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Abstract: Accurate medium- and long-term power load forecasting is of great significance for the
scientific planning and safe operation of power systems. Monthly power load has multiscale time
series correlation and seasonality. The existing models face the problems of insufficient feature
extraction and a large volume of prediction models constructed according to seasons. Therefore,
a hybrid feature pyramid CNN-LSTM model with seasonal inflection month correction for medium-
and long-term power load forecasting is proposed. The model is constructed based on linear and
nonlinear combination forecasting. With the aim to address the insufficient extraction of multiscale
temporal correlation in load, a time series feature pyramid structure based on causal dilated convo-
lution is proposed, and the accuracy of the model is improved by feature extraction and fusion of
different scales. For the problem that the model volume of seasonal prediction is too large, a seasonal
inflection monthly load correction strategy is proposed to construct a unified model to predict and
correct the monthly load of the seasonal change inflection point, so as to improve the model’s ability
to deal with seasonality. The model proposed in this paper is verified on the actual power data in
Shaoxing City.

Keywords: causal dilated convolution; feature pyramid CNN-LSTM hybrid neural network; medium-
and long-term load forecasting

1. Introduction

In recent years, with the popularization of Internet of Things technology and power
intelligent sensing terminals, artificial intelligence has great potential in the field of new
materials and new equipment [1] in power systems. With the acquisition of massive and
diverse power data, power data mining has become a research hotspot. Accurate power
load forecasting can not only scientifically guide safe operation and planning but also
helps enterprises to divide the electricity market, clarify user demand, and improve service
quality [2,3]. Compared with short-term power load forecasting research, the medium- and
long-term power load is affected by many factors and has greater instability and volatility,
making it more difficult to forecast. So, research on medium- and long-term power load
forecasting is of great practical significance to maintaining reliable power supply operation.

Power load forecasting research is mostly based on modeling methods, but the real
power load forecasting problem is complex and variable, and difficult to be fulfilled
with a single model. Relevant studies mostly use sequence decomposition methods to
separate the power load sequence into different mode components and then use linear
and nonlinear hybrid models to improve the forecasting ability [4]. Wavelet transform
(WT) [5,6] and empirical modal decomposition (EMD) [7,8] were used to analyze the
time–frequency domain distribution of power load sequences, but WT cannot decompose
the sequences adaptively, and EMD leads to mode mixing [9]. The ensemble empirical
mode decomposition (EEMD) [10] can effectively improve the shortcomings of WT and
EMD methods and decompose the load sequences into a series of intrinsic mode function
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components (IMFs), which are widely used in power load forecasting. In general, for
linear component forecasting, statistical models, such as gray models [11,12], time series
analysis [13], etc., are mostly used. The autoregressive integrated moving average (ARIMA)
method was widely used in linear forecasting with the advantages of fast data processing
and high prediction accuracy [14]. Aiming to address the seasonality and nonstationarity of
load data, the linear component of power load is modeled using SARIMA or Prophet [15].
The proposed BPNN-optimized ARIMA, Prophet, and LSTM hybrid model achieves the
highest accuracy in the prediction of day-ahead, week-ahead, and month-ahead power load
in advance. On the other hand, machine learning models are widely used for the prediction
of nonlinear components such as artificial neural networks (ANNs) [16], support vector
machines (SVRs) [17], convolutional neural networks (CNNs) [18], and long short-term
memory networks (LSTMs) [19].

Influenced by factors such as economy, weather, and social activities, medium- and
long-term power load usually has multiscale time series correlation and seasonality. The
former is manifested in that the monthly load to be predicted is not only highly correlated
with the load of the previous month, but also has a great correlation with the load of the
months in the same quarter and the monthly load of the same period in the previous years.
Seasonality is characterized by fluctuation in the load trend with season [20], especially
in hot summers and cold winters. In view of the above characteristics of the medium-
and long-term load, the key to the hybrid model of linear and nonlinear prediction is to
improve the multiscale feature extraction ability and seasonal processing ability.

The key to the feature extraction of the hybrid model is the nonlinear model because
the prediction error accumulation of the nonlinear model makes it difficult to further
improve the performance of the hybrid model. The feature extraction ability of CNN
networks contributes to battery state estimation [21], wind power prediction [22], and other
types of analysis, while LSTM has a strong timing processing ability. Therefore, a hybrid
network combining CNN and LSTM can obtain better feature extraction and prediction
performance than a single network. A tandem model of one-dimensional CNN and LSTM
was proposed in [23–25], in which the CNN was used for the local feature extraction
of electric load, and the LSTM was used for electric load prediction with the extracted
feature sequences, which could improve prediction accuracy and stability. Eskandari [26]
used two-dimensional CNNs to extract the multidimensional features of power load and
temperature sequences, which outperformed other models in bidirectional GRU-LSTM
network prediction. However, the traditional CNN could only extract local features in
the data, which has limitations in dealing with load sequences with multiscale temporal
correlations. As for the problems, in [27], Yin sampled power load sequences at different
time intervals in the preprocessing stage to extract multiscale features, which improved
the prediction accuracy. However, multiscale feature extraction relies on the artificially set
sampling frequency, which is greatly affected by subjectivity, and feature extraction is not
adaptive. In addition, the authors of [28–31] also used traditional convolution kernels of
different sizes to obtain a multiscale temporal correlation in the sequence. The small-scale
convolution kernel is used to extract local features, and the large-scale convolution kernel
is used to extract macro features. However, the receptive field of the convolution kernel is
limited, and the long-term correlation feature extraction of the load is insufficient. Moreover,
the parallel structure increases the width and complexity of the network, which makes the
training optimization of the model more difficult. Pyramid-structured CNN networks are
mostly used in image segmentation and processing research to achieve different levels of
multiscale feature extraction [32,33], which could improve the detection accuracy of targets
with different resolutions in images. However, the traditional convolution kernel used
in the image pyramid CNN network requires more layers of stacking to obtain a larger
receptive field, which will increase the network depth and increase the difficulty of training.

The key to improving the seasonal processing ability of the model is to explore the
climate and seasonal effects of the load sequence. Many studies use the method of seasonal
prediction. For example, the authors of [34] predicted the twelve months of the year
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according to the four seasons, respectively. Chu et al. divided the annual load into heating,
cooling, and transition seasons’ loads according to the use of air conditioning [35]. Similarly,
Bedi et al. divided the annual load into summer, rainy season, and winter loads [36], and
Saini et al. predicted the peak load according to winter, summer, rainy season, and dry
season [37]. The seasonal prediction method considers the characteristics of regional
electricity consumption. It effectively improves the prediction accuracy of each season,
but on the one hand, the way of training the model for each season separately will lead to
a large volume of the model, and the requirements for data volume and time are relatively
high. On the other hand, it ignores the power load characteristics of the month at the
inflection point of seasonal change. The literature [38] proposes an adaptive method of
dividing seasons and proposes a transition index (TI) to identify the season to which the
target forecast day belongs. It also creatively proposes the concept of the seasonal transition
period, considering the uniqueness of the inflection point of seasonal changes, but still uses
the method of constructing models separately for different seasons, and the model volume
is not reduced.

In summary, the existing models have the problems of limited feature extraction and
a large number of seasonal prediction modeling. Therefore, a hybrid feature pyramid CNN-
LSTM model with seasonal inflection month correction is proposed, in which a combination
of linear and nonlinear models is used to forecast the different frequency components
decomposed using EEMD. This method captures the multiscale temporal correlation by
extracting and fusing the feature maps of different receptive fields and screens the seasonal
inflection monthly load to establish a unified model, which could effectively improve the
accuracy of monthly power load forecasting and provide suggestions for the medium- and
long-term planning of power grid.

The contributions of this study are as follows:

1. A time series feature pyramid structure based on causal dilated convolution is
proposed. Multiscale feature extraction and fusion are used to improve the pre-
diction accuracy of the nonlinear model, which avoids the problem of insufficient
feature extraction;

2. A seasonal inflection month correction strategy is proposed. A unified model is con-
structed to predict and correct the seasonal inflection monthly load. It can overcome
the problem of large model volume and improve the model’s ability to process and
predict load seasonality;

3. The method proposed in this paper is evaluated on the actual dataset, and the effec-
tiveness and superiority of the method are verified with experiments.

2. Feature Pyramid CNN-LSTM Network

As will be explained in this section, the feature pyramid of the time series was con-
structed using causal dilated convolution, and it was applied to the CNN-LSTM tandem
network to convolve load sequences with different receptive fields and thus extract feature
information at different scales.

2.1. Causal Dilated Convolution

In recent years, causal dilated convolution has been applied to time series prediction.
Compared with traditional convolution, the causal dilated convolution has strict time order
constraints and a more flexible convolution kernel sampling interval, which could obtain
a larger perceptual field without the information leakage in future time steps and more
in line with the characteristics of time series data. It does not increase the network depth
when extracting larger receptive field information, avoiding gradient disappearance and
gradient explosion during training. This inspired us to investigate whether causal dilated
convolution can be used to improve the CNN feature extraction module.

As shown in Figure 1, for the causal dilation convolution structure, the input time series
x is outputted with the predicted value y* after a three-layer causal dilated convolution with



Energies 2023, 16, 3081 4 of 18

dilation coefficients (1, 2, 4), and the traditional causal dilated convolution is characterized
by outputting only the last layer of the feature map.
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Figure 1. The structure of the causal dilated convolution.

2.2. Feature Pyramid Structure of the Time Series

To extract the feature information of different time scales, the causal dilated convolu-
tion was used to construct a feature pyramid of the power load series, and the structure
is shown in Figure 2. The input time series is convolved by three layers of causal dilated
convolution to generate three time-scale feature maps of F1, F2, and F3. F1 is the feature
of 3 adjacent time steps, F2 is the feature of 7 adjacent time steps, and F3 is the feature of
13 adjacent time steps. The outputs are F1*, F2*, and F3* after batch normalization and
pooling. Then, these three feature maps are added to output fusion features. The feature
pyramid realizes the extraction and fusion of features of different time scales.
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Figure 2. The feature pyramid structure of time series.

2.3. Feature Pyramid CNN-LSTM Network

The feature pyramid CNN-LSTM hybrid neural network structure is shown in Figure 3.
The prediction model consists of two parts: feature pyramid CNN and LSTM. The specific
implementation analysis is presented in the following sections.
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Feature pyramid CNN network consists of multiple one-dimensional causal dilation
convolutional layers, pooling layers, and feature fusion units. Since the input–output
sequences of the causal dilated convolution are of the same length, the input to each
convolutional layer is x = [x(1), x(2), ..., x(t)], and the one-dimensional convolutional layer
could be described as follows:

xl
j = GELU(

N

∑
n=1

xl
n ∗d f l

j + bl
j), (1)

where xl
j denotes the output feature map of channel j in the lth convolutional layer, and xl

n
is the nth input feature map of channel j in layer l. There are N input feature maps for this
channel, f l

j is the weight of the convolution kernel of channel j in layer l, the causal dilated

convolution is ∗d, and bl
j is the bias of channel j in layer l. GELU is the activation function

used in the convolutional layer:

GELU(x) = xΦ(x), (2)

Since Φ(x) is difficult to calculate directly, the approximate function is as follows:

xΦ(x) ≈ 1
2

x

[
1 + tanh

(√
2
π

(
x + 0.044715x3

))]
(3)
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To capture multiscale temporal information, the convolution layer uses causal dilated
convolution to enlarge the receptive field, and for element s in the input sequence, the
convolution part of Equation (1) is defined as follows:

(xn ∗d f j)(s) =
k−1

∑
m=0

f j,m · xn(s− d ·m) (4)

where xn = [xn(1), xn(2) ,... ,xn(t)] is the input vector, the convolution kernel is
f j = [ f j(0), f j(1), ... , f j(k − 1)], f j ∈ Rk, the dilation factor is d, the kernel size is k, and
s− d ·m represents the direction of convolution.

The features extracted from each convolutional layer are sampled using a pooling
layer to reduce the feature dimensionality. After the output feature map of channel j in the
lth convolutional layer is maximally pooled, an element s in the output sequence could be
described as follows:

ul
j(s) = max

{
xl

j(s · r), xl
j(s · r + 1), ..., xl

j(s · r + (k− 1))
}

(5)

where xl
j(s) is the element s of the output feature map of channel j in layer l, which is

also the input of the pooling layer, r is the pooling interval, and k is the length of the
pooling window.

The output features of all pooling layers are of the same size and contain different
time-scale information, forming a feature pyramid, and the multiscale features are fused as
the output of the CNN network. The output of channel j could be described as follows:

vj =
L

∑
l=1

ul
j (6)

where ul
j is the pooled layer output feature map of channel j in layer l, and L is the number

of convolutional layers of the feature pyramid CNN network and also the number of layers
of the feature pyramid.

After that, the multiscale features extracted by the CNN network vj are input to the
LSTM network for prediction. The LSTM network consists of three gates controlling the
cell state to store long- and short-term memory. The sigmoid layer in the forget gate drops
useless information from the previous moment and outputs a number between 0 and 1,
representing the degree to which information has passed from the cell state of the previous
moment into this moment:

ft = σ
(

W f · [ht−1, vt] + b f

)
(7)

The sigmoid and tanh layers in the input gate jointly determine the information to be
stored in the cell state and update the cell state Ct:

it = σ(Wi · [ht−1, vt] + bi), (8)

Ct = Ct−1 ∗ ft + it ∗ tanh(WC · [ht−1, vt] + bC). (9)

The output gate determines the output information of the cell state through the
sigmoid and tanh layers ht:

ot = σ(Wo[ht−1, vt] + bo), (10)

ht = ot ∗ tanh(Ct). (11)

In the above equations, ht−1 is the output at the previous time step, vt is the input at
this time step, W is the weight of each gate unit, and b is the bias of each gate unit.
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Finally, the output state of the LSTM network is mapped to the final predicted output
by a fully connected layer, as shown in Equation (12). In this equation, H = [h1, h2, ..., hz]
denotes the output vector of the LSTM network, and z is the number of LSTM network
neurons. Wd, bd denotes the weights and biases of the fully connected layer.

p = σ(Wd · H + bd) (12)

3. A Hybrid Feature Pyramid CNN-LSTM Neural Network Model Incorporating
Seasonal Inflection Point Month Load Correction

Electricity loads are influenced by climatic seasonal factors, which are highly volatile
and difficult to forecast. To capture the complex volatility and temporal correlation in the
power load sequence, we integrated the feature pyramid CNN-LSTM network with the
inflection point monthly load correction to propose a medium- and long-term power load
forecasting model (corrected feature pyramid EEMD-ARIMA-CNN-LSTM and CFPEACL),
and the flowchart is shown in Figure 4.
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The CFPEACL model is composed of two parts: the annual monthly load forecast
and the inflection point monthly load correction. Based on the first part, the model is
constructed separately by screening the seasonal inflection point monthly load, forecasting,
and correcting the annual monthly load forecast results to obtain the final forecast output.

Both parts use the method of sequence decomposition combined with the construction
of linear and nonlinear mixed models. First, the linear and nonlinear components of the
electric load are separated using EEMD, where the high-frequency nonlinear components
represent the strong random components of local features and noise, and the low-frequency
linear components represent the overall trend of the load sequence. Then, each component
is distinguished between high and low frequencies using zero-pass-rate detection, which is
defined as follows:

Z =
nzero

N
(13)

where Z represents the over-zero rate, nzero represents the number of signal over-zero points,
and N represents the signal length. In this paper, the threshold value of the zero pass rate
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was set to 0.2. Finally, the linear and nonlinear components are predicted using different
models. The feature pyramid CNN-LSTM hybrid neural network is applied as a nonlinear
model and ARIMA as a linear model, they are used to predict a series of IMFs obtained
from EEMD decomposition separately. Since the components of EEMD decomposition are
super-positioned with each other, the prediction results of each component with different
frequencies are superimposed and reconstructed into load prediction results.

4. Experiment Analysis

The data used in this paper include both the monthly load data of Shaoxing City from
January 1998 to December 2018 and its seasonal turnover data from 1961 to 2016. The
performance of the proposed CFPEACL prediction model was validated and analyzed in
three main aspects:

1. Constructing a forecast study of the annual monthly load without inflection point
monthly correction to verify the effectiveness of the feature pyramid EEMD-ARIMA-
CNN-LSTM model (FPEACL);

2. Constructing a separate model and forecasting the seasonal inflection point monthly
load to verify the necessity of screening the inflection point monthly load forecasts;

3. Using the results of the inflection point monthly load forecast to correct the initial
annual monthly load forecast to output the global final forecast.

The proposed model was compared with the LSTM, EEMD-ARIMA (EA), EEMD-
ARIMA-LSTM (EAL), EEMD-ARIMA-CNN-LSTM (EACL), EEMD-ARIMA-MultiCNN-
LSTM (EAMCL), EEMD-TCN-LSTM (EATCL), and feature pyramid EEMD-ARIMA-CNN-
LSTM models without correction for inflection point monthly load (FPEACL).

In order to compare the prediction accuracy and correlation performance of the pro-
posed model and comparison models, evaluation metrics such as mean absolute percentage
error (MAPE), mean absolute error (MAE), root-mean-square error (RMSE), and coefficient
of determination (R2) were mainly used. For MAE and RMSE, the closer to zero means
the smaller the prediction error, and the closer to 1 for R2 means the better the fit, while
MAPE needs to be compared between different models to be meaningful, and the smaller
the value means the higher the prediction accuracy.

4.1. Annual Monthly Load Initial Forecast Analysis

In this section, we mainly explain the verification process of the predictive validity
of the FPEACL model. Before constructing the model, the data were first preprocessed.
There were no missing values in our original data, but there were only the first six months
of load in 2019. In order to equivalently evaluate the prediction accuracy of the model in
each month, we deleted the final 2019 monthly load of the dataset. After that, as can be
seen in the box–line diagram in Figure 5, the load data had no outliers and therefore could
be used to fit the model.
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The FPEACL modeling steps were as follows: Firstly, we decomposed the annual
monthly load sequences using EEMD, and secondly, we performed zero-pass-rate detection
for each component, and then the corresponding model predictions were performed for
each component; finally, the initial prediction results were reconstructed and analyzed. The
annual monthly load without inflection point month correction was predicted by using
the load of the previous 12 months to forecast the load of the next 1 month, with a time
window size of 12 and a move step of 1. The annual monthly load dataset was divided
into the training set, the validation set, and the test set in the ratio of 8:1:1 to predict the
monthly load from January 2017 to December 2018.

As shown in Figure 6, using EEMD, the training and validation sets of annual monthly
load sequences were decomposed into seven IMFs containing a residual component. As
shown in the figure, the red line is the original load, and the green lines are the components
obtained by decomposition. After calculation, the zero pass rate of each component is
shown in Table 1. The zero-crossing rate from IMF2 was lower than the threshold value of
0.2 set in this paper, and it can also be seen in Figure 5 that IMF1 had a high frequency and
was extremely volatile; the components from IMF2 tended to level off and showed a strong
periodicity; and IMF5, IMF6, and Res showed an extremely strong trend. Therefore, the
feature pyramid CNN-LSTM hybrid neural network was used to predict the more complex
pattern IMF1 and ARIMA to predict IMF2-6 and Res with a simpler pattern.
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Table 1. The zero-crossing rate of IMFS for monthly load training and validation sets.

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Res

0.535714 0.198413 0.162698 0.027778 0 0 0

A series of IMFs obtained using EEMD decomposition were used to train the model
and predict the IMFs from January 2017 to December 2018. The predicted results of each
component were superimposed and reconstructed to obtain the initial predicted load results.
In the experiment, the current FPEACL model was compared with the prediction results of
the LSTM, EA, EAL, EACL, EAMCL, and EATCL models. The number of CNN layers of
the four combined networks of CNN and LSTM is three, the size of the convolution kernel
was three, the number of LSTM layers is two, and the number of LSTM neurons was (64,32).
The details were as follows:

• CNN-LSTM: The input sequence was extracted using three one-dimensional convolu-
tion layers, and the feature map of the last layer was output to the LSTM to generate
a prediction;
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• MultiCNN-LSTM: The input sequence was extracted using three convolution layers
with different convolution kernel sizes, and the feature maps of the three layers were
added and fused to output to the LSTM to generate a prediction;

• TCN-LSTM: The input sequence was extracted using a TCN residual block, and then
it was output to the LSTM to generate a prediction;

• Proposed method: The input sequence was extracted using three convolutional layers
with different dilation rates, and the features of three different scales were added and
fused to the LSTM to generate a prediction.

The ARIMA model parameters p, d, and q were determined using a grid search
algorithm, and the best parameters for each component are shown in Table 2.

Table 2. The best parameter combination of ARIMA, with p ranging from 0 to 12, and d and q ranging
from 0 to 3.

(p, d, q)

IMF1 (12, 0, 0)
IMF2 (6, 0, 1)
IMF3 (6, 0, 1)
IMF4 (3, 2, 1)
IMF5 (1, 2, 0)
IMF6 (0, 2, 1)
Res (12, 1, 2)

All experiments were implemented in the same environment, and the details are
shown in Table 3. The training and verification losses of the proposed model are shown in
Figure 7. The losses in these two datasets were slowly reduced to a small range during the
iteration process, and the model had no overfitting or underfitting.

Table 3. Software and hardware environment experiment parameters.

Items Parameters

Software

Operating System Windows 10
Experimental Platform Anaconda 3

Python 3.7
TensorFlow 2.2.0

Hardware
CPU AMD Ryzen 5 3550H

CPU main frequency 2.10 GHz
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The annual monthly load initial prediction curve and indicators are shown in Figure 8.
It can be seen from the figure that the overall prediction trend of the single LSTM model
was in line with the real load characteristics, but the fitting was poor at the peak value in
summer and the valley value during the Spring Festival. The EA model decomposed the
original load and generated the ARIMA model prediction. The fitting of the real load trend
was poor. The reason for this finding is that the ARIMA model has insufficient ability to
deal with complex nonlinear components, and its nonlinear component prediction error is
large; thus, the final fitting result of the hybrid model was not good. The three different
types of CNN-LSTM combined networks had better prediction at peak and valley loads
but had greater volatility, shown in black boxes. The proposed FPEACL method used CNN
with a feature pyramid structure to extract the multiscale temporal correlation of load,
which was best fitted with real load, but there were still large errors in individual months.
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other models.

As shown in Table 4, the LSTM, a commonly used neural network in time series
prediction, had two LSTM layers to capture the long-short term features of the time series
and a dropout layer to prevent overfitting. Better predictions were obtained using this
model than using EEMD decomposition combined with the traditional statistical method
in the ARIMA model. The EAL model used the neural network to predict the complex
high-frequency components of the model. Compared with EA’s direct use of ARIMA
to predict all components, the R2 was equivalent, RMSE decreased by 34%, and MAPE
decreased by 27%, indicating that the modeling prediction method based on different
IMF component characteristics was effective. EACL, EAMCL, and EATCL used different
CNN-LSTM combined networks to predict high-frequency components. Compared with
EAL, the fitting degree was improved, and each error was reduced to varying degrees,
indicating that the method of using CNN to extract features and LSTM prediction was
effective. FPEACL used the feature pyramid CNN-LSTM hybrid neural network to predict
the high-frequency component IMF1. Compared with the model based on other CNN-
LSTM combined networks, MAPE, MAE and RMSE were the smallest in terms of error
comparison. From the point of view of fitting degree, R2 was closer to 1, and the predicted
load was basically consistent with the actual data.
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Table 4. Comparison of monthly load initial forecast results indicators for the whole year between
FPEACL and other models.

Model MAPE MAE RMSE R2

LSTM 4.910% 1.6848 2.4821 0.8230
EA 5.682% 1.8803 2.5110 0.8188

EAL 4.161% 1.3948 1.6847 0.8188
EACL 3.906% 1.2279 1.6400 0.9227

EAMCL 4.163% 1.2856 1.6367 0.9230
EATCL 3.875% 1.1830 1.6250 0.9241

FPEACL 3.967% 1.1713 1.5355 0.9322

4.2. Inflection Point Monthly Load Correction Analysis

To further improve the forecasting accuracy, the CFPECAL method is proposed. The
validity of the independent forecasts of monthly loads at seasonal inflection points was first
verified, and then the initial forecasts were corrected using the monthly loads at seasonal
inflection points to obtain the final global forecast output.

4.2.1. Seasonal Inflection Point Monthly Load Independent Forecast Analysis

The average time of season entry in Shaoxing City from 1961 to 2016, as well as
the trend of significantly earlier spring and summer start dates and later autumn and
winter start dates, were combined to identify the seasonal inflection months as March, May,
September, October, November, and December. The seasonal inflection point monthly load
independent forecast was determined using loads of the previous six months to forecast
the load of the next month, with a time window size of six and a move step of one. The
seasonal inflection point monthly load dataset was divided into a training set, a validation
set, and a test set in the ratio of 8:1:1 to forecast the seasonal inflection point monthly load
from 2017 to 2018.

The training and validation sets of the inflection point monthly load sequences were
decomposed using EEMD, and the zero pass rates are shown in Table 5. While still
separating the high-frequency components and low-frequency components according to
the threshold 0.2, IMF1 and IMF2 were predicted using the feature pyramid CNN-LSTM
hybrid neural network, and the rest of the components were predicted using ARIMA.

Table 5. The IMF zero-crossing rates for monthly load training and validation sets at the seasonal
inflection point.

IMF1 IMF2 IMF3 IMF4 IMF5 Res

0.6032 0.2619 0.0873 0 0 0

The parameters of the characteristic pyramidal CNN-LSTM hybrid neural network
in seasonal inflection point monthly load independent forecasting were set as follows:
The feature pyramid CNN network used two causal dilated convolutional layers with
a kernel size of three and expansion factors of (1,2) so that the receptive field of the last
convolutional layer can cover six seasonal inflection months of the year. The number of
convolutional kernels was 48 for both convolutional layers. The LSTM network consisted
of two LSTM layers with their neurons set as (48,32). The ARIMA model parameters p, q,
and d were determined using a grid search algorithm.

The independent prediction results of the seasonal inflection point monthly load
sequences were obtained after the prediction results of each component were superimposed
and redetermined, and the results were compared and analyzed with the prediction results
of the LSTM, EA, EAL, EACL, EAMCL, EATCL, and FPEACL using the models trained
together with the load data of all months. The prediction curves and indicators are shown
in Figure 7 and Table 4.
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The combined results in Figure 9 and Table 6 show that for the seasonal inflection
month loads, the prediction error was larger when training the model using year-round
monthly load data. This may be due to high-temperature fluctuations and unexpected
weather events in the seasonal inflection months, which caused load fluctuations and made
it difficult to effectively capture the complex patterns in these months. By filtering the six
seasonal inflection point monthly forecast results from the 12-month forecast results for
the whole year and discussing them separately, it can be seen that the error metrics MAPE,
MAE, and RMSE almost all fluctuated within the range around the composite metrics
for the monthly loads for the whole year, while R2 was much worse than the composite
metrics for the 12-month period and even had negative values, implying a worse fit than the
average forecast method. This shows that the seasonal inflection month forecasts obtained
while ignoring the effect of seasonal changes on monthly loads were unreliable. In contrast,
screening out the seasonal inflection months and training the model to predict them in
a targeted manner yielded smaller errors and better fits.

Energies 2023, 16, x FOR PEER REVIEW 14 of 19 
 

 

 

Figure 9. Comparison of independent load forecasting results for the monthly seasonal inflection 

points. 

Table 6. Comparison of independent load forecasting result indicators for the monthly seasonal in-

flection points. 

Model MAPE MAE RMSE R2 

LSTM 2.267% 0.8185 1.0561 0.5989 

EA 5.448% 1.9206 2.5183 −1.2808 

EAL 4.808% 1.7170 1.9654 −1.2808 

EACL 3.517% 1.2451 1.5817 0.1002 

EAMCL 3.507% 1.2587 1.6208 0.0552 

EATCL 3.875% 1.1830 1.8089 −0.1768 

FPEACL 3.715% 1.3300 1.8305 −0.2051 

Independent FPEACL 1.642% 0.5869 0.7549 0.7950 

4.2.2. Integrated Forecast Analysis Incorporating Monthly Load Correction at Seasonal 

Inflection Points 

The method proposed in this paper is to first train the FPEACL model based on the 

annual load data and then separately train the FPEACL model using the seasonal inflec-

tion point monthly load data, and finally correct the initial load prediction results using 

the seasonal inflection point monthly load prediction results. The prediction results and 

errors of each model are shown in Figure 10 and Table 7. 
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Table 6. Comparison of independent load forecasting result indicators for the monthly seasonal
inflection points.

Model MAPE MAE RMSE R2

LSTM 2.267% 0.8185 1.0561 0.5989
EA 5.448% 1.9206 2.5183 −1.2808

EAL 4.808% 1.7170 1.9654 −1.2808
EACL 3.517% 1.2451 1.5817 0.1002

EAMCL 3.507% 1.2587 1.6208 0.0552
EATCL 3.875% 1.1830 1.8089 −0.1768

FPEACL 3.715% 1.3300 1.8305 −0.2051
Independent

FPEACL 1.642% 0.5869 0.7549 0.7950

4.2.2. Integrated Forecast Analysis Incorporating Monthly Load Correction at Seasonal
Inflection Points

The method proposed in this paper is to first train the FPEACL model based on the
annual load data and then separately train the FPEACL model using the seasonal inflection
point monthly load data, and finally correct the initial load prediction results using the
seasonal inflection point monthly load prediction results. The prediction results and errors
of each model are shown in Figure 10 and Table 7.
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Table 7. The comparison between CFPEACL and other models of final annual monthly load forecast-
ing results.

Model MAPE MAE RMSE R2

LSTM 4.910% 1.6848 2.4821 0.8230
EA 5.682% 1.8803 2.5110 0.8188

EAL 4.161% 1.3948 1.6847 0.8188
EACL 3.906% 1.2279 1.6400 0.9227

EAMCL 4.163% 1.2856 1.6367 0.9230
EATCL 3.875% 1.1830 1.6250 0.9241

FPEACL 3.679% 1.1713 1.5355 0.9322
CFPEACL 2.446% 0.7302 0.9835 0.9722

Figure 10 shows the comparison between the prediction results of the proposed model
and other models, where the solid blue line is the real load and the black dashed line is the
predicted load of the CFPEACL model. Compared with other models, the prediction results
of the model proposed in this paper had a better fitting degree with real data. Compared
with the FPEACL model, the CFPEACL model combined with the seasonal inflection point
monthly load correction has higher prediction accuracy at the peak-valley value and the
load value with small changes in the black box. In terms of error, compared with the
LSTM, EA, EAL, EACL, EAMCL, EATCL, and FPEACL models, the MAPE of the model
proposed in this paper decreased by 50%, 57%, 41%, 37%, 41%, 37%, and 34%, and the
RMSE decreased by 60%, 61%, 40%, 40%, 40%, 40%, 39%, and 36%. In terms of the fitting
degree, the R2 of the model proposed in this paper was the closest to 1, which was the best
fitting with real data.

The error frequency histogram of each model is shown in Figure 11, where the curve
represents the probability density of the residual. The higher the frequency of prediction
error in the range of 0, the higher the prediction accuracy, and the better the stability of
the model.
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As can be seen from Figure 11, on the one hand, the single LSTM model could not
effectively capture the random components in the load sequence, and on the other hand,
it could not effectively extract the short-term local features within the sequence, so the
model prediction accuracy and stability were poor. Although the EA model performed
sequence decomposition, ARIMA could not fit the high-frequency components well, and
the model performance was also poor. The EAL combined the advantages of LSTM and
ARIMA well and compensated for the disadvantages of the first two models, and the
prediction accuracy and stability were improved to some extent. EACL, EAMCL, and
EATCL used convolution layers to extract the effectiveness of features in load sequences,
and the prediction accuracy was somewhat improved. The FPEACL model used a feature
pyramid CNN-LSTM hybrid neural network to extract features at different time scales,
which further improved the model prediction capability. In this study, the inflection point
monthly load correction was combined with FPEACL to propose the CFPEACL model,
which could effectively capture the trend of seasonal change months, and the model stability
and accuracy improved, as reflected in the optimal performance observed in the histogram
of error frequency distribution.

In order to evaluate the complexity of the model, we compared the training time of the
model. Table 8 shows the comparison of the training time of all the models in this paper.
The following data do not include the consumption time of hyperparameter tuning. It can
be seen that the single LSTM model had the shortest time, while the training time of other
hybrid models was basically 8–16 times that of the single model. The CFPEACL model
proposed in this paper took the longest time to predict the final result because it contained
the most components. The EA model was the second most time-consuming model because
fitting the high-frequency components was difficult using ARIMA. The model duration of
the four types of combined CNN and LSTM networks was not much different, because the
number of combined network layers and hyperparameters used in this paper were almost
the same.
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Table 8. Model training time comparison.

Model Time (s)

LSTM 185
EA 2483

EAL 1659
EACL 1805

EAMCL 1849
EATCNL 1820
FPEACL 1824

CFPEACL 2922

5. Conclusions and Future Work

In this paper, a medium- and long-term power load forecasting model with a feature
pyramid CNN-LSTM hybrid neural network was proposed to address the problems of
the inadequate feature extraction of existing multiscale CNN networks, the difficulty of
training optimization due to the complexity of the network, and the lack of consideration
of the characteristics of electric load at seasonal change inflection points in forecasting. The
electric load seasonality and nonlinearity were then analyzed by incorporating seasonal
inflection point monthly load correction. Firstly, the power load series was decomposed
using EEMD, and the low-frequency components were predicted using the ARIMA model.
As for the prediction of the high-frequency components, causal dilated convolution was
used to construct the feature pyramid structure of the power load series. It combined the
CNN network to complete the multiscale feature capture at different levels within the
components and input the fused features into the LSTM for prediction. Then, based on
the analysis of the seasonal inflection point monthly load, the initial prediction results of
the annual monthly load were modified using the seasonal inflection point monthly load
correction to improve the model stability and prediction accuracy. Finally, the effectiveness
of the proposed model was verified using the actual monthly electric load data of Shaoxing
City for twenty years.

In the initial forecast of the annual monthly load without the correction of the inflection
point monthly load, the proposed FPEACL model in this paper could obtain the smallest
forecast error and the best fit with the original load compared with the LSTM, EA, EAL,
EACL, EAMCL, and EATCL models, which verified the effectiveness of the feature pyramid
CNN-LSTM hybrid neural network. In the forecast of the inflection point monthly load,
six seasonal inflection point monthly forecast results were selected from the annual forecast
results to verify the necessity of separate analysis for the seasonal inflection point monthly
load. In the integrated prediction with the correction of the inflection point monthly load,
the comparison experimental results show that the proposed model CFPEACL had the
highest prediction accuracy, the best fitting effect, and stability.

In future work, we plan to use this method in other related areas, such as short-term
load forecasting or electricity price forecasting, and verify the possibility and effectiveness
of this method for other fields.
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