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Abstract: Compressed natural gas (CNG) main stations are critical components of the urban energy
infrastructure for CNG distribution. Due to its high electrification and significant power consump-
tion, researching the economic operation of the CNG main station in demand response (DR)-based
electricity pricing environments is crucial. In this paper, the dehydration process is considered in the
CNG main station energy consumption model to enhance its participation in DR. A bilevel economic
dispatch model for the CNG main station is proposed, considering critical peak pricing. The upper-
level and lower-level models represent the energy cost minimization problems of the pre-system and
rear-system, respectively, with safety operation constraints. The bilevel programming model is solved
using a genetic algorithm combined with a bilevel programming method, which has better efficiency
and convergence. The proposed optimization scheme has better control performance and stability,
reduces the daily electricity cost by approximately 21.04%, and decreases the compressor switching
frequency by 50.00% without changing the CNG filling demand, thus significantly extending the
compressor’s service life. Moreover, the average comprehensive power cost of processing one unit of
CNG reduces 20.62%.

Keywords: integrated energy user (IEU); CNG main station; bilevel programming; genetic algorithm;
economic dispatch; demand response; critical peak pricing (CPP)

1. Introduction

With the development of more types of energy, an increasing number of industrial
and commercial users are gradually changing from single-energy-load users to integrated
energy users (IEUs), integrating multiple loads such as electricity, gas, heat, and cool-
ing [1–3]. However, IEUs have difficulties in responding to the demand response (DR)
considering meeting multiple loads. To solve this, integrated energy scheduling strategies
are needed. Among them, the compressed natural gas (CNG) main station is responsible
for the functions of natural gas dehydration, compression, storage, and transportation in
the urban natural gas energy system. The integrated electricity–gas system (IEGS) is a
typical example of a large-scale integrated energy system with great potential to participate
in demand response (DR) programs. This integration can improve the safety and flexibility
of the connected distribution system while reducing the economic costs of the station. The
integrated utilization and efficient configuration of energies can also be promoted [4–6].
Therefore, the economic scheduling of CNG main stations has great significance for IEUs to
participate in DR.

With the continuous acceleration of natural gas resource development and transport
pipeline construction, natural gas energy systems are playing a more important role in the
development of cities. Approximately 60 million households use services related to natural
energy systems in the US [7]. As an alternative fuel for automobiles, natural gas has unique
advantages over diesel and gasoline in terms of supply stability, technical feasibility, and
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cleanliness [8]. As of December 2019, the level of natural gas vehicle (NGV) ownership
worldwide reached 28,541 × 103. The number of natural gas vehicles (NGVs) in cities has
continued to grow globally, especially in Asia. The average annual growth rate of NGV
from 2002 to 2012 was as high as 35.1%, and the growth rate of China remained above 8%
from 2010 to 2018 [9]. As of 2018, the number of NGVs in China exceeded 6760 × 103 [10],
and about 9.6% of vehicles use natural gas to replace traditional vehicle fuels [11]. At
the same time, the growing NGV filling demand has driven the rapid development of
urban natural gas filling networks. As of 2019, the number of natural gas refueling stations
reached 33,383. As of 2018, China had over 9000 natural gas fueling stations, including
more than 5600 CNG refueling stations. From 2010 to 2018, the number of natural gas
fueling stations in China grew consistently at a rate of over 5% [10]. Up to now, China has
initially formed an urban natural gas filling network integrating CNG standard stations
and main slave stations [12].

In the urban natural gas filling network, the CNG main station integrates CNG pretreat-
ment, compression, storage, and filling functions. It is the largest electricity–gas demand
IEU in the urban natural gas filling network [13]. According to calculations, the annual elec-
tricity consumption of a typical CNG refueling station in China is about 7084 × 103 kWh,
and the annual intake of natural gas was about 43,200 × 103 N·m3 in 2020 [14]. The main
process systems of the CNG main station include dehydration, compression, storage, and
filling process systems. Among all the systems in the CNG main station, the dehydration
and compression process systems consume most of the energy, accounting for about 92.48%
of the total energy consumption. The compression process system accounts for 54.19%, and
the dehydration process system accounts for 38.29% [15]. The CNG main station needs to
process the imported natural gas into CNG in advance to meet the real-time NGV filling
demand; therefore, it is generally equipped with a storage process system [16], which can
temporarily store CNG, and the CNG main station production plan can be flexibly changed
within the allowable range of the storage device pressure. The electricity–gas load of the
production equipment can also be dispatched without affecting the NGV filling load in the
station. The CNG main station is an important infrastructure for producing CNG and has
a high level of electrification, making it a key player in the electricity market. Therefore,
responding to DR price signals in order to reduce operating costs and improve market
competitiveness is of great significance to CNG main station operators. Above all, CNG
main stations have great potential and urgent practical needs for participating in DR.

Scholars have made significant research progress in the modeling of electrical–gas
behavior and energy optimization scheduling problems for CNG main stations. In the
literature [17], a gas behavior model for the filling process between single-stage gas stor-
age and NGV cylinders was established according to the first law of thermodynamics.
Subsequently, researchers expanded the CNG main station model by considering other
infrastructure models in the station. For example, the authors of [18] studied the influence
of connecting pipes on the filling process, while the gas state equation was used to extend
the gas behavior model of a single-stage gas storage device to multistage in [19]. The
authors of [20] further considered the pressure change influence of the multistage storage
device caused by the reciprocating compressor during the filling process, and established a
CNG main station fast filling model that included the reciprocating compressor model. The
front-end device model was also supplemented in [13], including a buffer tank and dehy-
dration device, for compatibility with the reciprocating compressor and its front device. In
terms of energy consumption optimal dispatch of the CNG main station, the authors of [21]
regarded the compressor power in the station as a variable load and used the SCIP solver
to transfer the power load under the guidance of a time-of-use electricity price strategy.
Subsequently, the power of the pre-system [13], the user charging management [22], and
the back-level control strategy [23] have also been introduced into optimal dispatch of the
CNG main station.

However, the existing electrical–gas behavior studies of the CNG main station mainly
focused on the compression process system. The energy consumption of the equipment
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participating in DR is only about half of the total energy consumption of the station. Less
attention is paid to the electrical–gas behavior modeling of the dehydration process system,
which consumes nearly the same level of energy as the compression process system.

The main contributions and novelty of this study are as follows:
(i) The present study represents a breakthrough in the simultaneous modeling of the

dehydration and compression process system of a CNG main station. It further deepens
the CNG main station’s participation in DR and improves the whole system control perfor-
mance by avoiding the danger of device overpressure caused by the mismatch between the
proposed CNG operation plan and the actual operating conditions. Meanwhile, the joint
scheduling of the dehydration and the compression process system in the optimal dispatch
of the CNG main station enables the whole process systems to participate in DR.

(ii) This study proposes an improved bilevel programming method combined with
genetic algorithm (GA) to minimize the daily electricity cost and compressor switching
frequency of a CNG main station.

(iii) The objective is to optimize the shift-load production plan for process systems,
achieving both DR program benefits and user CNG filling demands. By using critical
peak pricing (CPP) to guide the electrical–gas behavior of the CNG main station, power-
consuming equipment operation can be altered to achieve lower electricity costs. The
reduced electricity costs can be passed on to consumers to increase the attractiveness of
natural gas energy. This can help to reduce the pollution caused by traditional energy
vehicles and promote the cleanliness development of the automobile industry, further
meeting the urgent requirements for promoting the world’s energy revolution.

The remainder of this paper is organized as follows: Section 2 presents the gen-
eral framework of the study, followed by the presentation of the optimal economic dis-
patch model of the CNG main station combined with demand response (DR) in Section 3.
Section 4 provides details of the bilevel programming algorithm combined with the genetic
algorithm (GA). In Section 5, we present the case data of the CNG main station, including
device parameters, CNG filling demand, and the local critical peak pricing (CPP) strategy.
Section 6 includes five comparative experiments to verify the efficiency of the proposed
algorithm, the control and stability of the proposed model, and the economy of the opti-
mization result considering CPP and time-of-use (TOU) pricing. Lastly, we conclude the
study in Section 7.

2. General Framework of the Study

In this paper, we propose a bilevel optimal economic dispatch model for a CNG main
station considering demand response, as shown in Figure 1.

Firstly, we extract the characteristic parameters of the CNG main station by obtaining
equipment parameters from the nameplate and extracting process system operating charac-
teristic parameters from the corresponding PLC. We also obtain the typical CNG demand
curve of the station by analyzing historical data from the dispenser.

Secondly, process system models of the CNG main station are established for each
equipment, on the basis of its electricity–gas behavior and the corresponding process
system operating characteristics. Additionally, equipment safety operation constraints are
proposed. Furthermore, to consider the cooperative switching constraints between both
progress systems, an operation model for the CNG main station is generated.

Lastly, an economic scheduling objective function is obtained from the local CPP
policy and compressor switching frequency penalty, which is combined with the operation
model to obtain the optimal economic dispatch model of the CNG main station. Terminal
constraints are added to the safety operation constraints to solve potential instability
problems. A bilevel programming algorithm combined with GA is proposed to solve
this optimal model. The solving results show that this method can obtain the day-ahead
economic scheduling plan of the CNG main station considering CPP.
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Figure 1. The framework of CNG main station optimal economic dispatch model.

3. Dispatch Modeling and Problem Formulation
3.1. Structure of CNG Main Station

The CNG main station process systems are composed of natural gas dehydration,
compression, storage, and filling systems [24]. The sketch of the CNG main station model is
shown in Figure 2. It can be seen from the figure that the operation of each system is closely
related. The equipment in the station is divided into four process systems: The dehydration
process system mainly includes adsorption tower A, adsorption tower B, a heat medium
heater, a Roots blower, a gas–water separator, and a forced air cooler; the buffer tank and
compressor form the compression process system; the storage process system is composed
of high-pressure reservoir H, medium-pressure reservoir M, and low-pressure reservoir L;
the filling process system mainly consists of several dispensers. The equipment in the CNG
main station is connected through corresponding switches controlled by the PLC.

3.2. Equipment Modeling

(1) Dehydration device model: The CNG main station is generally located at the
end of a long-distance natural gas pipeline. During long-distance pipeline transportation,
external impurities may be mixed into the gas due to pipeline sealing problems [25]. These
impurities may cause damage to the compressor and even cause the compressor to stop
during operation [26–28]. Therefore, the CNG main station is generally equipped with a
dehydration process system.

The molecular sieve dehydration method is the most used in the dehydration process
system of the CNG main station [24]. This method is essentially a single-molecular-layer
physical adsorption method, and the molecular sieve dehydration devices are usually con-
figured in an absorption tower. The dehydration process is mainly divided into adsorption,
regeneration, and cold purging processes [24]. In the adsorption process, the wet natural
gas from the long-distance gas pipeline enters the molecular sieve adsorption tower, and
its entrained liquid droplets are adsorbed by molecular sieves. Then, the dehydrated gas
leaves the adsorption tower and enters the compression process system. Due to the con-
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tinuous accumulation of liquid molecules, the dehydration performance of the molecular
sieve declines as the working time increases; hence, it needs regeneration after working for
a period to ensure dehydration efficiency. The adsorption tower in the regeneration process
is not able to dehydrate intake gas. To meet the demand of real-time load, the dehydration
process system of the CNG main station is generally equipped with dual towers to ensure
that at least one adsorption tower can work in the dehydration process in each period.
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The regeneration device consists of a heat medium heater, Roots blower, recycling tank,
gas–water separator, and forced air cooler. Regenerated gas is firstly stored in the recovery
tank; then, the regenerated gas is driven by the Roots blower to carry out molecular sieve
purging and the regeneration cycle during the regeneration process. The higher temperature
can help the liquid molecules to separate from the molecular sieve more quickly. Therefore,
the regenerated gas needs to be heated by a heat medium heater during the regeneration
process before entering the adsorption tower. After that, the regenerated gas is filled into
the adsorption tower to heat and regenerate the molecular sieve dehydration device in
the tower. Next, the high-temperature gas entrains droplets and leaves the tower; after
being cooled by the forced air cooler, the water-containing low-temperature gas enters
the gas–water separator. The water is separated from the gas by centrifugal force. The
separated water is removed from the dehydration progress system by the sewage pipe, and
the dehydrated gas is reheated by the electric heater to start a new cycle until the water
dew value of the regeneration gas drops to the predetermined value.

Lower temperature can increase the adsorption capacity of the molecular sieve. The
adsorption towers after regeneration must be cooled to a certain temperature by unheated
dry gas before dehydration operation [29]. It is necessary to continue the cold purging cycle:
the PLC controls the bypass switch of the heat medium heater to open; the regenerated gas
bypasses the heater and enters the adsorption tower for cooling; the heat is taken out from
the adsorption tower by the regenerated gas and discharged to the environment through
the forced air cooler. After the cold purging cycle is over, the regenerated gas is recovered
again and stored in the recycling tank.
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According to the above process, the electric–gas model of the dehydration device can
be expressed as

Wd(t) =
t

∑
i=1

pd1ts[u3(i) + u4(i)] +
t

∑
t=1

pd2[u1(t) + u2(t)]ts

=
t

∑
i=1

pd1ts[u3(i) + u4(i)]+
t

∑
t=1

(pm + pw)[u1(t) + u2(t)]ts

(1)

md(t) = md1(t) + md2(t) =
t

∑
i=1

tsmdmp[u9(i) + u10(i)], (2)

where t = 1, 2, 3, . . . , N. The day-ahead optimized scheduling time is defined where t = 1, 2,
3, . . . , N. The day-ahead optimized scheduling time tn is defined as 24 h, and the sampling
time is defined as ts (h); then, the total number of samples N = 24/ts. Wd(t) is the electrical
energy of the dehydration device before time t (kWh). pd1 is the dehydration power of a
single adsorption tower (kW), and pd2 is the regeneration and cold purging power of a
single adsorption tower (kW). pm is the power of the Roots blower (kW), and pw is the
power of the forced air cooler (kW). The heat medium heater is a kind of organic heat
carrier heating furnace [30], which generally uses coal, oil, or combustible liquid as fuel;
hence, it is not listed in the electricity–gas model of the dehydration progress system. md(t)
is the total processing gas volume of the dehydration device before the period t (kg), md1(t)
is the total processing gas volume of the adsorption tower A before the period t (kg), and
md2(t) is the total processing gas volume of the adsorption tower B before the period t (kg).
mdmp is the outlet mass flow rate of the dehydration process of a single adsorption tower
(kg/h). It can be calculated as follows:

mdmp = ρstd ×Qstd.d =

(
Mwg

Mwa

)
× ρstd.a ×Qstd.d, (3)

where ρstd is the compressed gas density under standard conditions (0 ◦C and 105 Pa). Mwg
is the molecular weight of compressed gas, Mwa is the molecular weight of air, and ρstd.a is
the density of air under standard conditions (kg/m3). Qstd.d is the dehydration capacity of
the single adsorption tower under standard conditions (N·m3/h).

Certain switch combination constraints are also required for the operation safety of
the dehydration process system. A shorter regeneration time increases the regeneration air
flow rate and increases the size of the regeneration equipment. Appropriately increasing
the regeneration time can make the adsorption more complete [31]. Therefore, the CNG
main station generally adopts the working mode of the designated regeneration time
to ensure the deepening regeneration of the adsorption tower. To ensure the operating
efficiency of the molecular sieve, the regeneration and cold purging process should run
uninterruptedly. However, the dehydration process can still intermittently run as required
by the subsequent compression system. In addition, the dual adsorption towers in the
dehydration device share the same inlet and outlet gas pipelines for reducing construction
costs; thus, certain switch combinations are needed to prevent the working status of the
dual towers from interfering with each other. Lastly, the equipment except for the gas
storage device is generally not used for storage. To achieve this, all levels of switches are
required to cooperate to avoid the accumulation of gas in the equipment [13]. Above all,
the switches combination constraints to ensure the safe operation of the dehydration device
are described as

N

∑
i=1

u1(i) = T;
N−1

∑
i=1

(u1(i + 1)−u1(i))2 = 2, (4)

N

∑
i=1

u2(i) = T;
N−1

∑
i=1

(u2(i + 1)−u2(i))2 = 2, (5)
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u1(i) + u2(i) ≤ 1; u2(i) + u4(i) ≤ 1; u1(i) + u3(i) ≤ 1 , (6)

u1(i) = u11(i); u2(i) = u12(i); u3(i) = u9(i); u4(i) = u10(i), (7)

where T is the regeneration and cold purging process time of a single adsorption tower.
Equations (4) and (5) respectively limit the uninterrupted process of regeneration of ad-
sorption towers A and B within the scheduling time. Equation (6) avoids the interfer-
ence between the dehydration and regeneration process of the adsorption tower A and
B. Equation (7) limits the accumulation of gas in adsorption towers A and B during the
regeneration and dehydration process.

(2) Compressor model: The reciprocating compressor converts the work done by
the prime mover into the pressure energy and kinetic energy of the conveyed fluid, and
processes natural gas into CNG. It is the core equipment of the CNG main station. The
model can be expressed as follows [13]:

Wc(t) =
t

∑
i=1

ts pcu5(i), (8)

mc(t) =
t

∑
i=1

tsmcmpu5(i), (9)

where t = 1, 2, 3, . . . , N. Wc(t) is the electrical energy of the compressor before the period t
(kWh), and pc is the compressor power (kW). u2(i) is the switch state of the switch u2 in the
i-th sampling interval, and mc(t) is the total gas output of the compressor before the period
t (kg); mcmp is the compressor outlet mass flow rate (kg/h), which can be calculated by

mcmp = ρstd ×Qstd.c =

(
Mwg

Mwa

)
× ρstd.a ×Qstd.c, (10)

where Qstd.c is the capacity of the compressor under standard conditions (N·m3/h).
(3) Dispenser model: The dispenser is the end control device of the CNG main station

and is directly connected to the NGV tank. It is equipped with a flow sensor and an
electronic sequence valve controlled by a microprocessor. When the NGV enters the station
with a low-pressure tank, the dispenser automatically connects the NGV tank with a
reservoir, and the pressure difference allows the gas to be quickly filled into the NGV
tank. The pressure of the NGV tank continues to rise in the filling process; thus, the filling
rate decreases. When the filling flow rate drops to a certain limit level, the dispenser
automatically switches the NGV tank to a higher-pressure reservoir to achieve a faster
filling rate. In some cases, NGV may enter the CNG main station with a high-pressure
tank for filling, and the dispenser automatically determines the initial filling reservoir on
the basis of the initial NGV tank pressure. Above all, the dispenser is always in working
condition, and its daily electricity cost is fixed [21]. Its model can be expressed as

Wb(t) = pbtn, (11)

where pb is the dispenser device power (kW). The gas flow of the dispenser should be
consistent with the CNG filling demand; thus, its gas model is omitted.

(4) Buffer tank model: The reciprocating compressor widely used in CNG main stations
has periodic intake and exhaust processes during the compression process [32], which
are inevitably accompanied by pressure pulses. When the pulse exceeds the equipment’s
tolerable range, resonance occurs inside the compressor, causing damage to various parts
of the fuselage [33,34]. A gas pulsation suppression device is needed in front of the
reciprocating compressor, and the buffer tank is the most used for CNG main stations. The
buffer tank takes advantage of its large volume, which can effectively buffer the intake
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pressure pulse and make the gas enter the compressor smoothly [35]. However, the volume
of the buffer tank is constant. If too much gas is injected into it during the scheduling
process, it may exceed the design working pressure of the buffer tank and decrease the
pulse suppression effect. Thus, it is necessary to consider the storage capacity of the buffer
tank during the scheduling process. The gas mass mcp(t) in buffer tank C at sampling time
t can be calculated as follows:

mcp(t) = mcp(0) + md(t)−mc(t)

= mcp(0) +
t

∑
i=1

tsmdmp[u9(i) + u10(i)]−
t

∑
i=1

tsmcmpu5(i)
(12)

where mcp(0) is the initial gas volume of the buffer tank (kg). The pressure generated by the
gas in the buffer tank during the dispatch period should not exceed the design working
pressure range of the buffer tank. It can be described as

mmin
cp ≤ mcp(t) ≤ mmax

cp , (13)

where mmax
cp and mmin

cp are the maximum and minimum gas mass that the buffer tank can
withstand. The gas mass limits can be obtained from the gas state equation [13]:

mmax
cp =

MVc pmax
cp

zRTmax
, mmin

cp =
MVc pmin

cp

zRTmin
, (14)

where M is the molar mass of the gas (kg/mol), and Vc is the volume of the buffer tank
(L). pmax

cp and pmin
cp represent the maximum and minimum pressure that the buffer tank

can withstand (MPa); z is the gas compression coefficient, and R is the general gas con-
stant (J/(mol·K)). Tmax and Tmin respectively represent the highest and lowest ambient
temperatures of the buffer tank (K).

(5) Cascaded storage system model: The CNG main station generally uses the cascaded
storage system in the storage link for reducing the filling time of the NGV. The CNG station
employs a cascaded storage system, which is divided into three reservoirs of high pressure,
medium pressure, and low pressure. This system allows for efficient storage and transfer of
natural gas, ensuring a reliable and constant supply for customers. After being processed
by the compressor, CNG is stored in the three reservoirs under the control of the priority
control panel to maintain the corresponding reservoir pressure.

Only one reservoir is opened by the priority control panel to fill CNG during each
period [20], and this switch constraint is described as

−u5(i) + u6(i) + u7(i) + u8(i) = 0, (15)

where u6(i), u7(i), and u8(i) are the states of switches u6, u7, and u8 in the i-th sampling
time, respectively. The gas mass mhp(t), mmp(t), and mlp(t) of the high-pressure reservoir H,
medium-pressure reservoir M, and low-pressure reservoir L in the t-th period should not
exceed its reservoir design working pressure range. This can be expressed as follows [21]:

mmin
hp ≤ mhp(t) ≤ mmax

hp , (16)

mmin
mp ≤ mmp(t) ≤ mmax

mp , (17)

mmin
lp ≤ mlp(t) ≤ mmax

lp , (18)

where mmin
hp , mmin

mp , and mmin
hp are the minimum mass of three reservoirs of the cascaded

storage system (kg), and mmax
hp , mmax

mp , and mmax
lp are the maximum mass of three reservoirs

of the cascaded storage system (kg). Through the gas state Equation (14), they can also be
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obtained from the three-level reservoir volumes Vh, Vm, and Vl, and pressure limits pmax
hp ,

pmax
mp , pmax

lp , pmin
hp , pmin

mp , and pmin
lp , as expressed in Equations (A1)–(A3) (Appendix A) [21].

3.3. Objective Function

Critical peak pricing (CPP) is an important demand response (DR) method. It stimu-
lates users to change their electricity consumption behaviors and benefits both the grid and
users [36]. CPP is formed by superimposing flexible critical peak rates based on time-of-use
pricing (TOU), and it can result in a longer timescale load shape change compared with
TOU [37]. The total daily electricity cost CN of the CNG main station considering CPP can
be calculated by the following equation:

CN = [Wc(N) + Wd(N)]pe(t) =
N
∑

i=1
pc pe(i)u5(i)ts

+
N
∑

i=1
pd1ts[u3(i) + u4(i)]pe(i) +

N
∑

i=1
pd2[u1(i) + u2(i)]ts pe(i)

(19)

where pe(t) is the electricity price during sampling time t. The electricity cost of the CNG
main station also includes other constant cost components. These components do not
participate in DR and should be discarded in the optimal economic model of the CNG main
station [38].

The high switching frequency of rotating equipment affects its lifespan and increases
its maintenance costs [37]. Frequent switching of the compressor for off-peak production is
not worth the gain. Therefore, it is necessary to add a penalty term of compressor switching
frequency into the objective function. The CNG main station daily comprehensive electricity
cost J is expressed as

J = ψCN + (1− ψ) fN = ψCN + (1− ψ)
N−1

∑
t=1

(u5(t + 1)− u5(t))2. (20)

3.4. Constraints

The open-loop strategy may cause system instability in the continuous operation
progress; thus, it is necessary to set terminal constraints in the gas storage equipment
model. The terminal constraints specific expressions can be expressed as

map(0)−Ma ≤ map(N) ≤ map(0) + Ma, (21)

mhp(0)−Mh ≤ mhp(N) ≤ mhp(0) + Mh, (22)

mmp(0)−Mm ≤ mmp(N) ≤ mmp(0) + Mm, (23)

mlp(0)−Ml ≤ mlp(N) ≤ mlp(0) + Ml, (24)

where Ma, Mh, Mm, and Ml are the terminal restriction margins of the buffer tank and
the cascaded storage system. They generally take 10% of the initial gas mass of the
corresponding storage device [21]. Furthermore, the decision switch variables uj are all
binary, the constraints can be expressed as

uj(i) ∈ {0, 1}, (25)

where j = 1, 2, . . . , 8. The switch variables u1(i) and u11(i), u2(i) and u12(i), u3(i) and
u9(i), and u4(i) and u10(i) are kept in sync, and only one switch variable in each group
needs to participate in the day-ahead scheduling. Meanwhile, the day-ahead economic
optimal model of the CNG main station should meet the operating constraints of the
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equipment model in the station. All in all, Equations (4)–(7), (13), (15), (16)–(18), and
(21)–(25) together constitute the constraints of the day-ahead economic optimal model of
the CNG main station.

4. Algorithm Description

The day-ahead economic optimal model of the CNG main station contains 8 N decision
variables, and it is a large-scale 0–1 mixed-integer nonlinear programming model when
the sampling time ts is small. Large-scale 0–1 variable programming is one of the current
research focuses of evolutionary algorithms [39–43]. Having the advantages of better
convergence, simpler calculation, and fewer parameter settings for 0–1 programming
problems [44–46], the genetic algorithm (GA) has received more and more attention in this
field. However, the massive variable dimension has become a bottleneck when decision
variables are increasing.

Some experts have proposed that the cooperative co-evolution method can effectively
improve the efficiency of evolutionary algorithms [41,47]. According to this method, a
bilevel programming method combined with GA was used to solve the optimal model of
the CNG main station: The station model is decomposed into a two-level programming
model, and the decision variables are divided into two groups on average. The mature
MATLAB Solving Constraint Integer Programs (SCIP) solver in the OPTI toolbox was used
to solve the fitness of the upper and lower levels, respectively. Only the intermediate
variables needed to participate in the optimization process of GA; thus, the convergence
efficiency of the algorithm was effectively improved.

4.1. Bilevel Programming Model of CNG Main Station

Bilevel programming explores the interaction between two subjects with different
objective functions in an orderly or noncooperative manner [48]. The upper-level deci-
sion makers have decision-making priority, and the lower-level decision makers respond
according to their interests. It is essentially a Stackelberg game [49].

(1) Upper-level model: The upper-level model is mainly the CNG main station com-
pression and storage process system, including the compressor and cascaded storage
system model. The objective function of the upper-level model is to minimize the daily
comprehensive power cost of the compression and storage process system, denoted as J1. It
can be expressed as

J1 = ψWc(N)pe(t) + (1− ψ)
N−1
∑

i=1
(u5(i + 1)− u5(i))2

= ψ
N
∑

i=1
pc pe(i)u5(i)ts + (1− ψ)

N−1
∑

i=1
(u5(i + 1)− u5(i))2

(26)

The upper-level model constraints are composed of Equations (13), (15), (16)–(18), and
(22)–(24). The upper-level model can be established as

min fT
1 xU + (fT

2 xU) · (fT
2 xU)

subject to


Aeq.cxU = beq.c

bmin.U ≤ AUxU ≤ bmax.U
l ≤ xU ≤ u

(27)

The upper-level model achieves the minimum objective function (fT
1 xU + (fT

2 xU) ·
(fT

2 xU)) under the constraints of equality constraints (Aeq.cxU = beq.c), inequality constraints
(bmin.U ≤ AUxU ≤ bmax.U), and the limits of decision variables (l ≤ xU ≤ u). The decision
variables u5(i), u6(i), u7(i), and u8(i) together form the decision variable vector xU of the
upper model. It can be expressed as

xU = [u5(1) · · · u5(N) u6(1) · · · u6(N)u7(1) · · · u7(N)
u8(1) · · · u8(N)]T4N×1

(28)
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The specific descriptions of the matrices Aeq.c, AU, and f 2 and the vectors f 1, beq.c,
bmin.U, bmax.U, l, and u are shown in Equations (A4)–(A18) (Appendix A).

(2) Lower-level model: The lower-level model is mainly the CNG main station dehy-
dration process system, including the pretreatment system composed of the dehydration
device model and the buffer tank model [13]. The goal of the lower-level model is to
minimize the daily comprehensive power cost of the dehydration process system of the
CNG main station, denoted as J2. It can be expressed as

J2 = ψpe(t)Wd(N) = ψ
N
∑

i=1
pd1ts[u3(i) + u4(i)]pe(i)

+ψ
N
∑

i=1
pd2ts[u1(i) + u2(i)]pe(i)

(29)

The lower model constraints are composed of Equations (4)–(7), (13), and (21). The
lower-level model is established as

min fT
3 xL

subject to


Aeq.dxL = beq.d

(Aeq.mxL) · (Aeq.mxL) = beq.m
(Aeq.nxL) · (Aeq.nxL) = beq.n

bmin.L ≤ ALxL ≤ bmax.L
l ≤ xL ≤ u

(30)

The lower-level model achieves the minimum objective function (fT
3 xL) under the equal-

ity constraints (Aeq.dxL = beq.d, (Aeq.mxL)·(Aeq.mxL) = beq.m, (Aeq.nxL)·(Aeq.nxL) = beq.n)), in-
equality constraints (bmin.L ≤ ALxL ≤ bmax.L), and the limits of decision variables (l≤ xL ≤ u).
The decision variables u1(i), u2(i), u3(i), and u4(i) together form the decision variable vector
xL of the lower-level model. It can be expressed as

xL = [u1(1) · · · u1(N) u2(1) · · · u2(N) u3(1) · · · u3(N)
u4(1) · · · u4(N)]T4N×1

(31)

The matrices Aeq.d, Aeq.m, Aeq.n, and AL and the vector f 3, beq.d, beq.m, beq.n, bmin.L,
and bmax.L are described in Equations (A19)–(A35) (Appendix A).

4.2. The Process of Bilevel Programming Method Combined with GA

The GA and mature SCIP solver were used to solve this bilevel model. The process of
bilevel programming method combined with GA is as follows:

(1) The algorithm randomly generates the initial population, and the number of
individuals is Np. The intermediate variable u5 is selected individually. Each individual
gene uses N-bit binary code, where u5 = {u5(1), u5(2), . . . , u5(N)}.

(2) The algorithm brings the genetic individual u5 as a known quantity into the upper
model and introduces the SCIP solver to search the optimal combination of {u6, u7, u8} by
the objective function J1. According to the optimal upper-level results, the optimal switches
combination of {u1, u2, u3, u4} is solved by the SCIP solver with the smallest objective
function J2.

(3) The inferior value Jh is assigned to the infeasible individuals’ fitness generated in
step 2. The infeasible individuals are eliminated in the selection process. The linear sorting
method is used to allocate fitness, and stochastic universal selection is introduced to select
high-fitness individuals in the selection process. The probability of an individual being
selected is proportional to its fitness, and individuals with low fitness are not able to pass
genes to their offspring through genetic processes. The value of Jh is much larger than the
optimized solution. Therefore, the probability of the infeasible individual being selected is
the lowest in the entire population, and the infeasible individual is gradually eliminated.
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(4) The order crossover is used in the recombination process with a crossover rate of pc.
The discrete mutation operator is used in the mutation process with a mutation rate of pm.

(5) Genetic manipulation may destroy the optimal individual. If the optimal individual
is destroyed in step 4), the dual-elite retention strategy is used to ensure the algorithm’s
solution speed. When the optimal individual fitness in the current generation is less than the
optimal individual fitness in the previous generation, the two worst fitness individuals in
the current generation are replaced by the two best individuals in the previous generation.

(6) The next-generation optimization process is repeated to the maximum number of
iterations, and the optimal dispatch scheme of the CNG main station is outputted.

The specific calculation flowchart is shown in Figure 3. It can be observed that the
algorithm decomposes the 8 N decision vector set into three decision vector sets, and GA
only needs to process the N decision vector set. This effectively improves the solution
efficiency of GA.
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5. Case Data
5.1. CNG Main Station Data

A CNG main station in China was selected as the example for research. According to
the pipeline intake quality and CNG filling demand, the CNG main station is equipped
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with a dehydration device, a compressor, three attached buffer tanks, a cascade storage
system, and three dispensers. The corresponding switches are automatically controlled by
a PLC according to the preset operation strategy. The equipment parameters of the CNG
main station are shown in Table 1.

Table 1. Equipment parameters of CNG main station.

Symbol Quantity Value

pd1 Dehydration power rating 10 kW
pm Roots motor power rating 7.5 kW
pw Forced air cooler power rating 5 kW
pc Power rating of compressor 132 kW

Qstd.d Capacity of dehydration device 101 N·m3/min
Qstd.c Capacity of the compressor 76.67 N·m3/min
pmax

ap Maximum pressure of buffer tank 3.2 MPa
pmin

ap Minimum pressure of buffer tank 0.1 MPa

pmax
hp

Maximum pressure of
high-pressure reservoir 25.0 MPa

pmax
mp

Maximum pressure of
medium-pressure reservoir 21.0 MPa

pmax
lp

Maximum pressure of
low-pressure reservoir 15.0 MPa

pmin
hp

Minimum pressure of
high-pressure reservoir 17.5 MPa

pmin
mp

Minimum pressure of
medium-pressure reservoir 12.5 MPa

pmin
lp

Minimum pressure of
low-pressure reservoir 7.5 MPa

T Regeneration and cold purging
time of dehydration device 8 h

Tmax Lowest ambient temperature 304.15 K
Tmin Lowest ambient temperature 284.15 K

Va Volume of buffer tank 4000 × 3 L
Vh (Vm, Vl) Volume of the reservoirs 4000 L

5.2. Critical Peak Pricing Mechanism

The CPP is usually based on TOU pricing. The CPP system includes critical peak
days and hours, critical peak prices, peak prices, standard prices, and valley prices. The
local power company only imposes the critical peak rate from June to August, while other
periods still use the TOU pricing. The electricity price mechanism can be expressed as
follows [50]:

peHD(t) =


po = 0.3180 C/kWh t ∈ [0, 7] ∪ [23, 24]h
ps = 0.6089 C/kWh t ∈ [7, 8.5] ∪ [11.5, 16] ∪ [21, 23]h
pp = 0.8998 C/kWh t ∈ [8.5, 10.5] ∪ [16, 19]h
pc = 1.0161 C/kWh t ∈ [10.5, 11.5] ∪ [19, 21]h

, (32)

peLD(t) =


po = 0.3180 C/kWh t ∈ [0, 7] ∪ [23, 24]h
ps = 0.6089 C/kWh t ∈ [7, 8.5] ∪ [11.5, 16] ∪ [21, 23]h
pp = 0.8998 C/kWh t ∈ [8.5, 11.5] ∪ [16, 21]h

, (33)

where C represents Chinese yuan. peHD(t) and peLD(t) respectively represent the CPP in the
high-demand season (June to August) and the low-demand season. po, ps, pp, and pc are
the valley price, the standard price, the peak price, and the critical peak electricity price,
respectively.
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5.3. CNG Filling Demand

The main users of NGV in China are public service vehicles such as buses, taxis,
logistics distribution vehicles, passenger cars, and sanitation vehicles. Their working hours
and modes are relatively fixed [9], and the CNG filling demand of the station can remain
relatively stable. By tracking the filling demand of CNG refueling stations in different cities,
the authors of [51] found that the monthly CNG filling demand of CNG refueling stations
was basically stable throughout the year, independent of seasonal changes. Meanwhile,
the daily CNG filling demand also changed little during the months, and the unevenness
coefficient was between 0.82 and 1.15 [52]. Above all, the typical CNG filling demand curve
of the CNG main station obtained from the historical records of the flow sensor in the
dispenser can be used as the basis for DR scheduling. The CNG filling demand curve of the
CNG main station obtained from the dispenser is shown in Figure 4. Public service vehicles
generally fill up storage tanks in advance to meet transportation service requirements
during peak hours. Therefore, the CNG filling demand at this station increases significantly
a few hours before the morning and evening peaks, and the CNG filling demand of this
station decreases during morning and evening peak hours. There is a certain difference in
time characteristics between the CNG filling demand and the CPP mechanism, which is
the basis for CNG filling stations to participate in DR. Above all, CPP can be considered to
optimize the electricity consumption behavior of the CNG main station without changing
the CNG filling demand at the station.
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6. Model Verification and Analysis

The day-ahead dispatch model solving algorithm for the CNG main station was
implemented using MATLAB programming. The crossover rate (pc) in GA and the mutation
rate (pc) were set to 0.6 and 0.01, respectively. The number of population individuals was
set to 25, and the maximum number of iterations was 40. The sampling time of the CNG
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main station model (C) was 0.5 h. The initial gas volumes of the buffer tanks, high-pressure,
medium-pressure, and low-pressure reservoirs were set to 150, 450, 350, and 250 kg,
respectively. The weight factor (ξ) was set to 0.01 to make the penalty term the same order
of magnitude as the CN. The inferior solution (Jh) was set to 40.

6.1. Solving Efficiency Comparison Experiment of Algorithms

To verify the efficiency of the day-ahead dispatch model solving algorithm during the
evolution process, two standard comparison algorithms were introduced for comparison
experiments, Algorithm I and Algorithm II, using the GA and SCIP solvers to solve the
whole model, respectively. Neither algorithm used the decomposed bilevel model, and the
parameter settings of the two algorithms were the same as the proposed algorithm. The
computer used for the solution was configured with an Intel Core i5-9300H CPU and 24 GB
memory. The comparative experiment results are as follows: Algorithm I was trapped in
an infeasible area until the maximum iterations. whereas Algorithm II returned an invalid
value for exceeding the maximum calculation time of the solver. The algorithm introduced
in this paper obtained an effective scheduling scheme in the first iteration process and
converged in the 27th generation. The optimal process of the introduced algorithm is
shown in Figure 5, where the optimal scheme objective function value J was 14.7165.
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6.2. Economy Comparative Experiment of CNG Main Stations Dispatch Models Considering CPP

The optimization results of the day-ahead optimal economic dispatch model of the
CNG main station are shown in Figure 6. From Figure 6c,d, it can be observed that the
compressor basically avoids power consumption during the evening peak period. However,
to meet the night CNG filling demand and low switching frequency requirements, the
compressor continues to consume power during the morning peak period. Meanwhile, the
dispatch of the upper-level compressor model also influences the behaviors of the lower-
level dehydration device model during the evening peak period. From Figure 6a,b, it can
be observed that the dehydration device basically avoids power consumption during the
evening peak period. However, the dehydration device should complete the regeneration
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and cold purging progress in advance, and both towers need to work for the continuous
dehydrated gas demand of the compressor. This results in power consumption behavior of
the dehydration device during the morning and evening peak periods.
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To verify the economy of the optimal dispatch scheme, the original operation strategy
dispatch results to the typical CNG filling demand of the CNG main station were used for
comparison. The scheduling result is shown in Figure 7. The original operation strategy
of the CNG main station can be described as follows: when the reservoir pressure of
the cascaded storage system drops to the lower limit, the PLC automatically controls the
compressor to work and replenish CNG to the upper limit of the reservoir pressure. In
the case of conflicts between the reservoir switches, the reservoir of higher pressure is
replenished first to ensure the efficiency of the fast filling process. The PLC of the buffer
tank employs the same strategy as the cascaded storage system. The dual adsorption
towers in the dehydration device alternately perform dehydration work. The regeneration
and cold purging progress of the adsorption towers is carried out at a fixed time of night
to meet the day CNG filling demand. The action value of the PLC should have a certain
margin Mg from the pressure limit of the gas storage device [9] considering real-time load
requirements. Mg was selected 25 kg; other parameter settings were consistent with the
optimal dispatch model.
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Figure 7. Optimal dispatching results of CNG main station based on original operation strategy.

Compared with the original operation strategy of the CNG main station, the proposed
strategy could reduce the daily comprehensive electricity cost index J from 21.2786 to
14.7165 with a 30.84% reduction. Furthermore, the daily electricity cost CN decreased from
1236.86 C to 976.65 C with a 21.04% reduction, and the compressor switching frequency
f N decreased from nine times to five times with a 50.00% reduction. Different compressor
operation times in scheduling schemes would lead to a difference in the processed CNG
mass. If only the daily comprehensive power cost of the CNG main station is compared,
it is difficult to judge the economy. To address this, the average comprehensive power
cost of processing one unit of CNG (dCN) was introduced to compare the economy of the
dispatching schemes. This can be expressed as follows:

dCN =
CN

mc(N)
(34)

According to Equation (34), the proposed strategy could reduce dCN from 0.97 C to
0.77 C with a 20.62% reduction. Above all, the proposed economic dispatch strategy of the
CNG main station was more economical after considering CPP.

6.3. Economy Comparative Experiment of CNG Main Station Dispatch Model Considering TOU

To further verify the economic versatility of the optimal model, the proposed strategy
was carried out in the CNG station after considering TOU adopted by the local power
company in the low-power demand season. The dispatching results are shown in Figure 8.
Compared with the original operation strategy of the CNG main station, the proposed
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strategy could reduce the daily comprehensive electricity cost index J from 21.0192 to
14.1553 with a 32.66% reduction. The daily electricity cost decreased from 1210.92 C to
1118.53 C with an 8.26% reduction. The compressor switching frequency was reduced from
nine times to three times with a 66.67% reduction. The dCN decreased from 0.95 C to 0.88 C
with a 7.37% reduction. For the power system, the CNG main station basically avoided the
power consumption behavior of the morning load peak period and increased its power
consumption behavior during the low load valley period according to the price signal of
TOU. This could help alleviate dispatch pressure on the distribution network. However,
TOU could not reduce the power consumption behavior of the CNG main station during
the evening load peak period (7:00 p.m. to 9:00 p.m.) compared with Figure 6. Above all,
the CPP policy implemented by the local power company was necessary to reduce the
dispatching pressure during the evening peak in the high-power demand season.
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6.4. Control Performance Comparison Experiment of CNG Main Station Dispatch Model

The regeneration and cold purging time T are important factors in ensuring the
efficiency of the dehydration process system’s operation. The regeneration and cold
purging time can be appropriately shortened to achieve the purpose of energy saving and
consumption reduction under the premise of ensuring the regeneration quality [25]. For
the dual adsorption tower dehydration progress system, the currently commonly used
12 h empirical switching method has the problem of high operating energy consumption.
Therefore, it is necessary to appropriately extend the switching period to 18–20 h, which
enables saving 15,399 m3 of fuel gas per month in a typical CNG refueling station in
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theory [53]. In the pre-system model established in [13], the dehydration progress system
was highly simplified to a single port element, and the regeneration and cold purging time
was fixed at 12 h. This model cannot extend the switching cycle of the dual adsorption
tower, making it difficult to meet the requirements of energy saving and cost reduction
in the CNG main station. The proposed CNG main station model establishes a specific
dehydration process model, which can specify the regeneration and cold blowing time T.
Considering the optimal scheduling of the dehydration process system, the proposed model
further deepens the CNG main station’s participation in DR and reduces the operating
costs and energy consumption.

The proposed model can resolve the mismatch between the front and rear process
systems of the CNG main station and improve the control performance of the station
model. A comparison experiment was designed to better explain the control performance
improvement of the CNG main station dispatch model after considering the dehydration
progress system. The sampling time ts was set at 0.5 h, the mdmp was set 10 kg/h, and
mcmp was 20 kg/h. The minimum CNG mass in the buffer tank was limited to 15 kg.
During the actual CNG main station scheduling process, the original optimal model only
considered the compression process system, and other process systems ran automatically
according to the original strategy set in the PLC in the system. The low-pressure action
margin in the buffer tank was Mg = 20 × 0.5 = 10 kg. The scheduling schemes are shown in
Figure 9. Only the gas quality and corresponding switching behavior of the buffer tank
within a certain period are listed for illustration. Both schemes required the adsorption
tower A to work in the regeneration state during [t − 2, t + 3], the adsorption tower B to
work in the dehydration state during [t − 2, t + 3], and the compressor to keep running
during [t − 1, t + 2]. In the original model, the PLC automatically opened u10 at sampling
time t to make the dehydration device run to prevent the pressure in the buffer tank from
exceeding the pressure limit at the next sampling time t + 1. However, the continuous
operation of the compressor still caused the buffer tank pressure to exceed the limit at
sampling time t + 2. This could make the dispatching plan lose coordination with the
station’s operating conditions and result in danger. Hence, it is necessary to incorporate
the dehydration process system model into the economic dispatch model of the CNG main
station. In the proposed model, the PLC opened the u10 and filled gas to the buffer tank in
advance in the low-electricity-price period [t − 2, t − 1] through the unified dispatch of
the dehydration process system model and the compression process system. This ensured
that the buffer tank pressure did not exceed the limit at sampling time t + 2 and reduced
operating power costs.

6.5. Continuous Operation Experiment of CNG Main Station Dispatch Model

The terminal restraint limits the end pressure level of gas to be similar to the initial
conditions in the gas storage device. However, small changes in the initial conditions
disturb the optimal strategy and affect its stability. A trend of increasing equipment
switching instances has been observed at certain sampling moments. To verify the stability
of the optimal economic dispatch strategy of the CNG main station, the proposed strategy
was implemented in a week-long continuous experiment considering CPP. The results
are shown in Figure 10. As shown in Figure 10e, the initial conditions of CNG main
stations changed every day. However, the compressor maintained its daily switching
sequence, and the total switching instances were 50% lower than the number of instances
of the original operation strategy scheduling scheme. The dehydration device switching
examples varied greatly to maintain a low compressor switching frequency. During the
continuous experiment, the proposed strategy was universal in dealing with changes in
initial conditions, and it could continuously provide the economic dispatch plan of the
CNG main station considering CPP.
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The daily economic operation evaluation indicators of the continuous experiment are
shown in Table 2. The average daily comprehensive electricity cost index of the CNG main
station was 14.7082, with a 30.88% reduction compared to the original strategy scheduling
scheme. The average electricity cost was 975.82 C with a 21.10% reduction. The average
processing unit CNG electricity cost was 0.77 C with a 21.10% reduction.

Table 2. The daily economic operation evaluation indicators of the continuous experiment.

Date J CN dCN f N

Day 1 14.7165 976.65 0.77 5
Day 2 14.7165 976.65 0.77 5
Day 3 14.7165 976.65 0.77 5
Day 4 14.7020 975.20 0.77 5
Day 5 14.7020 975.20 0.77 5
Day 6 14.7020 975.20 0.77 5
Day 7 14.7020 975.20 0.77 5
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7. Discussion and Conclusions

The existing CNG refueling station process system energy consumption model was
further supplemented with the electricity–gas consumption model of the dehydration
process system. The proposed model is more in line with the actual process system than the
original model, and the operation coordination degree between the process system energy
consumption model was improved. The total energy consumption of the progress systems
in the station that can be controlled by the operating model increased by about 70.47%.

The electricity–gas consumption model of the CNG main station process system
proposed is a high-dimensional 0–1 integer nonlinear programming model. A bilevel
algorithm combined with GA was designed for the model. The 8 N decision variables in
the model were divided into two groups according to the decision status, whereby the
GA only needs to process N binary decision variables. The algorithm using GA only was
trapped in an infeasible area until the maximum iterations. The algorithm using the SCIP
solver returned an invalid value for exceeding the maximum calculation time of the solver.
The algorithm introduced in this paper obtained an effective scheduling scheme in the first
iteration process and converged in the 27th generation.

From the perspective of DR, an economic dispatch model for a CNG main station was
proposed combined with the local power company CPP strategy. The potential instability
problem during the continuous operation of the model was solved by adding terminal
constraints. Compared with the original operation strategy of the CNG main station,
the proposed strategy could reduce the daily comprehensive electricity cost index J from
21.2786 to 14.7165 with a 30.84% reduction. Furthermore, the daily electricity cost CN
decreased from 1236.86 C to 976.65 C with a 21.04% reduction, and the compressor switching
frequency fN decreased from nine times to five times with a 50.00% reduction. Moreover,
the average daily comprehensive electricity cost index of the CNG main station was 14.7082,
with a 30.88% reduction compared to the original strategy scheduling scheme. The average
electricity cost was 975.82 C with a 21.10% reduction, and the average processing unit CNG
electricity cost was 0.77 C with a 21.10% reduction. This model considers the variable load
in the dehydration process system and further deepens the CNG main station participation
in the DR.

Guided by the current electricity price strategy, the CNG main stations have the
potential to effectively participate in the DR. Improving the optimal operation capacity of
the CNG main station is in line with the trend of world electricity reform technological
development. The proposed strategy can also be promoted to help IEUs to participate in
the DR without affecting the normal operating load. In future research, more attention can
be paid on the planning and operation of the comprehensive energy supply station for
new-energy vehicles.
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Nomenclature

J Objective function Qstd.d

Capacity of the dehydration
device under standard
conditions (N·m3/h)

Mwa Molecular weight of the air (g) ts Sampling time (h)

Mwg Molecular weight of the gas (g) tn
Day-ahead optimal
dispatching time (h)

mmax
ap

Maximum mass for buffer
tank (kg)

uj State of switches

mmin
ap

Minimum mass for buffer
tank (kg)

Ma
Terminal restriction margins
of the buffer tank (kg)

mc
Compressor total gas output
(kg)

Mh, Mm, Ml

Terminal restriction margins
of high-pressure,
medium-pressure, and
low-pressure reservoirs (kg)

md
Dehydration device total gas
output (kg)

Va Volume of buffer tanks (L)

mmax
hp , mmax

mp
, mmax

lp

Maximum mass for
high-pressure,
medium-pressure, and
low-pressure reservoirs (kg)

Vh, Vm, Vl

Volume of high-pressure,
medium-pressure, and
low-pressure reservoirs (L)

mmin
hp , mmin

mp

, mmin
lp

Minimum mass for
high-pressure,
medium-pressure, and
low-pressure reservoirs (kg)

Wc
Compressor electrical
energy (kWh)

mohp, momp,
molp

Mass demand from
high-pressure,
medium-pressure, and
low-pressure reservoirs (kg)

Wf
Pre-filter electrical energy
(kWh)

mcmp
Compressor outlet mass flow
rate (kg)

Wd
Dehydration device
electrical energy (kWh)

mdmp
Dehydration device outlet
mass flow rate (kg)

R
Universal gas constant
(L·bar/K·mol)

pc Compressor power rating (kW) T
Regeneration and cold
purging processes time (h)

pd1
Dehydration power
rating (kW)

Tmax
Maximum ambient
temperature (K)

pd2
Regeneration and cold purging
power rating (kW)

Tmin
Minimum ambient
temperature (K)

pb Dispenser power rating (kW) z
Compressibility factor
of CNG

Qstd.c

Capacity of the compressor
under standard conditions
(N·m3/h)

ρstd.a
Density of air under
standard conditions (kg/m3)

Appendix A

The gas state equation of the cascaded storage system model device can be expressed as

mmax
hp =

MVh pmax
hp

zRTmax
, mmin

hp =
MVh pmin

hp

zRTmin
, (A1)

mmax
mp =

MVm pmax
mp

zRTmax
, mmin

mp =
MVm pmin

mp

zRTmin
, (A2)

mmax
lp =

MVl pmax
lp

zRTmax
, mmin

lp =
MVl pmin

lp

zRTmin
. (A3)
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The optimization functions f 1 and f 2 in the upper model can be expressed as

fT
1 = [ψpc pe(1)ts · · ·ψpc pe(N)ts 0 · · · 0 0 · · · 0 0 · · · 0]1×4N , (A4)

fT
2 = [(1− ψ)Aa 0 0 0]N×4N , (A5)

where

Aa =


−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
... . . .

...
0
0

0
0

· · ·
0

−1 1
0 0


N×N

. (A6)

The inequality constraint matrix AU, vectors bmax.U, bmin.U can be expressed as

AU =

A1
A2
A3


3N×3N

bmin.U =

b1
b3
b5


3N×1

bmax.U =

b2
b4
b6


3N×1

, (A7)

where
A1 = [0 Ab 0 0]N×4N , (A8)

A2 = [0 0 Ab 0]N×4N , (A9)

A3 = [0 0 0 Ab]N×4N , (A10)

Ab =


tsmcmp 0 · · · 0
tsmcmp tsmcmp · · · 0

...
...

. . .
...

tsmcmp tsmcmp tsmcmp tsmcmp


N×N

, (A11)

b1 =


−mhp(0) + mhp

min + mohp(1)
−mhp(0) + mhp

min + [mohp(1) + mohp(2)]
...

−mhp(0) + mhp
min + [mohp(1) + mohp(2) + · · ·+ mohp(N − 1)]

−Mh + [mohp(1) + mohp(2) + · · ·+ mohp(N)]


N×1

, (A12)

b2 =


−mhp(0) + mhp

max + mohp(1)
−mhp(0) + mhp

max + [mohp(1) + mohp(2)]
...

−mhp(0) + mhp
max + [mohp(1) + mohp(2) + · · ·+ mohp(N − 1)]

Mh + [mohp(1) + mohp(2) + · · ·+ mohp(N)]


N×1

, (A13)

b3 =


−mmp(0) + mmp

min + momp(1)
−mmp(0) + mmp

min + [momp(1) + momp(2)]
...

−mmp(0) + mmp
min + [momp(1) + momp(2) + · · ·+ momp(N − 1)]

−Mm + [momp(1) + momp(2) + · · ·+ momp(N)]


N×1

, (A14)
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b4 =


−mmp(0) + mmp

max + momp(1)
−mmp(0) + mmp

max + [momp(1) + momp(2)]
...

−mmp(0) + mmp
max + [momp(1) + momp(2) + · · ·+ momp(N − 1)]

Mm + [momp(1) + momp(2) + · · ·+ momp(N)]


N×1

, (A15)

b5 =


−mlp(0) + mlp

min + molp(1)
−mlp(0) + mlp

min + [molp(1) + molp(2)]
...

−mlp(0) + mlp
min + [molp(1) + molp(2) + · · ·+ molp(N − 1)]

−Ml + [molp(1) + molp(2) + · · ·+ molp(N)]


N×1

, (A16)

b6 =


−mlp(0) + mlp

max + molp(1)
−mlp(0) + mlp

max + [molp(1) + molp(2)]
...

−mlp(0) + mlp
max + [molp(1) + molp(2) + · · ·+ molp(N − 1)]

Ml + [molp(1) + molp(2) + · · ·+ molp(N)]


N×1

. (A17)

The equality constraint matrix Aeq.c, with vector beq.c, can be expressed as

Aeq.c = [−I I I I]N×4N beq.c = [0]N×1, (A18)

where I represents the identity matrix.
The optimization function f 3 in the lower model can be expressed as

fT
3 = [pd2 pe(1)ts · · · pt pe(N)ts pd2 pe(1)ts · · · pt pe(N)ts
pd1 pe(1)ts · · · pt pe(N)ts pd1 pe(1)ts · · · pt pe(N)ts]1×4N

(A19)

The inequality constraint matrix AL, with vectors bmax.L and bmin.L, can be expressed
as

AL =


A4
A5
A6
A7


4N×4N

bmin.L =


b7
b9
b9
b9


4N×1

bmax.L =


b8
b10
b10
b10


4N×1

, (A20)

where
A4 = [0 0 Ac Ac]N×4N , (A21)

A5 = [I I 0 0]N×4N , (A22)

A6 = [0 I 0 I]N×4N , (A23)

A7 = [I 0 I 0]N×4N , (A24)

Ac =


tsmamp 0 · · · 0
tsmamp tsmamp · · · 0

...
...

. . .
...

tsmamp tsmamp tsmamp tsmamp


N×N

, (A25)
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b7 =


−map(0) + map

min

...
−map(0) + map

min

−Ma


N×1

, (A26)

b8 =


−map(0) + map

max

...
−map(0) + map

max

Ma


N×1

, (A27)

b9 = [−Inf]N×1, (A28)

b10 = [1]N×1. (A29)

The equality constraint matrices Aeq.d, Aeq.m, and Aeq.n and the vectors beq.d, beq.m,
and beq.n can be expressed as

Aeq.d =

[
1 · · · 1 0 · · · 0 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0 0 · · · 0

]
2×4N

, (A30)

beq.d =

[
td
24 × N
td
24 × N

]
2×1

, (A31)

Aeq.m =
[
Av 0 0 0

]
N×4N , (A32)

Aeq.n =
[
0 Av 0 0

]
N×4N , (A33)

beq.m = beq.n = [2]1×1, (A34)

where

Av =


−1 0 0 · · · 0
1 −1 0 · · · 0
0 1 −1 · · · 0
...
0

...
0

...
· · ·

. . .
...

1 −1


N×N

. (A35)
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