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Abstract: A non-intrusive load monitoring (NILM) process is intended to allow for the separation
of individual appliances from an aggregated energy reading in order to estimate the operation of
individual loads. In the past, electricity meters specified only active power readings, for billing
purposes, thus limiting NILM capabilities. Recent progress in smart metering technology has
introduced cost-effective, household-consumer-grade metering products, which can produce multiple
features with high accuracy. In this paper, a new method is proposed for applying a BIRCH (balanced
iterative reducing and clustering using hierarchies) algorithm as part of a multi-dimensional load
disaggregation solution based on the extraction of multiple features from a smart meter. The method
uses low-frequency meter reading and constructs a multi-dimensional feature space with adaption to
smart meter parameters and is useful for type I as well as type II loads with the addition of timers.
This new method is described as energy disaggregation in NILM by means of multi-dimensional
BIRCH clustering (DNB). It is simple, fast, uses raw meter sampling, and does not require preliminary
training or powerful hardware. The algorithm is tested using a private dataset and a public dataset.

Keywords: balanced iterative reducing and clustering using hierarchies (BIRCH); clustering
algorithms; load-disaggregation; non-intrusive load monitoring (NILM); smart grid; smart metering

1. Introduction

Smart grid technologies have gained increasing attention in the last ten years [1,2], as
electricity demands are rising and they encourage energy supply to be efficient. Earlier
research had already indicated that power usage efficiency could grow significantly by
providing consumers with frequent feedback about their energy consumption [3]. Other
works indicated that smart metering would play a big role in enabling adequate feedback
to customers [4,5]. Recent improvements in smart metering technology enable deployment
of advanced metering products on a large population scale, hence contributing to the
realization of the smart grid vision [6,7] while also encouraging governments to invest a
great amount of resources in distributing smart meters over a wide range of households and
facilities [8,9]. These widely distributed meters offer new opportunities for implementation
of power analysis and feedback techniques.

Non-intrusive load monitoring (NILM) was initially introduced by G. W. Hart [10–12] as
a technique intended for identification of load signatures in a single facility or a household
via a single measuring point at the entrance of the facility. This technique disaggregates the
total power measure into separate components and determines the energy consumption of
individual appliances. As modern smart metering technology developed, several approaches
were proposed to implement the NILM idea: the factorial hidden Markov model [13,14], particle
filter [15], event window [16], deep learning [17], graph signal processing [18], combinatorial op-
timization [19], modified cross-entropy [20], principle component analysis [21], multi-objective
optimization [22], quadratic programming [23], evolutionary algorithms [24], and more. Some of
the suggested solutions utilize clustering algorithms suitable for big data analysis [25], especially
solutions which can easily be adapted for smart meter reading [26], such as K-means [27], fuzzy
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clustering [28], subtractive clustering [29], and more. Some methods utilize an important feature
of the V–I trajectory of voltage and current waveforms [30].

Considering functional requirements, an ideal NILM solver should be fast, robust,
suitable for big data, and able to handle multiple dimensions (at least three dimensions
should be applied). To simplify the discussion, these main criteria were, therefore, chosen
for an ideal NILM solver: the linear complexity of O(n), large dataset handling, and the
ability to work with low sample rates and process numerical datasets.

Most classic algorithms, such as [19,31], use only real power and cannot support additional
features. Multi-feature methods, such as [19,20], show good accuracy and reliability but suffer
from high complexity, long computational latency, or an obligated preliminary learning process.
Methods that rely on FCM, K-means, or fuzzy clustering [27,28] can achieve linear complexity
but only for a fixed number of clusters and limited number of iterations, which means that the
number of consumers in the network must be known. Techniques that rely on HMM [14] cannot
achieve linear complexity in real time. Newer techniques that rely on deep learning [17,32]
or artificial neural networks (ANN) [33] and recurrent neural networks (RNN) [34] suffer
from high complexity, high latency, and require significant computing resources for handling
big data sets or are limited to work under restricted assumptions, such as CNN with the
hypothesis of short time stationarity as a premise of the model [35]. Algorithms that use density-
based clustering [36] cannot be implemented in a linear fashion. Algorithms that use graph
processing [37,38] cannot achieve linear complexity and usually cannot handle numerical data
very well. Another interesting approach utilizes switching transient current measurements [39]
but, therefore, requires a high sampling rate for the transient to be measured. A hierarchical
clustering-based algorithm was also introduced before [40], but it can only operate at a very
high frequency and its ability to handle multiple dimensions is restricted to the harmonics of
real and reactive power components.

Based on the selected criteria, and the analysis above, BIRCH would be an appropriate
choice for a clustering algorithm, as it is intended for big-data processing [41] and is suitable
for multi-dimensional space. It is a dynamic clustering algorithm that incrementally scans
the data to form a tree-based structure with no requirements for preliminary knowledge of
the data itself, while operating in O(n) complexity and not limited in terms of dimension-
ality, number of clusters, and numbers of iterations. BIRCH has already been mentioned
as a possible clustering algorithm for smart metering applications [42–45] or for energy
diagnosis [46]. Former studies, such as [29], imply that BIRCH would be a good clustering
choice for load identification, especially when required to handle many samples. However,
the method suggested by [43] uses BIRCH as a general technique for learning statistical data
from large-scale load profile shapes (not for NILM applications). Although it seems very
suitable for unsupervised NILM applications, no previous research has revealed a tested
implementation of BIRCH as part of a NILM system in a single facility or a household,
using multiple extracted features from a modern smart meter.

This paper introduces a new method for load disaggregation in NILM using multi-
dimensional BIRCH clustering (DNB), which is intended for big-data scenarios. This novel
idea uses a multi-dimensional raw meter data and implements an algorithm that is specially
designed to achieve the requirements of linearity, large-scale data, and numerical nature,
in addition to producing good results as a NILM solver. Another important quality is
the flexibility of increasing dimensions with raw data from smart meters, enabling more
features to be processed (without limiting the feature space to the PQ plane). As is well
known, many clustering algorithms, such as k-means [27], spectral clustering [46], ward
hierarchical clustering [35], etc., require a known number of clusters. In the case of NILM,
the number of clusters is dynamic and therefore these clustering methods cannot be directly
implemented and require a long process of optimizing the number of clusters. The core
of BIRCH algorithm uses dynamic clustering capabilities to organize multi-featured mea-
surements into clusters within a single scan of the data and therefore a non-pre-determined
number of clustering is required. The proposed algorithm is simple, lightweight, can use
raw data samples from a smart meter, can use low-frequency sample reading, and does not
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require a preliminary training process. The method is applied to type I appliances (on/off
devices) and extended by an auxiliary timer to also disaggregate type II appliances (finite
state machines). Moreover, the sampled data may contain single or multiple appliances
and may also include noisy information. The proposed method was tested using a private
dataset, demonstrating a good use of multi-dimensional space. Further tests involved
a limited-dimensional scenario, using the AMPds public dataset [47] to compare perfor-
mance with other NILM algorithms. The results show that DNB performs effectively in
comparison with other methods and improves as more dimensions are applied.

The paper is organized as follows: Section 2 formulates the methodology of the NILM
process and BIRCH clustering. Section 3 outlines the suggested solution. Section 4 presents
simulations and results on a private dataset. Section 5 presents simulation results with
comparison to other NILM algorithms. Section 6 concludes the paper.

2. Methodology
2.1. NILM Formulation

Consider a house or facility with m appliances (i = 1, 2, . . . , m), each with d features
ψi,1, ψi,2, . . . , ψi,d,> 0. The aggregated features Ψ, measured during sample time n at the
entry point of the facility, can be formulated as

Ψ[n] =


Ψ1[n]
Ψ2[n]

...
Ψd[n]

 = ∑m
i=1 xi[n]


ψi,1
ψi,2
...

ψi,d

+


ε1[n]
ε2[n]

...
εd[n]

 (1)

where xi[n] denotes the on/off [0,1] status of appliance i and ε1[n], . . . , εd[n] represent
background noise, such as unmetered appliances or readings that are missing from the
disaggregation. It is also assumed that at least one feature is different when comparing
two different appliances: ∃v

∣∣ ψi,v 6= ψb,v , for i 6= b. The purpose of the NILM algorithm
is to disaggregate the measured signal Ψ[n] into its various appliances ψi. The resulting
optimization problem is formulated as

X̂[n] =
argmin

x1[n], . . . , xm[n]

∣∣∣∣∣∣∣∣∣


Ψ1[n]
Ψ2[n]

...
Ψd[n]

−∑m
i=1 xi[n]


ψi,1
ψi,2
...

ψi,d


∣∣∣∣∣∣∣∣∣ (2)

where X[n] = [x1[n], . . . , xm[n]] is the solution space. For example, if the features are active
power, reactive power, and current phasor angle (d = 3), then (2) may be written as

X̂[n] =
argmin

x1[n], . . . , xm[n]

∣∣∣∣∣∣
 P[n]

Q[n]
ANG[n]

−∑m
i=1 xi[n]

 pi
qi

angi

∣∣∣∣∣∣ (3)

where P[n] and Q[n] are the aggregated active and reactive power, ANG[n] is the current
phasor angle reading at the entry point, and pi, angi, and angi are the active power, reactive
power, and current phasor angle of appliance i, respectively. In addition, the matrix
representing the states of the facility over time is defined as

X =

 x1[1] · · · x1[N]
...

. . .
...

xm[1] · · · xm[N]

 (4)

Using the matrix representation of (4), and neglecting the noise, (1) can now be
visualized as shown in Figure 1.
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Figure 1. Graphic representation of NILM process.

In a general scenario, multiple appliance states should be considered. Equation (1) can
be generalized as a multi-state problem by replacing the single feature ψi,v with multiple
states as options denoted as ψi, j,v. Accordingly, the total meter reading at the entry point
may be expressed as

Ψ[n] =


Ψ1[n]
Ψ2[n]

...
Ψd[n]

 = ∑m
i=1 ∑s

j=1 xi,j[n]


ψi,j,1
ψi,j,2

...
ψi,j,d

+


ε1[n]
ε2[n]

...
εd[n]

 (5)

where xi,j[n] denotes the status of appliance i. If the appliance operates in mode j, then
xi,j[n] = 1 and xi,z 6=j[n] = 0. Applying this formulation to (2) produces a multi-state
optimization problem:

X̂[n] =
argmin

X[n]

∣∣∣∣∣∣∣∣∣


Ψ1[n]
Ψ2[n]

...
Ψd[n]

−∑m
i=1 ∑s

j=1 xi,j[n]


ψi,j,1
ψi,j,2

...
ψi,j,d


∣∣∣∣∣∣∣∣∣ (6)

where the solution space X[n] = [x1[n], . . . , xm[n]] is a matrix consisting of vectors
xi ∈ [0, 1]s, n denotes the appliance index, n is the sample time, and s is the number
of optional modes (states) per appliance.

2.2. Appliance Models

Four appliance models are usually considered [48]:

• Type I—On/off devices: most appliances in households, such as light bulbs and toasters;
• Type II—Finite-state machines (FSM): the appliances in this category present states,

typically in a periodical fashion; examples include washers and dryers. Figure 2
displays an example for a type II appliance’s active power over time.

• Type III—Continuously varying devices: the power of these appliances varies over
time but not in a periodic fashion; examples are dimmers and power tools.

• Type IV—Permanent consumer devices: these are devices with constant power that
operate for 24 h, such as alarm systems and external power supplies.

Figure 2 visualizes an example for a type II operation cycle, acquired from a device in
the AMPds dataset [47]. This operation can be modeled, in some cases, as a series of on
and off events of multiple states over time. This can roughly be considered to be multiple
operation events of a type I appliance, as the shift from on state to off state is represented
by a drop in most of the active power.
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and turn-off events. This device’s symbol is WOE in the AMPds dataset.

2.3. Reasoning for Adopting BIRCH Algorithm for NILM

As is well known, there are many clustering techniques in the literature [28–30].
Choosing the right algorithm for NILM requires some considerations and the definition of
some criteria. Three main criteria should be addressed: (1) linear complexity as a theoretical
limit of O(n), (2) enabling analysis of large datasets, and (3) the ability of the method to
deal with numerical datasets (and not only categorical or special datasets). Moreover,
the algorithm should be easy to implement and not confined to a pre-defined number of
clusters. The characteristics of many known clustering methods and their properties are
summarized in Table 1.

Table 1. Summary of Clustering Techniques.

Categories Method Dataset Size Type of Dataset O(n)
Complexity?

Partitional

K-Means Large Numerical Yes

K-Modes Large Categorical Yes

K-Medoids Small Categorical No

PAM Small Numerical No

CLARA Large Numerical No

CLARANS Large Numerical No

FCM Large Numerical Yes

Hierarchical

BIRCH Large Numerical Yes

CURE Large Numerical No

ROCK Large Numerical/Categorical No

Chameleon Large All types No

Echidna Large Multivariate No

Density-Based

DBSCAN Large Numerical No

OPTICS Large Numerical No

DBCLASD Large Numerical No

DENCLUE Large Numerical No
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Table 1. Cont.

Categories Method Dataset Size Type of Dataset O(n)
Complexity?

Grid-Based

Wave Large Spatial Yes

STING Large Spatial No

CLIQUE Large Numerical No

OptiGrid Large Spatial No

Model-Based

EM Large Spatial No

COBWEB Small Numerical No

CLASSIT Small Numerical No

SOM Small Multivariate No

The comparison in Table 1 shows that only three clustering techniques are in accor-
dance with the suggested criteria. However, K-means require a predetermined number of
clustering and is O(n) for only fixed number of clusters; this is also applicable to FCM. There-
fore, BIRCH is shown to have a lot of promise and therefore was chosen to be implemented
and tested in this paper.

2.4. BIRCH Clustering Overview

BIRCH was developed in 1996 by a group of researchers at the University of Wisconsin–
Madison [37]. It is an unsupervised hierarchal clustering method, which has been devel-
oped specifically for data mining and large datasets, especially when the entire data cannot
be loaded into memory. It is a dynamic clustering algorithm that incrementally scans data
to form a tree-based clustering structure with no requirement for preliminary knowledge
of the dataset.

(1) Data Structure

Clustering feature (CF) is a term for quantifying a data-structure that contains a group
of data points. It is formally defined as a set of three entities:

CF =

(
N,
→
LS, SS

)
(7)

where N is the number of data points in the structure,
→
LS is the linear combination of the

datapoints, and SS is the square summation of the data points.
→
LS and SS are formally

defined as →
LS = ∑N

i=1

→
Xi (8)

and

SS = ∑N
i=1

(→
Xi

)2
(9)

In multi-dimensional cases, (9) should be replaced with a suitable norm.
The above definitions of CF entities allow calculation of quantifying measures essential

for describing clustered groups, such as a centroid
→
C and a radius R:

→
C =

∑N
i=1

→
Xi

N
=

→
LS
N

(10)

R =

√√√√√SS
N
−

 →
LS
N

2

(11)
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A CF-Tree is a height-balanced tree data structure which is built while serially scanning
the data. It can be described as a tree-like representation of the data points. The structure is
based on two parameters: branching factor (B), which represents the number of children
for each non-leaf node, and threshold (T), which represents the radius of maximal distance
for data points in a single cluster. The threshold parameter actually determines the tree size.
A CF-Tree has two types of nodes: the first type is a non-leaf node, which contains at most
B entries of the form [CFi, childi], where childi is a pointer to the ith child node and CFi is
the clustering feature, representing the associated sub-cluster. The second type of node is a
leaf node, which contains at most L entries—each of the form [CFi]. It also has two pointers:
prev and next, which are used to chain all the leaf nodes together. Figure 3 visualizes the
CF-Tree structure. The CF-Tree data structure is therefore a very compact representation of
the dataset because each entry in a leaf node is not a single data point but a sub-cluster.
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cluster or a sub-cluster of datapoints.

(2) BIRCH Algorithm

BIRCH is described as a four-step algorithm. The first step is an insertion algorithm,
intended for creation and update of the CF-Tree, based on a serial scan of the data. This is
the first and most critical step of the BIRCH algorithm. Each newly encountered data point
causes the CF-Tree to be traversed, starting from the root and choosing the closest node
at each level (calculated from the CF record of the node). If the closest leaf cluster for the
new data point is finally identified, a test is performed to check two criteria: first, the leaf
must still satisfy the threshold (T), as required from the radius definition in (11); second,
the size characterization of the leaf (L) must not be exceeded. Two options are therefore
possible: if the sample can be inserted within the threshold and size requirements then CF
records would be updated accordingly. However, if the sample cannot be inserted due to
the size requirement, the leaf would then be split, and its samples are therefore reassigned
(this may result in further splitting at the parent level based on the number of entries in the
non-leaf nodes). In each of the two described outcomes, the new entry will cause the tree
to update all the CF records for the changed leaf nodes and non-leaf nodes traversed to
the root.

The second step (optional) is condensing the CF-Tree into a smaller form by increasing
T. The third step is to apply clustering on the leaf nodes, which can be scanned without
traversing the tree, based on their next and prev pointers. The fourth step (optional) will
be further refining by reassigning data points to the closest centroids from the third step,
based on the centroid definition in (10).

An important advantage of the BIRCH algorithm is that it only requires a single scan of
the database. Compared to the popular K-means algorithm, BIRCH performs exceptionally
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well in terms of less memory consumption, faster performance, less order-sensitivity, and
high accuracy [49]. A main disadvantage of BIRCH (and of most hierarchal clustering
methods) is less robustness towards outliers, which will either show up as additional
clusters or even cause other clusters to merge.

3. BIRCH for Power Applications
3.1. Solution Overview

(1) Requirements

Figure 4 simplifies the requirements of the algorithm. The process acquires its data as
features-over-time, extracted from raw low-frequency meter samples. Each feature received
by Ψi[n] is as denoted in (1) for each sample n. The algorithm output should be a sorted
list of devices vectors, such that each vector is a record containing pairs of “event time”
and “toggle status” (turn-on or turn-off) for all toggle events in the data. The process also
requires the output data to be suitable for (optional) post-processing so that better results
can be obtained. Extraction of evaluation metrics, such as F-measure [50] and TPCA (total
power currently assigned) [51], can be performed on the output in order to have some kind
of assessment about the performance of the algorithm.
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mance evaluation.

The algorithm output Dev[j], as denoted in Figure 4, is a simplified way of describing
the solution X[n] for an on–off solution space, as denoted in (2), and is also referred to
as a type I load. The optimal solution would be denoted as X̂[n]. In (2), the entity xi[n]
represents an indication for whether the ith device is in the on or off state at the time
event of sample n. For simplicity, the off state can be regarded as the state where most
of the appliance’s on-power is not indicated. A type II appliance could therefore shift
back and forth from on state to off state during its activation cycle, as was shown above in
Figure 2. The type of appliance is considered as well, by adding an auxiliary timer, as will
be shown below.

(2) Input data

The input is a series represented by sampled features of d dimensions. Namely, each
sample is considered a d size vector, as formulated in (1). An off-event is defined as a drop in
the majority of the consumer’s active power; therefore, it requires at least one of the features
to be an active power measurement or a feature that follows its behavior. It is, therefore,
assumed that one of the Ψi[n] features is an active power reading or linearly proportional
to it; hence, ∃i, Ψi[n] ∝ P[n]. For convenience, it will be assumed that Ψ1[n] = P[n] so that
Ψ1[n] = P[n]. Thus, according to (1), the input vector can be written as

Ψ[n] =


Ψ1[n]
Ψ2[n]

...
Ψd[n]

 =


P[n]

Ψ2[n]
...

Ψd[n]

 (12)

and the active power is, therefore, known for each sample n.

3.2. DNB Process Phases

The process is iterative and comprises four essential steps as depicted in Figure 5. Each
iteration handles a single toggle event. There are three predefined configuration parameters:

• Dimensions selection instructs which features to choose from the raw data (depending
on the meter’s model capabilities);



Energies 2023, 16, 3027 9 of 21

• Weight parameters instructs how to determine (or to define) an event occurrence
during the time samples’ scan;

• Clustering parameters, such as the threshold T, which have been elaborated in an
earlier section.
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These three selections, presented as yellow blocks in Figure 5, could be further opti-
mized (optional) for the data input scenario, in terms of meter sample rate, meter available
features, dataset scale, appliance characteristics, etc.

There is also room for optional input from the user, which can add information for the
classification and to the record, such as user-defined labeling.

Raw input data Ψ[n], from the meter, can also be described as a stream of samples
so that some of them represent events and will be denoted by ti (for the ith event). These
events are separated by non-event time samples, denoted by τ0:

input = (t1, τ0, . . . , τ0, t2, τ0, . . . , τ0, ti, τ0, . . .) (13)

The number of τ0 separating each of the ti occurrences can be equal or greater than
zero. Thus, the goal of the four-stage process is to identify, classify, and record these time
samples n, which represent an event ti; hence ni = ti, where ni is the exact time sample of
the occurrence of event ti. Therefore, each single iteration i handles a single time event ti.

An optional later step relates to the post-processing, mentioned earlier in Figure 4. It
requires additional information, such as power consumption estimation, or some specific
tuning of the algorithm parameters.

Next, the four steps of the algorithm are described.

(1) First Step: Data Acquisition and Event Detection

Given raw data as a series of d-dimensional features Ψ[n], as denoted in (1), it is
assumed that a change in the features’ value is present at the event time, so changes in Ψ[n]
are inspected as:

∆Ψ[n] =


Ψ1[n]
Ψ2[n]

...
Ψd[n]

−


Ψ1[n− 1]
Ψ2[n− 1]

...
Ψd[n− 1]

 =


∆Ψ1[n]
∆Ψ2[n]

...
∆Ψd[n]

 (14)

For the event detection, a detection function that performs a weighted calculation of
the changes in features is considered:

f (n) ≡ f (∆Ψ1[n], ∆Ψ2[n], . . . , ∆Ψd[n]) (15)

The output of the weighted calculation f (n) is Boolean in order to differ the detected
case from the not-detected case:

f (n) =
{

true
f lase

event detected
event not detected

(16)
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The required outcome of step 1 is to produce an event time ti, which represents the ith
event in the dataset series, hence:

i f ( f (n) = true) : ti = n (17)

(2) Second Step: Feature Extraction

The purpose of this step is to create a feature-description of the detected event, using
a time-vector, denoted as Streami, which contains data to represent the specific event that
was detected in the last step. For the ti retrieved in step 1, a time interval is defined as:

∆Ti = min


ti − ti−1
ti+1 − ti
∆tde f ault

(18)

where ∆tde f ault is a constant value intended to limit ∆Ti according to the test scenario and
meter sampling rate.

The vector Streami is constructed from ∆Ti components and defined as

Streami = [Streami[0], Streami[1], . . . , Streami[∆Ti]]

where each component Streami[k] is defined for an integer value of k = 0, 1, 2, . . . , ∆Ti,
such that:

Streami[k] =


Ψ1[ti + k]−Ψ1[ti − ∆Ti + k]
Ψ2[ti + k]−Ψ2[ti − ∆Ti + k]

...
Ψd[ti + k]−Ψd[ti − ∆Ti + k]

(19)

Streami can be described as a series of samples, acquired from a time interval of 2·∆Ti,
as depicted in Figure 6. This list can be regarded as a local feature-description of the
event ti.
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The method in Figure 6 represents the extraction of Streami for a single dimension (as
an example). However, in the common scenario, multiple dimensions are involved. Thus,
the outcome of step 2 is a stream of extracted features that represents the event ti in the
features’ dimensional space.

(3) Third Step: Load Classification

Streami, that was extracted in the last step, can now be appended to other streams
from the last iterations to form a combined stream of data for clustering:

Stream = [Stream0, Stream1, . . . , Streami] (20)
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BIRCH clustering is applied to [Stream] to produce an updated CF-Tree. With an
updated CF-Tree, the current event, detected in step 1, can now be interpreted in terms of a
cluster ascription by traversing the CF-Tree from the root to the most suitable leaf. Such a
suitable leaf must be available since the clustering must have formed an appropriate cluster
(if it did not already exist). There are now two options:

• If a new device is detected, a new device affiliation is created (as a new cluster) and
the event at ti is identified as part of the new affiliation.

• If an existing device is detected (namely, there is already an appropriate cluster) the
event at ti is identified as part of an existing cluster.

User information can also be considered (optional), as depicted in Figure 5. For
example, the user can decide that a certain event is not required to be clustered in order
to discard it from the records (in order to improve performance, ignore outliers, and
reduce error).

The outcome of the third step is affiliation of the event at ti to a cluster, hence to an
appliance state, denoted in (5) as ψi,j,x.

(4) Fourth Step: Event Data Record

The appliance state information, retrieved in step 3, must be documented and ap-
pended to the device record in order to form a complete record of the events’ operation.
For each device, a list of the events’ times and toggles is created: the device record to-be-
updated is known from step 3 as the identified cluster. The event time is known from
step 1 as the n which caused the outcome f (n) = true and initiated feature extraction
in step 2 for the event time ti = n. The event toggle will be set as either a turn-on or a
turn-off, based on the following criteria: if ∆P[n] > 0 then the toggle event is “turn-on”,
denoted as togglei = 1, and when ∆P[n] < 0 then the toggle event is “turn-off ”, denoted as
togglei = −1.

The process output, therefore, comprises lists of devices: Dev [1], Dev [2], . . . , Dev[m],
each containing a detailed record of pairs: [togglei, ti]. This form is a simplified denotation
for the NILM problem solution explained earlier.

3.3. DNB Post-Processing (Optional)

The output analysis is a separate optional step, which has a significant role in analyzing
and presenting the algorithm output. In this stage, all supplementary information are
added, such as estimated power-per-appliance values.

(1) Considering Appliance Type

The appliance type should also be considered as part of the post-processing. As
described earlier, DNB’s identification abilities are based on detection and clustering of
events. In terms of load type, the algorithm focuses on type I appliances. Namely, the
detection of type II appliances can be considered as a series of turn-on and turn-off events
(based on power changes). If detection of type IV is required, it must rely on preliminary
knowledge of the start state, since the algorithm only finds feature changes and type IV
appliances usually do not have a distinct turn-on event throughout the dataset.

(2) Auxiliary Timer

Event detection, based on the weighted parameters function in (15), is the Achilles’
heel of recordkeeping in step 4, since the detection of a turn-on event followed by a miss
of a turn-off event would cause the appliance to be “stuck” as on, producing a significant
difference between estimated and real energy consumption. This problem is adequately
resolved by an auxiliary timer, operating in a watchdog timer (WDT) fashion. It is assumed
that any normally off device operation cycle (especially type I and II) includes a series of at
least one pair of turn-on and turn-off events; therefore, given a determined amount of time,
at least one toggle event is expected. If such an event was not detected, the WDT would
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expire and trigger a device “reset” by adding a device turn-off event at the expiration time.
Figure 7 describes the implementation of the auxiliary timer.
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Figure 7. Auxiliary timer implemented as a watchdog timer. The timer loop is initiated by a turn-on
event and terminated by a turn-off event.

WDT expiration time value may be either global for all appliances or individual
per appliance.

3.4. Multi-Dimension and Feature Selection

As mentioned earlier, DNB is very suitable for multi-dimensional clustering. Adding
dimensions has clear benefits in terms of identification: first, there are more features to be
weighted for (15); second, there are more components of ∆Ψ to be clustered in the data
stream, as deduced from (19).

However, adding more and more dimensions might be redundant and might also
cause problems such as the curse of dimensionality [52] and overfitting [53]. Therefore,
selection of the required features must be toward the minimal number of features that hold
maximal useful information. As a rule of thumb, features that show a distinctive difference
from one appliance to the other are preferred.

As an example, Table 2 specifies the features of appliances that were measured in
the lab. Disaggregation of the separated appliances will not be possible with the classic
two-dimensional selection of active and reactive power (P–Q plane), since Light 1 and Light
2 are very similar in active and reactive features. The data in Table 2 were collected in the
lab using SATEC PM135EH smart meter.

Table 2. Example: Features Estimation for Lights Appliances.

Appliance Avg. P [kW] Avg. Q [kVAR] Avg. ANG [Deg]

Light 1 0.55 0.43 −15.54
Light 2 0.89 0.61 −34.05

An estimation of Euclidian distance between the two-dimensional data points would be:√
(PL1 − PL2)

2 + (QL1 −QL2)
2 = 0.38

Adjusting the scale, by multiplication of P and Q with scalars, would cause other
identification problems due to the noisy envelope of Light 1 (noticeable in Figure 8). This
matter is solved by adding the third feature of the current phasor angle, which can be
extracted from the raw meter reading by simple phasor math and is stable enough to allow
adjustment of the scale without noticeable noise. An estimation of Euclidian distance
between the three-dimensional data points would be:√

(PL1 − PL2)
2 + (QL1 −QL2)

2 + (ANGL1 −ANGL2)
2 = 1.7421
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Figure 8. Feature graph of Light 1 and Light 2, which are difficult to disaggregate with two features
but easily disaggregated with three. P is active power, Q is reactive power, and ABS(ANG) is absolute
phasor current angle.

The matter is further illustrated in Figure 8, as the current phasor angle was divided by
10 in order to adjust to the graph scale. In this specific case, one feature ANG would probably
be enough for disaggregation. However resistive appliances (kettle, toaster, etc.) are
usually characterized by mainly active power and a very small angle for the fundamental
component [42]. Therefore, in some cases, choosing a current phasor angle alone would
not be sufficient. Moreover, as explained above, the algorithm requires at least one feature
that is proportionally following the active power P to be selected. Although information of
the toggle type is easily extracted from active power differences, it cannot confidently be
extracted from the current phasor angle.

4. Private Dataset Simulations

An experiment on a private dataset is included in this study in addition to a public
dataset. The use of private datasets is not common in NILM research as it prevents
reproduction of the results. However, the necessity of a private dataset in this study is
to demonstrate a raw multiple-features input using a modern smart meter, in addition to
being a good example of the use of feature selection.

(1) Settings and test scenarios

This experiment was conducted in a lab, covering 1800 m samples from various
appliances, which were measured separately, as well as combined with each other in
multiple combinations, before being joined together into a single data series. No prior
training process was executed. The private dataset was collected in a typical operation
manner using the SATEC PM135EH smart meter. The data were acquired at a low sample-
rate of 1 Hz. The selected smart meter measures active power, reactive power, apparent
power, current, power factor, THD, current phasors, and harmonics. All these features are
suitable, of course, for DNB application.

In this experiment, six appliances were used. The environment was not fully de-noised,
as some low-power appliances were still connected during measurements, indicated as
noticeable measurement-noise. The power features used were active power (P), reactive
power (Q), phasor current amplitude (I), phasor current angle (ANG), and total harmonic
distortion (THD), as presented in Table 3.

Preparations for this test included dimensions selection as active power (P), reactive
power (Q), and current phasor angle (ANG). DNB parameters were then optimized to
produce maximum identification of measured appliances.
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Table 3. Features Estimation for Devices (Private Dataset).

Appliance Avg. P [kW] Avg. Q
[kVAR]

Avg. THD
[%]

Avg. I
[A]

Avg. ANG
[Deg]

Microwave 1.061 0.130 34.632 4.806 −2.303
AC 2.947 1.563 17.882 4.884 −25.466
Kettle 1.869 0.002 2.28 8.151 −1.383
Light 1 0.366 0.253 26.449 1.312 −15.544
Light 2 0.706 0.433 20.632 3.924 −34.046
Computer 0.155 0.017 25.438 0.785 −7.851

(2) Results Analysis

The feature space of the selected dimensions is presented in Figure 9 as a three-axis
graph, each axis represents one ∆Ψi[n] component as formulated in (14). The datapoints in
the graph represent the acquired samples stream, denoted as the list [Stream] (20). Two of
the features are calculated from active and reactive power. The third feature quantifies the
absolute value of the appliance phasor angle, adjusted to the graph scale as

ACC_IANG = |θ·0.12| (21)

where θ is the phasor angle, given in degrees; the value 0.12 was chosen and optimized
by trial and error. The difference in phasor angle is computed for the event moment by
simple phasor math using the phasor current amplitude and phasor current angle, which
was acquired by the meter.
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Figure 9. Three-dimensional results: AC (green), Light 1 (purple), Light 2 (yellow), Kettle (blue),
Microwave (red), Computer (gray). Delta P is active power difference, Delta Q is reactive power
difference, Delta ACC_ANG is the scaled phasor angle difference.

Figure 10 is a simple orthogonal projection of the datapoints in Figure 9 onto a P–Q
plane. This two-dimensional display keeps the colors of the original clusters as presented
in Figure 9.

It is clear from the arrangement of the datapoints in Figure 10 that, without the third
dimension, Light 1 and Light 2 would be mixed into the same cluster, since the two features
merge in the P–Q plane. The microwave and Light 2 would have their centroids adjacent,
which would, allegedly, be solved by different clustering parameters but in practice could
cause additional problems, such as dividing other clusters due to the threshold radius
being too small. This problem also applies to the Light 2 appliance with the computer
appliance. The AC appliance is clearly separated by both P and Q features.
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5. Public Dataset Simulations
5.1. Evaluation Metrices

In NILM algorithms, there are several options for evaluations metrics intended for
determining a classification score. Most of these metrics compare NILM algorithms as
binary classification tasks, with four possible outcomes: true positive (TP)—the number of
times an appliance is correctly detected as on; true negative (TN)—the number of times an
appliance is correctly detected as off; false positive (FP)—the number of times an appliance
is wrongly detected as on; and false negative (FN)—the number of times an appliance is
wrongly detected as off. Accuracy is a commonly used evaluation metric and is defined as

Accuracy =
TP + TN

TP + TN + TP + FN
(22)

The accuracy metric is inefficient in the case of NILM problems due to the accuracy
paradox [54]. Therefore, a popular metric from the information retrieval domain, named
F-measure (also known as F1-score) [50], is utilized, which expresses the harmonic mean of
precision and recall, given by

F−measure =
2·Precision·Recall
Precision + Recall

(23)

where
Precision =

TP
TP + FP

, Recall =
TP

TP + FN
(24)

Precision is defined as the correct classification of all positive estimations. Recall is
defined as the percentage of on-state appliances that are correctly recognized.

In addition, another important metric is the total power correctly assigned (TPCA) [38],
which is defined as how much of the power consumed by an appliance can be assigned
correctly during N samples. TPCA is calculated as

TPCA = 1− ∑N
n=1 ∑m

i=1|pi[n]− p̂i[n]|
2·∑N

n=1 P[n]
(25)

where pi[n] is the actual power consumption of the ith appliance at sample time n, p̂i[n]
is the estimated power consumption of the ith appliance at sample time n, and P[n] is the
aggregated power measured during sample time n. Thus, the TPCA metric quantifies the
percentage for correct power draw estimation.
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5.2. Settings and Test Scenarios

(1) Public Dataset

There are several popular public datasets available for NILM studies. Some popular
datasets, such as REDD [51,55], only use active power measurement and, therefore, are not
suitable for DNB application. Another popular dataset is [56], that contains only several
days of household current and voltage readings and does not hold enough data for a proper
low sampling-rate experiment.

AMPds is an open dataset proposed by SFU [47] The data samples were collected
at a house in Canada over 1 year. AMPds contains low sample-rate recordings of 60 s
per measurement, for 21 sub-meters, and includes active, reactive, and apparent power,
in addition to current and voltage readings. AMPds is an exception in terms of datasets
as different features are also provided for appliance measurements. In this simulation,
six sub-meters were classified—each contained a single appliance. The clustered meter
features were active power and reactive power. The scenario contained 600 h of noisy
measurements (25 days). No preliminary training process was applied. The start time of
the scenario was 5 April 2012, 15:38:00. That specific time instance and duration was chosen
to comply with the exact scenario of compared studies [20–22].

As explained in [34], AMPds meter samples are based on two sensor readings (voltage
and current), which enable calculation of all other features. Thus, only two dimensions are
useful, whereas any other added feature would not provide useful information. Hence, the
AMPds dataset actually limits the abilities of DNB, since it can provide only two features
to construct a two-dimensional space for clustering and, consequently, limits the number
of loads to be identified. This disadvantage was considered when choosing AMPds.
Nevertheless, it provides a good base for comparison with the results of other works.

(2) Compared Methods

DNB was compared to other methods that were also intended to solve NILM: combina-
torial optimization (CO) [20], modified cross-entropy (MCE) [21], and principle component
analysis (PCA) [22]. CO finds the combination of appliance states, which minimizes the
difference between the sampled aggregated features and the summation of known appli-
ances features, subject to a set of states (on/off), as shown in (6). MCE classifies NILM
events based on the cross-entropy method. PCA is a technique for dimension reduction
that projects features on lower dimensional space in order to optimize other methods (as
CO and MCE). In [22], MCE and CO are compared with and without the use of PCA.
In this study, the dataset range was chosen according to [21] for comparison. In AMPds
simulations, the average features are those shown in Table 4.

Table 4. Power Estimation for Devices (AMPds Dataset).

Appliance Avg. P [W] Avg. Q [VAR]

Dishwasher (DWE) 770 40
Dryer (CDE) 4613 425
Fan thermostat (FRE) 370, 110 26
Heat Pump (HPE) 1810 358
Kitchen Fridge (FGE) 127 0
Oven (WOE) 3570 120

5.3. Experimental Results

The results of applying AMPds scenarios to DNB are shown in Table 5 and
Figures 11 and 12. The graph in Figure 11 contains the results of 32 h (starting at the
65th h of AMPds), whereas the results of Table 5 and Figure 12 are for the entire scenario of
600 h, starting from the 110th h. The bar chart in Figure 12 shows the accuracy performance
of assigning estimated energy-per-appliance to the algorithm output versus the ground
truth energy consumption. As can be seen, assignment of estimated energy is in proximity



Energies 2023, 16, 3027 17 of 21

to the ground truth, and most of the difference can be found in the HPE (69.88% instead
of 53.31%). Much of the difference is attributed to the mis-identification of FGE, which
is the most difficult appliance to be identified, since its initial power difference is not
consistent for multiple measurements. It can be seen from the results in Table 5 (for both
accuracy and F-measure) that the DNB technique is robust and shows good results at a
low sampling rate in contrast to handling a large dataset. A comparison to other works
is presented in Tables 6 and 7. The results in Table 6 are compared to the MCE and CO
methods, with either one or two features. The results in Table 7 are compared to the PCA
method, utilizing MCE and CO with either one or two features. Since the TPCA calculation
in [21] was for seven appliances, the TPCA calculation of DNB was modified by adding in a
zero-power reading for the seventh appliance, listed as TPCA (2) in Tables 6 and 7. In other
words, DNB was tested under tighter conditions, as TPCA (2) was formally calculated from

(25), by adding the true total power of the seventh appliance to
N
∑

n=1
P[n] in the formula’s

denominator and adding p̂i[n] = 0 in the numerator, as the estimated power consumption
of the seventh appliance for all time samples.

Table 5. Simulation Results Summary.

Appliance Accuracy Precision/Recall F-Measure

WOE 0.9987 0.833/0.856 0.8446
HPE 0.9801 0.958/0.891 0.9232
CDE 0.9944 0.690/0.782 0.7331
DWE 0.9834 0.638/0.533 0.5806
FGE 0.9919 0.315/0.824 0.4561
FRE 0.9985 0.998/0.999 0.9992

AVG 0.9912 0.739/0.814 0.7561

TPCA 0.8313

Table 6. Comparison to MCE and CO Methods.

Appliance/Features DNB
P, Q

MCE
PC1

MCE
PC1, PC2

CO
PC1

CO
PC1, PC2

WOE 0.845 0.247 0.390 0.126 0.342
HPE 0.923 0.255 0.226 0.107 0.261
CDE 0.733 0.406 0.564 0.300 0.562
DWE 0.581 0.445 0.517 0.163 0.450
FGE 0.456 0.602 0.742 0.140 0.074
FRE 0.999 0.619 0.912 0.259 0.128

AVG F1 0.756 0.429 0.559 0.183 0.303
TPCA (2) 0.801 0.715 0.788 0.361 0.583

Table 7. Comparison to MCE and CO Methods with PCA Technique.

Appliance/Features DNB
P, Q

MCE
PC1

MCE
PC1, PC2

CO
PC1

CO
PC1, PC2

WOE 0.845 0.510 0.654 0.184 0.340
HPE 0.923 0.264 0.206 0.235 0.229
CDE 0.733 0.852 0.923 0.704 0.541
DWE 0.581 0.051 0.500 0.420 0.477
FGE 0.456 0.768 0.313 0.386 0.403
FRE 0.999 0.803 0.946 0.705 0.786

AVG F1 0.756 0.541 0.590 0.439 0.463
TPCA (2) 0.801 0.719 0.760 0.616 0.701
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6. Conclusions

This paper proposes a DNB technique to classify NILM events. NILM was formulated
as a multi-dimensional problem, solved by the presented DNB process. DNB was examined
in a limited-dimension space (P–Q plane) but showed that it can produce better results
as more dimensions are applied. The presented method in this paper was extended for
dealing with type II loads by the addition of watchdog timers. These timers guarantee that
in the case of oscillating behavior of a load, the load will be treated as one on-off event
rather than multiple events. This addition strengthens the ability of the presented approach
to deal with a larger variety of loads.

In comparison with other methods, the DNB algorithm has shown an average im-
provement of over 30%, when using standard evaluation measures, while only requiring
a single scan of the dataset. DNB is also easy to implement, as it is based on a simple
clustering algorithm. The disadvantages of the presented method are the inherent order
sensitivity of BIRCH and that it requires the extraction of several features from the smart
meter. It is believed that order sensitivity can easily be handled, for example, by a prelimi-
nary observation of initial results in small scale samples, as demonstrated in Figure 11, or
even by applying a preliminary learning period, although it would be redundant for most
regular scenarios.

As future research, an expansion of DNB test scenarios is proposed, using additional
datasets and appliances, in order to quantify the benefits of the use of various features.
Further research and analysis of noise-effects is also suggested. The process itself could
produce more accurate results with the addition of a dynamic technique for estimating
power consumption separately for each identified event.
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