 023.99 5462.566
5 0.915 119.26 6673.302

The light blue area of Figure 6 shows the 95% confidence interval, and the autocorrela-
tion coefficient still exceeds the 95% confidence interval after 294 lag steps, with a strong
correlation. Over time, the autocorrelation coefficient shows a cyclical ebb and flow, trailing
a downward trend and eventually, slowly converging to 0 at around 1440 points. This
also indicates that the power load is correlated over a long period of time. If the law of
long-time series power load can be accurately captured, better long-time series power-load
prediction can be achieved [29], which provides the theoretical basis for long-time series
with Nanchang Taoyuan substation dataset.

4. Example Analysis
4.1. Model Parameter Optimization

The experiments in this section were conducted on an Inter Xeon(R) Silver 4214R CPU,
256 GB of RAM, and two RTX6000s for a total of 40 GB of RAM on hardware platform.

In order to ensure that the model does not overload the memory even at the maximum
prediction length, and because this experiment is a comparison experiment and does not
pursue absolute accuracy, the selected value of Batch Size is 8 for all models, and the models
in this paper all use EarlyStopping to dynamically select Epochs. The Patience value is
set to 3, i.e., the val_loss value is greater than val_loss for three consecutive times. At loss
minimum, the training is terminated and the minimum value is taken.

The structure of the improved sparse self-attentive model is shown in Table 2, and the
experiments in this subsection are all based on the model with the following parameters.

Table 2. Improved structure of sparse self-attentive model.

Encoder N

Input 1 × 3 Conv1d Embedding (d = 512)

6
Sparse self-attention

blocks

Multi-head Sparse Attention (h = 16, d = 32)
Add, LayerNorm, Dropout (p = 0.1)
Pos-wise FFN (dinner = 2048), GELU
Add, LayerNorm, Dropout (p = 0.1)

Distillation layer 1 × 3 Conv1d
Max pooling (stride = 2)

Decoder N
Input 1 × 3 Conv1d Embedding (d = 512)

6

Masked SAB Add a mask to the Attention Block

Self-attention block

Multi-head Sparse Attention (h = 8, d = 64)
Add, LayerNorm, Dropout (p = 0.1)
Pos-wise FFN (dinner = 2048), GELU
Add, LayerNorm, Dropout (p = 0.1)

Distillation layer 1 × 3 Conv1d
Max pooling (stride = 2)

Output FCN (d = d = dout)

To facilitate comparison of experimental results, all data were first normalized to
the 0–1 interval using the MinMaxScaler method for all data. Considering the balance of
memory and accuracy, Batch Size was selected as 8.

(1) The effect of the length of the input data on the prediction results
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With more samples input at once during training, the model is theoretically better
able to capture the long-range patterns between data. However, too much input inevitably
makes the model’s overhead on memory increase significantly and the training time
increases significantly, so a balance needs to be found between these. The experimental
results are shown in Table 3:

Table 3. Effects of different input–output ratios on model performance.

Predicted Length 288 672

Input Length 288 576 1152 672 1344 2688
RMSE 0.044 0.046 0.060 0.079 0.073 0.070
MAE 0.032 0.033 0.037 0.047 0.046 0.049
Time 312 770 2613 930 3510 13,384

From the experimental results, it can be seen that more input data do not have the
effect of improving the training accuracy while reducing the efficiency of the model. Here it
is speculated that the model may be due to the fact that too much data in refining the data
law not only do not provide a more long-range law but also add a great deal of interference
terms, leading to a decrease in training accuracy. Therefore, the number of input time points
and the number for prediction time are taken as the same value in the subsequent training,
which can guarantee the prediction accuracy and improve the efficiency to the best.

(2) The effect of hyperparameter c on the experiment

The number of times to calculate the dot-product pairing is determined by µ, which is
determined by the hyperparameter c, i.e., µ = c· ln LQ. An increase in the value of c means
that the number of dot-product calculations is also increasing, which then inevitably leads
to an increase in prediction accuracy and a decrease in prediction efficiency. In order to
investigate the effect of the hyperparameter c on the results in the following experiments
were carried out on c. The experimental results are shown in Table 4.

Table 4. Influence of different C values on model performance.

C Metric 48 96 192 336 672

3
RMSE 0.0262 0.0320 0.0366 0.0479 0.0691
MAE 0.0173 0.0199 0.0250 0.0349 0.0463
Time 196 205 243 342 916

5
RMSE 0.0289 0.0307 0.04060 0.0441 0.0786
MAE 0.0207 0.0189 0.0302 0.0307 0.0467
Time 197 209 246 365 938

8
RMSE 0.0306 0.0333 0.0402 0.0495 0.0725
MAE 0.0210 0.0214 0.0287 0.0342 0.0450
Time 199 212 249 376 961

10
RMSE 0.0275 0.0344 0.0379 0.0458 0.0814
MAE 0.0193 0.0217 0.0258 0.0317 0.0465
Time 200 210 246 376 849

The above data are plotted as a scatter plot as shown in Figure 8:
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Figure 8. Prediction accuracy of Informer under different C values.

From the perspective of computational efficiency, the number of dot-product opera-
tions increases as the value of c increases, but the selection of c value has limited effect on
the computational efficiency from the experimental results. Considering the computational
efficiency and computational accuracy, c is taken as 5 in all subsequent experiments.

4.2. Experimental Results

This section next introduces other models as a baseline to explore whether there is
some advantage of Informer and Informer+ with the distillation mechanism removed for
the power-load forecasting task with optimal parameters. In this section, LSTM, RNN and
LSTM with the attention mechanism added (LSTMa) were selected for comparison. The
experimental results are as shown in Table 5:

Table 5. Performance of different models in power-load forecasting.

Methods Metric 48 96 336 672 1440

Informer
RMSE 0.0289 0.0307 0.0441 0.0714 0.0670
MAE 0.0207 0.0189 0.0307 0.0431 0.0474
Time 197 209 365 930 4070

Informer+
RMSE 0.0255 0.0303 0.0508 0.0748 0.0583
MAE 0.0173 0.0216 0.0364 0.0440 0.0406
Time 186 204 463 1508 6610

RNN
RMSE 0.108 0.090 0.108 0.093 0.084
MAE 0.089 0.071 0.089 0.077 0.067
Time 92 176 730 1421 2674

LSTM
RMSE 0.069 0.072 0.089 0.093 0.081
MAE 0.057 0.062 0.079 0.082 0.071
Time 166 330 1117 2249 4365

LSTMa
RMSE 0.095 0.124 0.169 0.103 0.122
MAE 0.078 0.105 0.141 0.091 0.097
Time 181 331 1116 2169 4346

The above data are plotted as a scatter plot as shown in Figure 9:
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Figure 9. Accuracy comparison of five models in power-load forecasting.

From the experimental results, we can see that the training accuracy of Informer and
Informer+ is significantly improved compared to the RNN, LSTM and LSTMa models.
Informer and Informer+ showed excellent prediction performance on the 0–672 step predic-
tion task and significantly outperformed other models in terms of prediction accuracy on
longer time-series-prediction tasks. The prediction accuracy of both models decreased with
increasing time steps until the prediction slowly stabilized after 672 time steps. However,
due to the limited conditions, it was not possible to conduct a longer time-step test, so the
prediction performance after 1440 points is not discussed in this paper.

Figures 10 and 11 show the predicted results of the five models above compared to
the true values at 500 time steps of prediction. The comparison graphs show visually that
the two models Informer and Informer+, which are based entirely on the self-attention
mechanism, fit the load curves more accurately, and the predicted and true values show a
consistent trend, while the predicted values of RNN, LSTM and LSTMa based on recurrent
neural networks were significantly higher than the true values. The LSTMa model had
a higher MAE score than RNN and LSTM but was smoother than the above two models,
fluctuated synchronously with the real load, and was significantly more usable than the
RNN and LSTM models after data correction in the vertical direction.
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Figure 11. Prediction results of Informer-based model in 500 time steps.

In terms of computational efficiency, RNN, LSTM and LSTMa can all be expressed
in an approximately linear relationship between the number of prediction steps and the
prediction time due to their serial computation characteristics and the nature of the distance
between points as L. The RNN model benefits from its simplest structure and has a signifi-
cantly lower slope of prediction-time rise with increasing prediction time steps than the
LSTM as well as the LSTMa. The prediction time-step–time relationship curves for Informer
and Informer+ are a concave function, and it can be approximated from the measured data
that the efficiency of Informer is higher than the other models mentioned above within a
certain prediction time step. This interval is defined here as the high-efficiency interval,
which is of great practical significance in practical engineering. It can be seen from Figure 12
that the high-efficiency interval for both Informer and Informer+ is higher than 672 time
steps. If 96 data are available in a day, it corresponds to more than one week of power-load
data, which is sufficient to cover most short-term power-load forecasting scenarios. The
predicted time-step–time relationship curve of Informer+ also presents a concave function,
but the slope of the training-time rise with increasing time steps is much larger than that of
Informer because of the reduced distillation operation, which results in a larger amount of
data. This makes Informer+ significantly less efficient as the predicted time points increase,
and less effective than Informer in practical engineering applications.
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Combining the above analysis of prediction accuracy and prediction efficiency, in
this paper the proposed Informer-based model effectively achieves higher accuracy in
long-time series power-load forecasting. In terms of long-time series power-load prediction,
the accuracy of the proposed Informer-based model is significantly improved compared
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to the RNN, LSTM and LSTMa models by experimenting with the Taoyuan substation
dataset. In addition, the proposed Informer-based model has certain advantages over RNN,
LSTM and LSTMa in terms of training efficiency within a certain prediction time step. The
research content of this paper has certain academic significance and engineering value.

5. Conclusions

In this paper, the Informer model was used for electricity-load forecasting and was
compared with three models based on recurrent neural networks. Experiments showed
that Informer’s prediction accuracy within 1440 time steps on the power-load dataset of
Nanchang Taoyuan substation was significantly higher than that of the three models based
on recurrent neural networks, which can provide more refined predictions to cope with
more complex application scenarios requiring higher load prediction. At the same time,
Informer has a significantly higher prediction efficiency than recurrent neural network
models in a certain time step due to its parallel advantage. Informer has a large potential in
the field of power-load forecasting. In addition, Informer also demonstrates satisfactory
performance in long-time series power-load forecasting, which can provide some guidance
for long-term planning of the grid system.

The performance of the proposed model will be further explored in a better experimen-
tal environment, as the “Batch Size” was too large due to the limitation of the experimental
hardware equipment, resulting in insufficient memory. In addition, this dataset contained
only the electrical-load data, and the performance of the model will be further investigated
by incorporating other environmental and other influencing factors. In the future, we will
also try to apply the proposed model to other fields such as photovoltaic and wind power,
and make some optimization improvements to the model based on the latest research.
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