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Abstract: Renewable energy sources are nowadays a viable choice to satisfy the rising energy con-
sumption and promote the advancement of sustainable development. These systems are integrated
into microgrids using a variety of technological solutions to ensure customer communication and
distributed generation facilities in an optimal way. Energy management in microgrids refers to
the information and control system that provides the necessary functionality to guarantee that the
generating and distribution systems produce energy at the lowest expenses. This study analyzes the
various optimization objectives, constraints, problem-solving techniques, and simulation tools used
for connected and freestanding microgrids. It reviews the literature on energy control in microgrids
powered by sustainable energy. Energy storage technology is also viewed as an intriguing alternative
to managing the intermittent nature of renewable energy because of its advanced techniques, in-
creased energy efficiency, and capacity to perform tasks such as frequency response. The final phase
suggests future suggestions, particularly for the model-based prediction of energy storage systems.

Keywords: energy storage; microgrids; energy management; renewable energy

1. Introduction

The diminishing supply of fossil fuels, such as carbon, oil, and petroleum, results from
the world’s exponentially increasing energy consumption. The result is the greenhouse
gases that cause climate change by trapping heat, contributing to respiratory disease
from smog and air pollution. To address the aforementioned global problems, renewable
energy, such as sun, wind, biomass, and tidal energy, has been employed in both small and
large-scale energy systems [1]. Global energy consumption will increase by over 25% by
2040 when renewable energy sources are expected to account for 40% of the world’s energy
mix. Energy demand and supply must be balanced, which presents significant challenges
for renewable energy sources [2]. Because of the increasing demand for energy and the
redesigning of power infrastructure, energy is now produced close to what is consumed.
Renewable sources, particularly solar and wind power, have become less expensive and
competitive to generate this electricity.

Several articles discuss microgrids (MG) [3–7], energy storage devices, and distributed
generation (DG). A hybrid form of renewable energy battery power devices (and, in some
situations, a diesel generator) is frequently the best option since it considers one or more re-
newable sources and is highly dependent on climatic and meteorological conditions [8–12].
Electricity is frequently provided via hybrid energy systems for several standalone uses,
including homes or farms in remote locations without grid extensions, telecommunication
antennae, and equipment devices [13–15]. Compared to systems that exclusively utilize one
energy source, these hybrid solutions often indicate the highest reliability and lowest prices.
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A microgrid comprises energy storage systems, various loads, and miniature power
plants [16,17]. A medium- or low-density distribution system dispersed generation using
hybrid systems that combine renewable and traditional energy sources to produce electricity
for end-user customers might be used to characterize it in a broader sense. Storage increases
the microgrid’s dependability and is utilized to compensate for the PV’s sporadic nature
and wind output electricity [18,19].

Real-time management requires communication networks which these microgrids
have [14]. Microgrids can also run independently and with a grid [15].

The injection of energy produced by decentralized power plants (wind and PV, . . . )
to the grid, leads to the study of microgrids. DG distributed generators are also found in
microgrids, which are based on converters and batteries. However, alternative systems are
the most widely used, which encourages research in the field of DC and AC microgrids.

Hybrid, alternating current (AC), and direct current (DC) microgrids are the three
types, depending on the source type they handle, as shown in Figure 1.

Figure 1. An integrated microgrid system [15].

Because power from variable distributed sources, such as solar and wind power
systems, can fluctuate and is difficult to forecast dramatically to maintain stability in a
microgrid, it is critical to conserve the balance of power supply and demand based on
the accessibility of one of the main sources (solar irradiation and wind). The demand
and supply equilibrium issue arises from the balance of power demand and supply, and
there is just a small quantity of supply to balance the demand, which is much more
crucial [16]. Mana Managing microgrid energy optimization is typically as a challenge for
offline optimization [17].

Microgrids powered by renewable energy sources are classified as “smart grids”,
which provide various technology options for enabling communication between users and
dispersed generations. When supported by a platform, an information system known as
an energy management system (EMS) provides the necessary functionality to ensure that
energy is produced, transmitted and distributed at the lowest possible cost [18]. Microgrid
energy management requires the implementation of a control program that allows the
system to operate as efficiently as possible [19]. This is accomplished by taking into
account the two modes of operation for microgrids at the lowest possible cost (isolated and



Energies 2023, 16, 3077 3 of 16

interconnected). When considering microgrids with renewable energy sources, it is critical
to consider resource fluctuation, such as solar radiation [20].

In summary of the research on microgrid energy management, several authors have
used various methods to resolve the energy management issue in an ideal microgrid
setup. However, these systems must improve their solution strategies when distributed
generating, storage components, and electric vehicles are integrated [21]. Other recent
publications have analyzed different storage and demand-based integration strategies
for renewable energy systems [22]. This latter focuses on two key areas: (1) maximizing
storage use and (2) enhancing user involvement through responsiveness to demand sys-
tems and other cooperative techniques. In [23], the authors reviewed hybrid renewable
energy management techniques, especially different hybrids that operate independently
of the grid system topologies. Furthermore, various review articles have displayed the
control goals of energy management systems (EMS) and microgrid supervisory controllers
(MGSC) [24–26]. Authors in [27,28] propose control methods for a grid-connected inverter
and synchronous generator.

The remainder of this paper is arranged as follows. Section 2 investigates the control
of AC microgrid. Section 3 summarizes 3 the methods of microgrid optimization. Section 4
describes the benefits and drawbacks of various energy management strategies. Section 5
concludes the paper.

2. Control of AC Microgrid

Three tiers make up the proposed hierarchical control structure: the droop approach
serves as the main control and includes a virtual output impedance loop; the backup control
enables reversing the primary control’s deviations; and the third control regulates the flow
of electricity from the microgrid to the system for distributing power outside.

As seen in Figure 2, the microgrid control can be divided into three levels. We will
explain each level in the following sections.

Figure 2. Hierarchy of the microgrid control.

2.1. Primary Control

The goal of this control is to maintain friability by adjusting the internal control loops
for the current and voltage reference frequency and amplitude.

It employs the well-known P/Q droop technique:

ω = ω∗ − Gp(s).(P− P∗) (1)
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E = E∗ − Gq(s).(Q−Q∗) (2)

P and Q are the active and reactive powers with P* and Q* as references, as illustrated
in Figure 3.

Figure 3. P/Q method visualization.

E and ω are the voltage amplitude and the frequency, with E* and ω* their references.
Gp(s) and Gq(s) are linear transfer functions.

2.2. Secondary Control

Secondary control is proposed as a compensatory method for frequency and amplitude
anomalies. To maintain the output voltage, the frequency and amplitude levels of the
microgrid are measured and compared to MG and EMG references. Errors corrected by
compensators are then transmitted to all MG units. The secondary control must reduce
tolerable frequency variation to within 0.1 Hz in NE (north of Europe) or 0.2 Hz in UCTE
(Union for the Coordination of Continental European Electricity Transmission [27,28]). The
integrating grid requirements improves stability.

The frequency and amplitude restoration controllers for an AC microgrid can be
obtained similarly, as shown below:

δω = Kp.(ω−ω∗) + Ki.
∫

(ω−ω∗)dt (3)

δE = Ki
p.(E− E∗) + K′i .

∫
(E− E∗)dt (4)

Kp, Ki, K′p, and K′i are the secondary control compensator’s parameters. In this instance,
δω and δE must be constrained to stay within the range of permitted amplitude and
frequency variations.

2.3. Third Control

Both reactive and active power fluxes can be exported or imported independently. The
third control, energy management, aims to achieve this.

Control laws can be stated in the following expressions:

δω = Ki
p.(P− P∗) + K′i .

∫
(P− P∗)dt (5)
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δE = Ki
p.(Q−Q∗) + K′i .

∫
(Q−Q∗)dt (6)

where the tertiary control compensator’s control parameters are Kp, Ki, K′p, and K′i . In this
situation, they are saturated if δE and δω are outside the permitted limits.

Notably, the reactive and active power fluxes depend on the Q′ and P omens and can
be exported or imported separately.

3. Methods of Microgrid Optimization

An extensive robotic system is used for energy management in microgrids to ensure
resource efficiency [25–27]. Based on state-of-art information technology, it can optimize the
administration of energy storage and decentralized energy source systems [28]. Microgrid
optimization frequently includes the following goals: increasing generator output power,
minimizing microgrid operating costs, extending the life of storing energy systems, and
lowering environmental costs.

Figure 4 shows the microgrid’s optimization methods.

Figure 4. Energy management methods [29].

3.1. Stochastic Optimization Techniques

Stochastic optimization methods can be used to raise the value of an objective function
even when random variables are described by probabilistic functions. In stochastic pro-
gramming, optimization can happen in one, two, or more phases. In the event that there are
two phases, the optimization is split into two. At the initial step of optimization, the optimal
point of operation using predicted data is selected. A disturbance simply prompts the
real-time operation to correct the optimization using the actual value at step two. Normally,
the first step considers every situation whereas the second stage just considers a select few.

3.2. Dynamic Programming

Using the dynamic programming method, the multi-period optimization can be broken
down into time-indexed sub-problems. As a result, Bellman’s equation can be solved to
identify the decision-making order. By breaking the problem down, the suggested solution
resolves mixed-integer nonlinear programming brought on by practical considerations.
This method may deal with stochasticity by incorporating empirical data with historical
operational data. It reduces the dependency of optimality on forecast data by incorporating
empirical knowledge into the real-time decision-making process.
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3.3. Mixed Integer Programming and Non Linear Programming

When variables can be discrete or continuous, optimization problems are addressed
using mixed integer programming techniques. The methods are so ideal for EMS appli-
cations within microgrids. The development of mathematical models for the microgrid’s
components aims to lower the cost function in MILP-based EMS. The MILP model evaluates
wind speed, irradiation, load factors, and component cost parameters. The goal function
and restrictions are non-linear rather than linear in mixed integer non-linear programming
(MINLP) approaches. In order to create a linear model, MINLP models commonly require
approximations. Continuous variables in MINLP models include the power produced by
available generators, the electricity imported or exported at PCC, and the power injected by
the ESS. When microgrids are taken into consideration, the power flow equation becomes
more complex and nonlinear.

3.4. Artificial Intelligence

Moreover, microgrid optimization techniques based on multiagent systems enable
decentralized administration of the microgrid and are made up of autonomously acting
sections that carry out activities with predetermined goals. Communication between these
agents also consists of loads, portable generators, and storage devices to achieve a low cost.

Specifically, in game theory, fuzzy logic, artificial neural networks, statistical tech-
niques, and robust programming are employed to resolve optimization problems where
the random variables are the parameters.

Combining the aforementioned techniques can lead to the development of additional
methods, such as heuristic, stochastic, and enumeration algorithms.

4. Description of the Benefits and Drawbacks of Various Energy
Management Strategies
4.1. Comparison of Some Common Energy Strategies and Principles

A microgrid is formed by combining various distributed generation resources and
connecting them to the utility grid at a central location. Figure 5 depicts a microgrid energy
management and several characteristics, such as control and data collection modules, load
forecasting, optimization, and human-machine interfaces (HMIs) (Table 1).

Figure 5. Management of a microgrid [29].
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Table 1. Comparison of the optimization models.

Model Advantages Disadvantages

MILP

It resolves complicated issues with straightforward
actions. It has a benefit compared to the MILP
formulation in that it can obtain many
optimal solutions.

Economic stochastic analysis and reliability.
Restricted capabilities for applications with
continuous or nondifferentiable
objective functions.

MINLP The mathematical function is nonlinear, or one of
its parameters is non-linear. Numerous iterations (high computational effort).

Dynamic
programming (DP)

Dived to minor problems to solve a large
one sequentially.

Complicated implementation due to numerous
recursive methods.

Genetic algorithms
(GA)

Population-based evolutionary algorithms search
for the best answer using mutation, crossover, and
selection. A sufficient convergence rate. Widely
utilized throughout many industries.

Mutation and crossover parameters must
be determined.

Particle swarm
optimization (PSO)

Excellent brings about scattering and
optimization challenges. High complexity in computation.

Artificial bee colony Easy to implement a population-based algorithm.
A fast enough convergence. Intricate formulation

Artificial Fish Swarm Precision, rapid convergence, fewer parameters
and flexibility

Maintains the benefits of GA but without its
drawbacks (crossover and mutation)

Bacterial foraging
algorithm

The problem’s size and nonlinearity have less
effects. Converge to the best solution compared to
analytical techniques

Wide and complex search area

Figure 6 illustrates a classification of the different optimization strategies of microgrid
energy management, and Table 2 discusses these models with their constraints, drawbacks,
and contributions [30].

Figure 6. Some optimization strategies.
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Table 2. An examination optimization of microgrid methods.

Reference Optimization
Strategy Contributions Constraints Drawbacks Multi/Single-Goal

[31] mixed integer and
non-linear

The Given each
generator, includes

dump and deferrable
loads, the ideal power

scheduling, is
obtained using a

robust optimal EMS
MPC-based method.

Power ratio
Battery

Generator
Renewable Sources

Loads

Power losses and
demand are
not assessed

Multigoals

[32]

mixed integer and
linear
linear

programming

an approach of energy
management that

combines three
optional approaches

(Power sharing,
ON/OFF, and

continuous
run modes).

Battery
Generation

dispatch

Battery
degradation costs

are not taken
into consideration

Multigoals

[33] Non-linear
programming

Decreased total
operating expenses

while preserving the
safe operation of the

standalone MG

AC power
DC power

Converter power
Load

Distributed
generators power

Systematic battery
storage is not

examined. The cost
of emissions for

distributed
biomass

generation is
not evaluated.

Mono-goal

[34] Linear
programming

Integration of
AI-based linear
programming

techniques to solve
multiobjective
optimization

Limitations of
dispersed

generation in
power balance

High
computational

complexity.
Degradation of the

battery is
not assessed

Multigoals

[35] Particle swarm
algorithm (PSO)

Merge of two energy
storage units that are
ideals. less time for

computation than GA

The generators’
power Power

transfer to the grid
Charge/Discharge
of the storage units

Supply and
demand balance

The traditional
generator’s

emission costs are
not evaluated.

Multigoals

[36]

Particle swarm
algorithm (PSO)
with Gaussian

mutation

PSO variant
new algorithm.

Active power
Voltage
Current

Power losses and
Emissions of
distributed

generation are
not assessed.

Mono-goal

[37] Artificial bee
colony

A two-layer control
model is utilized to

reduce a microgrid’s
operating expenses.

Power equilibrium
Accessibility to

resources
Non-dispatchable

resources
Storing

components

The formulation is
difficult. The cost
of emissions from

a dispatchable
microturbine is
not calculated

Mono-goal

[38] Fuzzy logic (Gray
Wolf Optimization)

Optimization of the
battery size, storage,
and generation plan

Power balance
Generators power

Battery load

The cost of battery
deterioration is
not estimated

Mono-goal
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Table 2. Cont.

Reference Optimization
Strategy Contributions Constraints Drawbacks Multi/Single-Goal

[39,40]

Evolutionary
algorithm (EA)

and PSO
Algorithm

Application of an
energy hub model for

optimization of a
multicarrier MG.

Power balance
Voltage in

the transformer

Deterministic
condition is
a limitation.

Multigoals

[41]
Artificial fish

swarm
optimization

A MG’s energy
management schedule,

which considers
storage for the entire

day and dynamic
pricing, is optimized

Power equilibrium
traditional
methods of

generating power
standard power

generators

Battery
degradation cost is

not assessed
Mono-goal

[42] Particle swarm
algorithm (PSO)

It considers Three
different objectives:

Reliability, Operation
cost, and

Environmental impact.

Indefinite
Degradation cost

of battery is
not counted.

Multigoals

[43] Bacterial foraging
algorithm

Optimized the power
exchange with the

grid, the battery and
the generator setpoints.

Quick convergence.

Power balance
Generation limits

of distributed
generators Storage

limits

Power losses are
not counted Multigoals

[44]

Mixed-integer
nonlinear

programming
(MINLP)

less reliance on
forecast data.

Various battery
models compared.

Charge flow
Dispatch

generators
Programming of

the generator
on/off Battery

charge and
discharge

Prediction of
battery life

is disregarded
Multigoals

[45] Dynamic Rules

Different restrictions
are used by the MG
management system
for the batteries bank
state of charge (SOC).

Battery
Power balance

Battery cost and
degradation are
not considered.

Mono-goal

[46] Dynamic
programming

Energy management
strategy for PV.

Batteries to stabilize
and permit PV to run

at a constant and
stable output power

Charge/Discharge
of batteries

Battery
degradation and

lifetime prediction
are not evaluated

Multiobjective

[47–49] Multiagents

Reliable technique for
real-time energy

storage management
used to adjust power
imbalance optimally.
Control system with

many layers and
coordinated control.

Battery energy storage
system, optimization

problem based on
distributed

intelligence, and a
multiagent system

Battery charge and
discharge

Power Equilibrium
and Load

Scheduling

Battery lifetime
and degradation
are not assessed
Complex control

scheme

Multigoals
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Table 2. Cont.

Reference Optimization
Strategy Contributions Constraints Drawbacks Multi/Single-Goal

[50] Stochastic

A straightforward way
to include the
influence of
stand-alone

scheduling on the
grid-connected

operation.

Power balance
Dispatchable
Distributed
generation

Renewable power
generation Load

Charge/Discharge
of batteries

The battery aging
model and the cost

of DG emissions
are not evaluated

Multigoals

[51] Robust
programming

hybrid
wind-battery-diesel

system load
management is

optimized

Battery bank with
wind turbine

power source for
the diesel
generator

Shifting of
controllable loads
may be inefficient.

Mono-goal

[52]
Mixed Integer

Quadratic
Programming

Demand side
management and unit

commitment for
generators are

evaluated by an
integrated stochastic
energy management

model.

Power balance
Generation

Demand Reserve
capacity

The deterministic
model requires

more processing
time. Costs

associated with
emissions from

traditional
generators and DG

are not assessed

Mono-goal

[53] Model predictive
control

Automatic load
shedding of noncritical
loads when expected

power imbalances
threaten the

MG’s stability.

Power distributed
generators

The battery’s
charging and

discharging rates
are not taken into

account.
Similarly,

communication
lags

Multigoal

[54] Model predictive
control

a detailed
mathematical

description of the ideal
EMS for standalone

microgrids
considering

restrictions of power
flow and

unit commitment

Power balance
Reserve

Unit commitment
Energy storage

Grid

High
computational

effort
The cost of

emissions for
traditional sources

is not assessed.

Mono-goal

[55] Model predictive
control

The main contribution
of this work is daily

optimizer that
considered capacity

losses while
calculating the

lead-acid battery’s
deterioration

Not specified
The model of the
lithium battery is

not evaluated
Multigoal
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Table 2. Cont.

Reference Optimization
Strategy Contributions Constraints Drawbacks Multi/Single-Goal

[56] Genetic algorithm

A unique cost function
includes the startup
costs of distributed
resources as well as

the costs of selling and
purchasing power.

Balance of power
emissions

battery power
generator start

Distributed
sources and battery
state of charge are

not considered.
Customers’

uncertainty as well
as the MGs’

uncertainty in their
energy generation

are not taken
into account.

Mono-goal

[57] Game theory
Distributed energy

management schedule
in various MGs.

Energy transfer to
the grid and the
MG’s generation

capacity

Computational
complexity is
not counted.

Multigoal

[58]
Artificial

Intelligence
(Fuzzy logic)

easy implementation,
enhanced power
profile quality of

the grid

discharge/charge
of batteries

Only the battery
charger/grid-

connected inverter
is controlled.

Battery
degradation is
not evaluated.

Multigoal

[59] Game theory Reduce the cost of fuel
and trading power.

Power balance DG
Traditional

generator power
The power that can

be transferred
between the main
grid and the MG

is limited

The conventional
generators’

emission costs are
not assessed

Multigoal

[60] Markov decision
process

Linear model to
evaluate the MG

lifetime cost.

Gas turbine
capacity Gas

turbine emissions

Limited number of
sizes’ possible
combinations

Mono-goal

[61] Rule-based

Study of the predictive
expenses of hybrid
system including

battery degradation.
After developing a
hybrid-operating

regime, a levelized
cost of electricity study
is conducted (LCOE).
Accuracy of energy

storage
degradation costs

Power balance
SOC battery

The capacity fade
modeling of

temperature is not
considered

Conditions for
dynamic

state-of-charge
cycling are

not counted

Multigoal

4.2. Tools and Modes of Microgrid Operating

Multiple operating modes for microgrids have been covered in numerous studies that
examine linked microgrids. In contrast, several authors view the independent mode as
a substitute supply control, particularly in rural regions or locations without traditional
grids [62]. Therefore, operating on and off the grid is a viable option. The factors mentioned
above are compiled in Table 3.
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Table 3. Modes of microgrids operating.

Reference Microgrid Mode Operation

[11,20,30–33,36,39,45,49,51–53,55,56,58,59,63] Grid-Connected
[9,31,34,40,42,44,47,48,50,54,57,60–64] Off-Grid

[8,15,19,35,43,46,61,65] Grid-Connected/Off-Grid

The most common simulation tools are summarized in Table 4, where MATPOWER
and MATLAB/Simulink (MathWorks, Natick, MA, USA) are at the top of this list. MATLAB
is a computing environment belonging to the fourth-generation programming language
that can communicate with languages such as Python, Fortran, Java, C++, C#, and C. On
the other hand, MATPOWER is a free-source program that simulates ideal power flows
and evaluates MG performance using Monte Carlo. In addition, numerous authors have
used GAMS as a programming language for optimization in linear, nonlinear, and mixed
systems to address the problem of uncertain energy management and achieve the best
microgrid sizing. Other tools, such as the optimizer-based CPLEX, have been used thanks
to its compatibility with other programming languages.

Table 4. Tools and simulation software for managing microgrids.

References Tools Characteristics of Tools

[61] PSCAD/EMTDC HVDC, power electronics, power systems, FACTS, and
control systems emulation software

[11,32,33,35,38,62] MATLAB/Simulink MATPOWER
Engineers specialized in control, telecommunications,

power electronics, and power systems use matrix based
programming languages (C++, Java, and Fortran)

[30,63] GAMS (GAMS Development Corp.,
Fairfax, VA, USA)

High-level programming mixed-integer nonlinear and
linear optimization

[64] C++ C++ development application for Windows environment

[40]

TRNSYS based in Madison, WI, USA
(Thermal Energy System Specialists, LLC)

based in Madison, WI, USA (Thermal
Energy System Specialists, LLC)

HOMER\sHOGA

Modeling hybrid energy production systems.
Genetic Algorithm-Based Hybrid Optimization

[65]
RSCAD (RTDS Technologies Inc., Canada

(Winnipeg, MA, USA) JADE (Jade,
Christchurch, New Zealand)

Power systems simulator in real time

[61,66] JADE Multiagent platform in Java environment

[30] HOMER Simulation of energy hybrid system model

[36] CPLEX (IBM, Armonk, NY, USA) Optimization
Compatible to C, C++, Java and Python

Simulink and PSCAD/EMTDC have been used to investigate microgrid modeling
and simulation (Wigan, MB, Canada: Manitoba Hydro International Ltd.). In microgrids,
power control and energy management are accomplished using these programs.

Other software is applied to enhance the performance and manage the energy in
hybrid systems based on renewable energy sources, such as Homer Energy LLC, Boulder,
CO, USA; HYBRID2 (University of Massachusetts; NREL/NWTC, Golden, CO, USA); or
HOGA (or its modified version, iHOGA) (or its updated version, iHOGA).

5. Conclusions

Through a review of relevant literature, the centralization and decentralization ap-
proaches to microgrid energy management were discovered. Without a coordinated plan
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among the stakeholders in a microgrid, the first method optimizes by using the data that is
already available. A computer center relays to each participant the perfect conditions.

In the second method, each microgrid component selects its ideal settings, and par-
tial knowledge optimization is used. but metaheuristic techniques are typically used in
centralized management. In various papers, centralized microgrid administration has
been endorsed. However, the usage of distributed energy resources (DER) in a centralized
information system may provide challenges for this type of management. If there is a lot
of data, a high computing cost can be necessary. As an alternative approach, distributed
energy management might be able to aid with this issue. By the use of distributed con-
trollers, which manage data in real-time and necessitate communication equipment, data
processing challenges are overcome and processing demands are reduced (e.g., Bluetooth,
Wi-Fi, wireless networks, and IoT).

A microgrid’s energy management model is made up of data acquisition systems,
supervised control, human-machine interfaces (HMI), and climatic parameter monitoring
and data analysis. The review of the literature was primarily concerned with management
techniques based on foresight and quick preparation. To achieve a cost-benefit balance,
the designer and operator of a microgrid might choose between centralized and decentral-
ized administration. Choosing the most practical microgrid management strategy is now
available. Decentralized administration provides more freedom, but a careful analysis is
required to ensure the dependability and security of system functioning. When a single
cost function is offered, the energy management problem or optimization control for a
microgrid is transformed into a single-objective management/optimization model. The
cost of running a microgrid is generally correlated with this function.

The problem becomes a multi-objective management/optimization model when it
simultaneously addresses the technical, economic, and environmental issues. Based on
the available literature, the authors have addressed the problem and proposed solutions
utilizing techniques, such as linear and nonlinear programming, predictive control, dy-
namic programming, agent-based methods, and artificial intelligence. These solutions were
selected based on their applicability, dependability, and availability of resources in the
microgrid setting.

Author Contributions: Conceptualization, M.A.H.; methodology, M.A.H.; software, M.A.H.; valida-
tion, M.A.H., B.B. and H.A.A.; formal analysis, M.B.; investigation, M.A.H.; resources, M.A.H.; data
curation, M.A.H.; writing—original draft preparation, M.B.; writing—review and editing, M.A.H.
and M.K.; visualization, M.B.; supervision, N.E.O., B.B. and M.K.; project administration, B.B. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
MG Microgrid
AC Alternating current line
ARMA Autoregressive moving average model
CSA Crow search algorithm
DC Direct current line
DG Distributed generation
DER Distributed energy resources
EEMS Expert system for energy management
EMS Energy management system
GAMS General algebraic modeling system
HMI Human machine interfaces
HOGA Hybrid optimization by genetic algorithms
HOMER Hybrid optimization model for multiple energy resources
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IHOGA Improved hybrid optimization by genetic algorithms
JADE Java platform for agent developers
MGSC Microgrid supervisory controllers
MILP Mixed integer linear programming
MO Multiobjective
MPC Model predictive control
PSO Particle swarm optimization
PV Photovoltaic
VPP Virtual power plant
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