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Abstract: For the cooperative operation of networked microgrids, a distributed energy management
considering network operational objectives and constraints is proposed in this work. Considering
various ownership and privacy requirements of microgrids, utility directly interfaced distributed
energy resources (DERs) and demand response, a distributed optimization is proposed for obtaining
optimal network operational objectives with constraints satisfied through iteratively updated price
signals. The alternating direction method of multipliers (ADMM) algorithm is utilized to solve
the formulated distributed optimization. The proposed distributed energy management provides
microgrids, utility-directly interfaced DERs and responsive demands the opportunity of contributing
to better network operational objectives while preserving their privacy and autonomy. Results
of numerical simulation using a networked microgrids system consisting of several microgrids,
utility directly interfaced DERs and responsive demands validate the soundness and accuracy of
the proposed distributed energy management. The proposed method is further tested on a practical
two-microgrid system located in Adjuntas, Puerto Rico, and the applicability of the proposed strategy
is validated through hardware-in-the-loop (HIL) testing.

Keywords: energy management; networked microgrids; distributed optimization; alternating direc-
tion method of multipliers (ADMM); hardware-in-loop (HIL)

1. Introduction

Microgrids, as an efficient form of providing clean, low-cost and sustainable energy
to consumers, have been accepted by an increasing number of utilities in recent years [1].
Besides providing clean and reliable energy, microgrids have the capability of participating
in voltage and frequency regulation [2,3], inertia response [4], etc. In addition, by trans-
forming into islanded operation, microgrids could survive widespread power outages
caused by extreme weather events with a high probability, and thus effectively improve the
resilience of distribution grids [5]. As a result, microgrids have been increasingly deployed
worldwide [6]. As modern utility grids transition from the traditional centralized structure
into a distributed structure with ever-denser microgrids, distributed energy resources
(DERs), and controllable loads, networked microgrids, formulated by connecting adjacent
microgrids and properly coordinating their controls, could achieve better efficiency and
resilience than single microgrids or multiple independent microgrids. For this reason,
networked microgrids have attracted growing attention [7]. The existing literature on the
coordination of networked microgrids and DERs is generally in two groups: centralized
and distributed [8,9]. Centralized energy management normally follows a multi-layer hier-
archical structure. Two-layer hierarchical energy management is proposed for promoting
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the consumption of renewable generation in distribution networks in [10]. The lower layer
minimizes the operation cost and maximizes renewable energy utilization while the upper
layer minimizes feeder losses and bus voltage deviations through an optimal power flow.
Similarly, two-layer energy management is designed for voltage regulation and power
balancing between phases by coordinating multiple solid-state power substations in [11].
In [12], a generalized multi-layer hierarchical scheduling strategy is designed for nested
microgrids. A semidefinite programming (SDP) convex relaxation model is presented for
the dispatch of networked microgrids in [13]. Given the uncertainties of renewable genera-
tion, multi-level stochastic programming models have been proposed for the scheduling
of utility grids with high renewable generation penetrated microgrids [14,15]. Robust
optimization-based solutions have been proposed in [16,17]. Centralized energy manage-
ment has the advantages of straightforwardness, easy implementation and achievable
global optimality. However, centralized methods are usually subject to scalability and
privacy challenges considering the large number of microgrids, DERs and responsive loads
with various ownerships. On the contrary, distributed energy management methods are
easily scalable and preserve the privacy of individual local controllers, thus attracting in-
creasing attention. Traditionally, a multi-agent system (MAS) has been used for peer-to-peer
trading between microgrids [18], but this method usually overlooks the underlying distri-
bution network. Dual decomposition has also been proposed for energy trading among
entities with different objectives and constraints [19,20]. Although dual decomposition
could preserve the privacy of participants and enable parallel computation of subproblems,
it has poor convergence, especially for nonconvex problems. To improve this situation,
the alternating direction method of multipliers (ADMM) has been proposed by adding an
augmented Lagrange term to drive the converge [21–25]. In particular, Refs. [23–25] model
the distribution network as a second-order cone by convex relaxation. Nevertheless, the
network operational objectives, such as voltage regulation, network power loss reduction,
power factor improvements, etc., are not incorporated. In addition, the utility grid directly
interfaced DERs and responsive loads have been ignored. The coordination of multiple
microgrids is modeled as a game in [26]. The optimal solution requires finding the Nash
equilibrium. Consensus-based algorithms have also been proposed for energy trading
in networked microgrids assuming linear marginal cost functions of the microgrids [27].
However, the marginal cost functions of microgrids are usually nonlinear in practice due to
the startup and shutdown of DERs. To consider the uncertainties of renewable generation
and loads in the ADMM algorithm, an adjustable robust optimization model is proposed
to optimize the operational cost of each individual microgrid in [28]. In [29], a distributed
robust model based on ADMM is employed to precisely analyze the performance of multi-
carrier energy networked microgrids in different robustness levels. In [30], the uncertainties
of renewable generation are captured by an adjustable data-driven robust optimization
approach with an uncertainty set constructed using the robust kernel density estimation.
The distributionally robust optimization has been proposed to provide a robust solution
under uncertainty without being too conservative in [31]. To improve the solution efficiency
of ADMM, an online ADMM with regret is proposed for online energy management in
networked microgrids with a high penetration of DERs in [32]. In [33], a distributed and
asynchronous surrogate Lagrangian relaxation (DA-SLR) method is proposed to coordinate
the interconnected microgrids with less communication burden.

Machine learning (ML) techniques have also been applied to the distributed energy
management of networked microgrids in active distribution networks [34]. In [35], su-
pervised and unsupervised learning clustering have been proposed for effective energy
sharing in networked microgrids. A bi-level Reinforcement Learning (RL) framework is
proposed for networked microgrid power management under incomplete information of
microgrid parametric models in [36]. Considering the uncertainty of the communication,
a distributed Deep Reinforcement Learning (DRL) is proposed for power scheduling of
networked microgrids in [37]. In [38], a distributed energy management framework based
on the primal-dual method of multipliers (PDMM) approach is proposed for energy negoti-
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ation in networked microgrids. Meanwhile, the RL is employed to increase the accuracy of
modeling uncertainty.

Existing work on distributed coordination of multiple networked microgrids is mainly
focusing on reducing the overall operating cost by enabling energy trading among micro-
grids and utility grids while ignoring the underlying network operational objectives and
constraints. Besides, the utility directly interfaced DERs and controllable loads are usually
ignored as well. To fill this gap, an ADMM-based distribution energy management is
proposed for minimizing total system operating costs as well as optimizing other network
operational objectives, e.g., bus voltage deviations, power factor improvements and net-
work power loss. Considering various ownerships and privacy requirements of microgrids,
utility directly interfaced DERs and controllable loads, the proposed distributed energy
management provides all participants with opportunities of contributing to improving
network operational objectives while still satisfying each participant’s constraints and pre-
serving their privacy. The proposed method is validated through numerical simulation on
a networked microgrids test system and hardware-in-the-loop (HIL) testing on a practical
two-microgrid system located in Adjuntas, Puerto Rico.

The main contributions are threefold.

1. A distributed energy management for the cooperative operation of networked micro-
grids, utility directly interfaced DERs and controllable loads is proposed for obtaining
optimal network operational objectives with network constrains satisfied and the
privacy of participants preserved.

2. Considering various ownerships and privacy requirements of microgrids, utility
directly interfaced DERs and controllable loads, the proposed distributed energy man-
agement enables all participants to contribute to improving network-level objectives
while still satisfying each participant’s constraints and autonomy.

3. The proposed distributed energy management is validated through numerical sim-
ulations on a test system consisting of several microgrids, utility directly interfaced
DERs and responsive demands, and HIL testing on a practical two-microgrid system
located in Adjuntas, Puerto Rico.

Section 2 introduces the models of microgrids and networked microgrids. The central-
ized and proposed distributed method for networked microgrids energy management con-
sidering network operational objectives and constraints are presented in Sections 3 and 4,
separately. Various numerical simulation results of a networked microgrid test system are
compared and analyzed in Section 5. The results of HIL testing are presented in Section 6.
Finally, Section 7 concludes the paper.

2. Modeling

A key challenge of microgrids is to provide high-quality and low-cost power supply
by effectively integrating locally installed dispatchable and undispatchable distributed
generators (DGs), energy storage systems (ESSs) and controllable/uncontrollable loads.
Traditionally, a microgrid controller (MC) is installed to sense the changes in components
or system states and adjust the dispatch of controllable devices. Dispatchable DGs, such
as microturbines and diesel generators, can adjust their power output in certain ranges,
so as to response to the dispatch orders of MCs, while most renewable resource-based
generators, mainly wind turbines and photovoltaic (PV), have output power affected by
changing weather conditions significantly, and thus can only respond to certain simple
orders, such as curtailment. For wind turbines, the hour-ahead forecasts have errors around
10% [39]. As to PV, the forecast errors are even larger due to random cloud coverage [40]. To
handle the uncertainties of renewable generation, ESSs are usually coupled with renewable
generation as a practice.

Microgrids have long been viewed as an effective mechanism for aggregating DERs
and providing a resilient power supply for critical loads during widespread outages. Due
to their scarcity and various ownerships, microgrids are usually independent of each other
in the past. As microgrids being increasingly installed over the years, these interconnected
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microgrids must be somehow coordinated so that they could provide various services to the
distribution/transmission grid in an efficient way, improve system reliability and resiliency,
and reduce carbon footprints. By networking microgrids, local resources are shared among
microgrids, and cooperative power exchange management is performed for enhancing
operational flexibility, improving system resilience and contributing to decarbonization.
Networked microgrids enable a system-of-systems solution for future grids. As shown in
Figure 1, an example of modern distribution grids with a mix of DGs, ESSs, controllable
demands and networked microgrids is presented. The distribution management system
(DMS) communicates with all active participants and coordinates their power exchange for
economic benefits and network-level objectives.

Figure 1. Modern distribution grids with networked microgrids, DGs and ESSs.

3. Centralized Energy Management

As a base for comparison, a centralized optimization model for cooperative networked
microgrids operation is formulated first. The objective function, as shown in (1), is targeting
to minimize the total operating cost of the utility grid, meanwhile optimizing the network
operational objectives, including bus voltage deviations, exchanged reactive power at the
substation and network power loss. The total operating cost includes the operating cost
of microgrids and utility directly interfaced devices. The operating cost of a microgrid, as
shown in (2), includes piecewise linear DG operating cost, DG startup cost, ESS degradation
cost, and load curtailment cost. Similarly, the operating cost of utility directly interfaced
devices, as shown in (3), includes piecewise linear DG operating cost, DG startup cost,
ESS degradation cost, load curtailment cost, and energy exchanging cost/benefit at dis-
tribution substation when grid-connected. The network operational objectives include
total bus voltage deviations, total power loss of distribution network and total exchanged
reactive power at the substation, which are shown in (4)–(6), respectively. Note that the
network power loss is approximated as (5) based on linear DistFlow, which simply assumes
V = 1 p.u. [41]. A single objective is formulated through weighted summation as in (1),
where WC, WV , WL and WQ are corresponding weighting coefficients. The weighting co-
efficients could be simply determined based on the preferences of utility grid operators.
Advanced methods, e.g., analytical hierarchy process (AHP) [42], could also be used to
generate weighting coefficients for multi-objective optimization [43].

min WC

(
NM

∑
m=1

CMG
m + CDN

)
+ WVCVD + WLCLS + WQCQ (1)
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CMG
m =

NT

∑
t=1

Nm
G

∑
g=1

[
NI

∑
i=1

λmgt(i)pmgt(i) + κmgumgt

]

+
NT

∑
t=1

Nm
G

∑
g=1

SUmgt
(
umgt, umg,t−1

)
+

NT

∑
t=1

Nm
B

∑
b=1

Cmbt

(
PC

mbt + PD
mbt

)
+

NT

∑
t=1

Nm
L

∑
l=1

CmltPLS
mlt (2)

CDN =
NT

∑
t=1

NDN
G

∑
g=1

[
NI

∑
i=1

λgt(i)pgt(i) + κgugt

]

+
NT

∑
t=1

NDN
G

∑
g=1

SUgt
(
ugt, ug,t−1

)
+

NT

∑
t=1

NDN
B

∑
b=1

Cbt

(
PC

bt + PD
bt

)

+
NT

∑
t=1

NDN
L

∑
l=1

CltPLS
lt

+
NT

∑
t=1

λSB,P
t PSB

t (3)

CVD =
NT

∑
t=1

NN

∑
n=1

V2
nt − (Vmax

thr )2 : (Vnt > Vmax
thr )

+
NT

∑
t=1

NN

∑
n=1

(
Vmin

thr

)2
−V2

nt : (Vnt < Vmin
thr ) (4)

CLS =
NT

∑
t=1

NF

∑
f=1

r f

[(
PF

f t

)2
+
(

QF
f t

)2
]

(5)

CQ =
NT

∑
t=1

λSB,Q
t

∣∣∣QSB
t

∣∣∣ (6)

The objective function is subject to the follow constraints:

Pmgt =
NI

∑
i=1

pmgt(i) + umgtPmin
mg ∀m, ∀g, ∀t (7)

0 ≤ pmgt(i) ≤ pmax
mg (i) ∀m, ∀g, ∀t, ∀i (8)

umgtPmin
mg ≤ Pmgt ≤ umgtPmax

mg ∀m, ∀g, ∀t (9)

− tan(θmg)Pmgt ≤ Qmgt ≤ tan(θmg)Pmgt ∀m, ∀g, ∀t (10)
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(
Pmgt

)2
+
(
Qmgt

)2 ≤ S2
mg ∀m, ∀g, ∀t (11)

0 ≤ PC
mbt ≤ PC,max

mb uC
mbt ∀m, ∀b, ∀t (12)

0 ≤ PD
mbt ≤ PD,max

mb uD
mbt ∀m, ∀b, ∀t (13)

uC
mbt + uD

mbt ≤ 1 ∀m, ∀b, ∀t (14)

SOCmbt = SOCmb,t−1 + PC
mbtη

C
mb4t− PD

mbt
1

ηD
mb
4t (15)

SOCmin
mbt ≤ SOCmbt ≤ SOCmax

mbt ∀m, ∀b, ∀t (16)

(
PD

mbt − PC
mbt

)2
+ (Qmbt)

2 ≤ S2
mb ∀m, ∀b, ∀t (17)

0 ≤ PLS
mlt ≤ αmlt%Pmlt ∀m, ∀l, ∀t (18)

QLS
mlt = tan(ϕml)Pmlt ∀m, ∀l, ∀t (19)

PPCC
mt =

Nm
G

∑
g=1

Pmgt +
Nm

B

∑
b=1

(
PD

mbt − PC
mbt

)
+

Nm
V

∑
v=1

PPV
mvt

+
Nm

W

∑
w=1

PW
mwt −

Nm
L

∑
l=1

(
Pmlt − PLS

mlt

)
∀m, ∀t (20)

QPCC
mt =

Nm
G

∑
g=1

Qmgt +
Nm

B

∑
b=1

Qmbt −
Nm

L

∑
l=1

(
Qmlt −QLS

mlt

)
(21)

−PPCC,max
m ≤ PPCC

mt ≤ PPCC,max
m ∀m, , ∀t (22)

(
PPCC

mt

)2
+
(

QPCC
mt

)2
≤
(

SPCC
m

)2
∀m, , ∀t (23)

V2
nt = V2

n+1,t + 2
(

r f PF
f t + x f QF

f t

)
∀ f , ∀ t (24)

AFPF = ASBPSB + ADN,GPG + ADN,BPB

−APCCPPCC − ADN,LPL ∀t
(25)

AFQF = ASBQSB + ADN,GQG + ADN,BQB

−APCCQPCC − ADN,LQL ∀t
(26)

(
Vmin

)2
≤ V2

nt ≤ (Vmax)2 ∀ n, ∀ t (27)

(
PF

f t

)2
+
(

QF
f t

)2
≤
(

SF
f

)2
∀ f , ∀t (28)

VSB
t = VFix ∀t (29)
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−PSB,max ≤ PSB
t ≤ PSB,max ∀t (30)

(
PSB

t

)2
+
(

QSB
t

)2
≤
(

SSB
)2

∀t (31)

The operating costs of DGs are approximated using piecewise linearization. The
power output of a DG equals its minimum power if committed plus the power scheduled
in all blocks as enforced by (7). The power of each block is limited by (8). In addition, the
output of a DG is constrained by its capacity and the commitment status as in (9). The DG
power factor is guaranteed as in (10). The capacity limit of a DG is ensured in (11).

The maximum charging and discharging power of an ESS are limited by (12) and (13),
separately. An ESS can only be charged or discharged at each moment, enforced by (14).
The state of charge (SOC) of an ESS changes with the battery charging/discharging as
represented in (15). The upper and lower limits of SOC are guaranteed by (16). The
apparent power limit of the ESS converter is enforced by (17).

For each controllable load, the maximum percentage of load shedding is represented
in (18). Depending on the power factor of the controllable load, the reactive power is shed
accordingly, as represented in (19).

For each microgrid, the real and reactive power balance are guaranteed by (20) and (21),
separately. The real power limit at PCC is limited by (22). The apparent power limit of PCC
is ensured by (23).

The linear DistFlow is employed to model the network power flow constraints, as
represented in (24)–(28) [44,45]. The voltage change between two adjacent buses connected
by a feeder is shown as in (24). Equations (25) and (26) guarantee the real and reactive
power are balanced at each bus. ASB, AF and APCC are incidence matrices for distribution
substations, distribution feeders and microgrids. Likewise, ADN,B, ADN,G and ADN,L are
incidence matrices for utility grid directly interfaced DERs and loads. The bus voltage
constraint is represented by (27). The feeder capacity is guaranteed as in (28).

In both grid-connected and islanded mode, the distribution substation is taken as a
slack bus with fixed voltage magnitude as represented in (29). The exchanged power at the
distribution substation is limited by (30). The capacity limits of distribution transformers
are enforced by (31).

The centralized energy management for networked microgrids could be represented
as a mixed integer quadratically constrained program (MIQCP) model and solved by
commercial MIQCP solvers. To convert nonlinear items into mixed-integer linear (MIL)
format, the DG startup cost in (1) could be formulated in MIL format according to [46].
Likewise, the absolute function and logic items in (1) are recast into MIL format according
to [43].

4. Distributed Energy Management

Note that only (25) and (26) are complicating constraints, which involve variables
of both the utility network level and microgrid level. Given this separable structure, the
centralized model presented above is decomposed into parallel subproblems of DMS and
MCs using the ADMM algorithm [47]. Depending on the attribution of the jurisdiction of
utility directly interfaced DERs and controllable loads, their scheduling could be either
included in the DMS subproblem or formulated as an independent subproblems similar
to MC subproblem. If the utility directly interfaced DERs and controllable loads are
under the jurisdiction of DMS, the scheduling of these DERs and controllable loads are
simply included in the DMS subproblem. If the utility directly interfaced DERs and
controllable loads are under the jurisdiction of a third party, the scheduling of these DERs
and controllable loads are formulated as subproblems parallel to MC subproblems. For
simplicity, the first situation is used in this work. Nevertheless, the proposed model could
be easily adapted to the second situation.



Energies 2023, 16, 3014 8 of 27

Given the initial generation-load mismatch (i.e., primal residual) calculated according
to (32) and the initial price signal of each bus, the DMS subproblem and MC subproblems
are solved in parallel. Each MC solves an MC subproblem to schedule their internal DERs
and loads and update the PCC power accordingly. Meanwhile, the DMS solves the DMS
subproblem to schedule the power imported/exported at the distribution substation bus
and utility directly controlled DERs and loads.

R(k) = ASBPSB,(k) + ADN,GPG,(k)

+ADN,BPB,(k) − APCCPPCC,(k)

−ADN,LPL,(k) − AFPF,(k) ∀n, ∀t (32)

Specifically, for microgrid m connected at bus n, the MCs of microgrid m solves its MC
subproblem as following:

min WCCMG
m

−
NT

∑
t=1

λ
(k)
nt

[
R(k)

nt + PPCC,(k)
mt − PPCC

mt

]
+

ρ

2

∥∥∥R(k)
n + PPCC,(k)

m − PPCC
m

∥∥∥2

2
(33)

s.t. (7)–(23).
Likewise, for the utility grid, the DMS subproblem is presented below:

min WCCDN + WVCVD + WLCLS + WQCQ

−λ(k)
(

ASBPSB + ADN,GPG + ADN,BPB

−APCCPPCC,(k) − ADN,LPL − AFPF
)

+
ρ

2

∥∥∥ASBPSB + ADN,GPG + ADN,BPB

−APCCPPCC,(k) − ADN,LPL − AFPF
∥∥∥2

2
(34)

s.t. (7)–(19) and (24)–(31).
After that, DMS or a third party without conflict of interest updates the primal residual

and dual residual (i.e., bus price signal) according to (32) and (35), correspondingly.

λ
(k+1)
nt = λ

(k)
nt + ρR(k+1)

nt ∀n, ∀t (35)

The iteration stops when both primal residual and dual residual are converged [47].
Due to the fact that the dual residual is an affine function of primal residual with a small
slope according to (35), the convergence criterion of the proposed distributed method
should be the primal residual converges to zero or a neglectable small number. In practice,
this means the generation and load are well matched under the agreed price for all buses.

The proposed distributed method is described in detail as shown in Algorithm 1.
It is worth mentioning that the proposed distributed method preserves the privacy and
autonomy of internal DERs and loads for each microgrid since the only information needed
by the DMS from each MC is the power at its PCC. This is especially important for emerging
DER and load aggregators.

Without loss of generality, only real power is assumed transactive in this work. Never-
theless, reactive power could also be traded between DMS and microgrids as well.



Energies 2023, 16, 3014 9 of 27

Algorithm 1 Proposed Distributed Energy Management for Networked Microgrids

initialization k← 0. DMS initializes primal residual R(k)
nt and dual residual λ

(k)
nt , then sends

them to MCs at corresponding buses.
repeat
k← k + 1.
• MCs solve MC subproblems, and update their power at PCC.
• DMS solves the DMS subproblem, and updates schedules of directly interfaced con-

trollable resources.
• MCs communicate their new PCC power PPCC,(k+1)

mt to DMS.
• DMS updates primal residual and dual residual according to (32) and (35), and send

R(k+1)
nt and λ

(k+1)
nt to corresponding MCs.

until
(

R(k+1)
nt ≤ Rmax

)
5. Case Study Using DECC 6-Bus Test System
5.1. Test System

The proposed distributed method is tested using a modified Oak Ridge National
Laboratory (ORNL) Distributed Energy Control and Communication (DECC) networked
microgrids test system, as presented in Figure 2. The test system includes 6 buses with bus
1 as a substation bus. Three microgrids are interfaced at bus 3, 4 and 5, respectively. Each
microgrid includes DERs and loads. In addition, several utility directly interfaced DERs
and controllable loads are connected at bus 2 and 6.

The resistance and reactance of distribution feeders are shown in Table 1.

Table 1. Parameters of feeders.

Feeder No. From Bus To Bus Resistance (Ω) Reactance (Ω)

1 1 2 0.0205 0.0284

2 2 3 0.0644 0.0667

3 3 4 0.0205 0.0284

4 4 5 0.0644 0.0667

5 5 6 0.0205 0.0284

The parameters of dispatchable DGs in microgrids and the ones directly interfaced
with the utility grid are given in Table 2 [15]. For each dispatchable DG, its generation cost
is assumed piecewise linear with three pieces.

Table 2. Dispatchable DGs parameters.

DG Type Pmin

(kW)
Pmax

(kW)
Start-Up
Cost ($)

Cost at Pmin

($/h)
λgt(1)

($/kWh)
λgt(2)

($/kWh)
λgt(3)

($/kWh)

Microturbine 1 10 30 1 3.39 0.2172 0.2644 0.3016

Microturbine 2 10 30 1 2.31 0.1324 0.1552 0.1880

Diesel 3 10 30 1.5 2.68 0.1284 0.1412 0.1541

Fuel Cell 4 10 30 2 4.67 0.4531 0.5363 0.6885

Fuel Cell 5 20 60 3 7.32 0.3359 0.4136 0.5239
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Figure 2. Modified ORNL DECC networked microgrids system.

For simplicity, the three batteries in microgrids and the utility grid directly interfaced
battery on bus 2 are assumed same. Its parameters are given in Table 3.

Table 3. Parameters of batteries.

Battery Type Power Capacity (kW) Energy Capacity (kWh) SOCmax (%) SOCmin (%)

Lithium ion 100 200 95 25

Degradation Cost ($/kWh) Charging Efficiency (%) Discharging Efficiency (%) Initial SOC (%) End SOC (%)

0.02 0.95 0.95 50 50

The wind and PV power outputs are the same as [17]. The microgrid loads and total
utility directly interfaced loads are forecasted as in Figure 3. The power factor of all loads
is assumed 0.9. The maximum percentage of load shedding is assumed 80% with cost set
as 1 $/kWh.
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Figure 3. System Loads.

In grid-connected mode, power could be imported or exported at the distribution
substation bus according to the utility rate, as given in Table 4. The exchanged power at
PCC of any microgrid is limited to 150 kW.

Table 4. Utility rate.

Hour λPCC (ct/kWh) Hour λPCC (ct/kWh) Hour λPCC (ct/kWh)

1 8.65 9 12.0 17 16.42

2 8.11 10 9.19 18 9.83

3 8.25 11 12.3 19 8.63

4 8.10 12 20.7 20 8.87

5 8.14 13 26.82 21 8.35

6 8.13 14 27.35 22 16.44

7 8.34 15 13.81 23 16.19

8 9.35 16 17.31 24 8.87

The daily operation of the networked microgrids test system is simulated with 1-h
time intervals. The distribution substation is taken as a slack bus with a fixed voltage
magnitude set as 1.01 p.u. The bus voltage is limited to [0.95, 1.05] p.u., but preferred in
[0.98, 1.02] p.u., beyond which is allowed, but penalized as voltage deviations. The penalty
factor ρ is assumed 0.1.

Both centralized and proposed distributed optimization are MIQCP problems. The
branch and bound (B&B) algorithm provide an efficient way to solve MIQCP problems [48].
The B&B algorithm solves MIQCP problems by breaking them down into smaller sub-
problems and using a bounding function to eliminate subproblems that cannot contain the
optimal solution until all subproblems generated in the search space are examined. The
B&B algorithm has been implemented in CPLEX Mixed-Integer Optimizer. All optimiza-
tion models in the case studies are formulated in MATLAB and solved using IBM ILOG
CPLEX Optimization Studio 12.6 [49]. The solution time of each iteration in the proposed
distributed optimization is normally less than 10 s.
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5.2. Comparing Objective Values and Costs of Various Cases

Using both centralized and proposed distributed methods, various objective values
and costs are obtained and compared in Table 5. Without loss of generality, WC = 1,
WQ = 0.1, WL = 0.1 and WV = 10 are used in the simulation. During grid-connected
operation, power imports/exports are assumed available at the distribution substation
bus based on given utility rates as in Table 4. While during islanded operation, the power
imports/exports at the distribution substation are zero. Therefore, the total operating cost
of DMS is reduced significantly in islanded mode.

Table 5. Comparison of various objective values and costs in various cases.

Cases
Total

Objective
Value

Total
Operating

Cost of DMS
($)

Total
Operating
Cost of Mi-
crogrids ($)

Voltage
Deviation

(p.u.)

Network
Power Loss

(kW)

Reactive
Power at

Substation
(kVarh)

Grid-connected Centralized 248.5449 153.3256 72.9965 1.6288 59.3441 0.003
Distributed 250.8036 139.6683 90.4658 1.4901 54.6827 0.005

Islanded Centralized 460.1691 14.9681 444.9566 0 2.4398 0
Distributed 462.8436 17.2007 445.3846 0 2.5837 0

Comparing the calculated various objective values and costs between centralized
optimization and the proposed distributed optimization, the total objective value of the
proposed distributed method has been increased by 0.91% and 0.58% in grid-connected
and islanded mode, separately. The slight differences are due to the nonconvexity of the
problem. Besides, comparing network operation objectives, i.e., total voltage deviations,
network power loss and reactive power exchanged at the distribution substation, the values
calculated by the centralized method and proposed distributed method are almost the
same. Therefore, the soundness of the proposed distributed method is validated.

5.3. Convergence of Proposed Method

The convergence of the ADMM algorithm requires both primal residual and dual
residual to be converged [47]. Specifically to our problem, the dual residual λnt converges
only when the primal residual Rnt converges to zero since the dual residual is an affine
function of primal residual with very small slope according to Equation (35). Thus, the
convergence criterion of the proposed distributed method is that the primal residual Rnt,
i.e., generation-load mismatches of all buses, are neglectable. It also means that the power
balance is reached at all buses under the negotiated price. As the iteration goes, the
obtained generation-load mismatches of all buses in grid-connected and islanded modes
are presented in Figure 4a,b, separately. Generally, the proposed ADMM-based distributed
method converges fast at the beginning, but slowly later when the primal residual is getting
smaller. For this reason, the convergence criterion in the simulation is set as Rnt ≤ 0.1 kW.

5.4. Solutions of Proposed Method

More detailed solution results of proposed distributed energy management for coop-
erative networked microgrids operation are presented in this subsection. The results are
compared with those solved by the centralized method as further validation. In addition,
the calculated nodal prices by the distributed method are presented. The influencing factors
of nodal prices are analyzed as well.
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(a) (b)

Figure 4. The generation-load mismatches at each bus along iterations. (a) Grid-Connected.
(b) Islanded.

5.4.1. Grid-Connected Mode

The PCC power and bus voltage profiles calculated by the proposed distributed
method are presented and compared with those calculated by the centralized method,
as shown in Figures 5 and 6. Except for small differences at the beginning of the day
(e.g., Hour 1–3 a.m.) and during the noon (e.g., Hour 1–2 p.m.), the PCC and substation
power are generally the same for the centralized and proposed distributed method, as can
be seen in Figure 5. Likewise, the calculated bus voltage profiles by the centralized and
proposed distributed methods are nearly the same. This further validates the accuracy of
the proposed distributed method.

(a) (b)

Figure 5. PCC and substation power in grid-connected mode. (a) Centralized Method. (b) Distributed
Method.

All bus voltage profiles, except the substation bus (i.e., bus 1), share the same trend
which jumps high at noon due to the surging of PV outputs, as can be seen in Figure 6.
However, bus 6 has the most volatile voltage profile compared with other buses. This is
because bus 6 is at the end of the feeder.
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(a) (b)

Figure 6. Bus voltage profiles in grid-connected mode. (a) Centralized Method. (b) Distributed
Method.

The converged price signals of different buses as well as the utility rate are compared
in Figure 7. Generally, these price curves follow the trend of utility rate at the distribution
substation bus, and the price differences between buses are small. This is mainly due to two
facts. First, the distribution substation bus, i.e., the slack bus, works as the marginal unit
of the system most of the time. Second, the total objective value is mainly dominated by
operating costs. Nevertheless, it can be clearly observed that the bus prices are affected by
the operational objectives, i.e., voltage deviations, network power loss and reactive power
at the distribution substation.

(a) (b)

Figure 7. Calculated bus prices and system net demands in grid-connected mode. (a) Bus Price.
(b) System Net Demand.

Basically, the price of a bus is the marginal cost of delivering an increment of energy to
the specific bus. In our model, the marginal cost includes marginal operating cost, marginal
power loss, marginal voltage deviation and marginal reactive power at the substation. For
most time intervals in the day, except 12 p.m.–3 p.m., the system imports power from
the utility grid and the power flows from bus 1 to bus 6 as can be seen in Figure 5, the
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marginal operating cost and the marginal reactive power at the substation are generally
the same for all buses. However, bus 6 has the largest marginal power loss since it has the
largest resistance to the power origin (i.e., bus 1). Meanwhile, bus 6 also has the largest
marginal voltage deviation since an increment of energy at bus 6 will cause the worst
voltage deviation of the network. Thus, bus 6 has the highest price and bus 1 has the lowest
price (almost the same as the utility rate) during these time intervals.

From 12 p.m. to 3 p.m., the direction of power flow is reversed due to the surging of
PV outputs with power flowing from bus 4 to bus 1. Under this situation, the marginal
operating cost and the marginal reactive power at the substation are still the same for all
buses. However, bus 1 has the largest marginal power loss since it has the largest resistance
to the power origin (i.e., bus 4). As to the marginal voltage deviation, the marginal voltage
deviation of bus 4 is zero since it is the power origin. With constant voltage at bus 1, an
increment of energy at bus 1 will cause worse overvoltage at bus 4. Thus, the marginal
voltage deviation at bus 1 is positive. As to bus 6, an increment of energy at bus 6 will
reduce the overvoltage at bus 4, thus the marginal voltage deviation at bus 6 is negative.
Under this situation, bus 6 has the lowest price and bus 1 has the highest price. The prices
of bus 3 and 4 are in the middle, as shown in Figure 7a. To summarize, the operating
costs dominate the nodal prices, but the network operational objectives have unneglectable
effects on nodal prices.

It should be noted that the proposed distributed energy management provides all
participants with opportunities of contributing to improving network operational objectives
while still satisfying each participant's constraints and preserving their privacy and goals.
In this simulation, supplying power to utility between 12 p.m. and 3 p.m. could benefit
both utility and DG/microgrids owners. From this point of view, the results in Figure 7a
make a lot of sense. Nevertheless, other utilities might want to promote local consumption
of DG generation and avoid backward power feeding to the distribution substation. In
those situations, the proposed distributed optimization could also help achieve this goal by
simply adding a constraint to enforce PSB

t nonnegative.
For each microgrid as well as the whole system, the net demand (i.e., total load minus

total renewable generation) are calculated and compared with the average nodal energy
rate in Figure 7b. As can be seen, the average nodal energy rate is not related to either
system or microgrid net demand but largely follows the utility rate profile.

To estimate the error of linear DistFlow caused by the assumption of V = 1 p.u., when
the voltage is at the lower bound, i.e., V = 0.95 p.u., the assumption of V = 1 p.u., will
cause an error of power loss around 10% (1− 0.95× 0.95 = 0.0975). In our simulation, the
weighting factor of power loss is set as WL = 0.1, as stated earlier. The calculated power
loss is around 50 kWh, while the objective function is around 250 (according to Table 5).
Thus, with a 10% error in power loss, the error of objective value is around 2%. Considering
the situation of voltage at the lower bound is not regular (less than 1 quarter of the whole
period, according to Figure 6), the error of the objective value should be less than 0.5%,
which is acceptable in our case.

In general, the generation cost dominates the objective function. Thus, the assumption
of V = 1 p.u. should not cause a large error in the objective value. However, if the
power loss of the network dominates the objective by setting a large weighting factor
WL, the assumption of V = 1 p.u. might cause a large error of the objective value when
the voltage is constantly close to the lower bound, i.e., 0.95 p.u. Under this situation, the
original DistFlow model should be used. The network power flow will be modeled as a
second-order cone.

5.4.2. Islanded Mode

In islanded mode, the PCC power and bus voltage profiles calculated by the proposed
distributed method are presented and compared with those calculated by the centralized
method, as shown in Figures 8 and 9. Generally, the PCC and substation power calculated
by centralized and proposed distributed method is close to each other, as can be seen in
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Figure 8. Likewise, the calculated bus voltage profiles by the centralized and proposed
distributed method are nearly the same as shown in Figure 9. The accuracy of the proposed
distributed method in islanded mode is validated.

(a) (b)

Figure 8. PCC and substation power in islanded mode. (a) Centralized Method. (b) Distributed
Method.

(a) (b)

Figure 9. Bus voltage profiles in islanded mode. (a) Centralized Method. (b) Distributed Method.

Compared with grid-connected mode, the voltage profiles in islanded mode are much
better, as shown in Figure 9b. The reason is that significant power is imported from the
substation slack bus and transmitted through the feeders in grid-connected mode due to
relatively low cost. While in the islanded model, all loads are satisfied by local DERs. As a
result, the power flow on the feeders has been significantly reduced, as reflected by the total
network power loss in Table 5. Therefore, the voltage profiles are significantly improved in
islanded mode.

The calculated bus prices are presented in Figure 10. Comparing the price between
different buses, the converged price signals are almost the same for all buses, as shown in
Figure 10a. This is because there is no reactive power exchange at the substation and the
bus voltage deviations are zero, as can be seen in Figure 9. In addition, the network power
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loss is very small as shown in Table 5. Thus, the differences in marginal cost between buses
are very little.

(a) (b)

Figure 10. Calculated bus prices and system net demands in islanded mode. (a) Bus Price. (b) System
Net Demand.

The net demand of microgrids and the net demand of the whole system are calculated
and compared with the average nodal energy rate in Figure 10b. As can be seen, the average
nodal energy rate is closely coupled with the net demand of the system.

6. Practical Case Study and HIL Validation Using the Adjuntas 2-Microgrid System in
Puerto Rico

A case study of the Adjuntas 2-microgrid system in Puerto Rico is presented in this
section to further validate the proposed optimization strategy using HIL testing. The
applicability of the proposed strategy is validated through HIL testing. In addition, the
resiliency benefits of interconnecting and coordinating adjacent microgrids into networked
microgrids are demonstrated as well.

6.1. System Introduction

The two microgrids were deployed in Adjuntas, Puerto Rico, as shown in Figure 11a.
The two microgrids, i.e., the north-east microgrid and the west microgrid are physically
co-located at the same plaza. These two microgrids serve 15 businesses as listed. The
north-east microgrid and the west microgrid are interconnected through overhead lines
to form a networked microgrid system. It is important to note that Figure 11a shows the
original design and the participating businesses as of 2019, and the microgrids deployed
eventually might be different from the ones presented in this paper.

The single-line diagram of the two microgrids together with the power rating and
generation mix are shown in Figure 11b. The north-east microgrid has a 442 kWh battery
pack and 98 kW PV panels. The west microgrid includes a 663 kWh battery pack and
76 kW PV panels. The minimum and maximum SOC of both batteries are set as 25% and
95%, separately.

For each microgrid, the overall loads are aggregated into two loads: a critical load
and a non-critical load. The one-week aggregated load profiles of both microgrids with
15-min time resolution are shown in Figure 12. The solar irradiance of the same week is
also shown in Figure 12.
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(a) (b)

Figure 11. Adjuntas networked microgrids. (a) 3D renderings of two microgrids in Adjuntas, Puerto
Rico. (b) Adjuntas networked microgrids diagram.

Figure 12. Critical and non-critical loads and solar irradiance.

6.2. Case Study Results

Both the north-east microgrid and the west microgrid have PV panels as the sole
generation source and batteries as energy storage. The grid-connected mode is fairly easy
to converge under this system configuration since the distribution substation is taken as
the slack bus to absorb any redundant PV generation or meet any excess load, while the
convergence of islanded mode is more challenging since PV spillage or load shedding are
necessary under certain conditions. For this reason, only the results of islanded mode are
presented here. The simulation is conducted for a week. In order to test the proposed
method under various possible conditions, three cases are studied.

• Case 1: Networked microgrids in islanded mode.
• Case 2: Networked microgrids in islanded mode, but the available PV panels in the

north-east microgrid are reduced by 50% due to extreme weather.
• Case 3: Networked microgrids in islanded mode, but the available PV panels in the

west microgrid are reduced by 50% due to extreme weather.

The optimization results calculated by both centralized and the proposed distributed
methods for Case 1 are shown in Figure 13. The SOC of the batteries, PV utilization rate
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and load served rate are compared. As can be seen, the results of the proposed distributed
method are almost the same as those of the centralized method. Thus, the accuracy of the
proposed centralized method is validated.

(a) (b)

Figure 13. Optimization results of Adjuntas 2-microgrid system in Case 1. (a) Centralized Method.
(b) Distributed Method.

Case 2 and Case 3 simulate the networked microgrids with degraded PV due to
extreme weather event. The optimization results calculated by both centralized and the
proposed distributed methods for Case 2 and Case 3 are shown in Figures 14 and 15,
separately. The SOC of the batteries, PV utilization rate and load served rate are compared.
Likewise, the results of the proposed distributed method are almost the same as those of
the centralized method.

(a) (b)

Figure 14. Optimization results of Adjuntas 2-microgrid system in Case 2. (a) Centralized Method.
(b) Distributed Method.

For the three cases, the energy price at each bus is calculated and compared in Figure 16.
The PV generation cost is zero. The energy price of the system are mainly determined
by the battery degradation cost caused by charging/discharging cost (set as 0.005 $/kW),
penalty cost of PV spillage (set as 0.025 $/kW), and cost of load shedding (set as 0.5 $/kW
for critical load and 0.3 $/kW for non-critical load). Due to the fact the feeder connecting
the north-east microgrid and the west microgrid is very short, the voltage deviations and



Energies 2023, 16, 3014 20 of 27

loss are relatively small. Therefore, the calculated price curves at different buses are very
close.

Generally, the bus energy price is positive when the battery is discharging, but negative
when the battery is charging. The absolute value of bus price is very small (around
0.005 $/kW) when there is neither load shedding nor PV spillage. When the system is
spilling PV power, the bus energy price is around −0.03 $/kW.

(a) (b)

Figure 15. Optimization results of Adjuntas 2-microgrid system in Case 3. (a) Centralized Method.
(b) Distributed Method.

(a) (b) (c)

Figure 16. Calculated bus prices of Adjuntas 2-microgrid system in various cases. (a) Case 1.
(b) Case 2. (c) Case 3.

6.3. HIL Testing

The solution process of the proposed distributed method is validated on a hardware-
in-the-loop (HIL) test bed. To implement the hardware testing, the Adjuntas 2-microgrid
system in Puerto Rico is modeled in Typhoon by the schematic in Figure 17. Each microgrid
consists of a PV inverter, an energy storage device (both modeled as a two-level three-phase
inverter with inductive and capacitive LCL filter), PCC switch, dynamic PQ loads, and
inductive-resistive (LR) line sections.

The hardware setup of the HIL test bed of the Adjuntas 2-microgrid system in Puerto
Rico is shown in Figure 18. It is composed of two paralleled Typhoon HIL 604 and SEL
651R reclosers. The reclosers are in the loop with the real-time simulator and are included
to provide an approximation of the real system. The Typhoon 604 is connected to the SEL
reclosers through a Typhoon HIL Connect, which provides analog and digital signals to
the SEL-651R relays. These signals represent the analog voltage and current inputs to the
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relays, the binary outputs from the relay for opening and closing each recloser switch inside
the model, and a binary status input to the relay to indicate the state of the recloser switch
only.

Figure 17. The Typhoon model of the Adjuntas 2-microgrid system.

Figure 18. The HIL test bed of Adjuntas 2-microgrid system.

The optimization runs on a separate computer that communicates with the real-time
simulator through Modbus. The python package pyModbusTCP 0.2.0 was used to establish
the Modbus master on the computer. The real-time simulator uses a proprietary Modbus
master to send and receive data from external sources.

To compare the simulation results and hardware test results, the SOC of batteries,
PV utilization rates and load served rates in different cases are plotted and compared in
Figure 19. It is observed that the SOC of batteries, PV utilization rates and load served rates
from numerical simulation and HIL testing match closely in all cases. Thus, the applicability
of the proposed distributed optimization strategy is validated through HIL testing.



Energies 2023, 16, 3014 22 of 27

(a) (b) (c)

Figure 19. HIL testing results of the Adjuntas 2-microgrid system in various cases. (a) Case 1.
(b) Case 2. (c) Case 3.

To further demonstrate the resiliency benefits of interconnecting and coordinating
adjacent microgrids into networked microgrids, three additional cases of independent
microgrids without interconnection and coordination are studied.

• Case 4: Independent microgrids in islanded mode.
• Case 5: Independent microgrids in islanded mode, but the available PV panels in the

north-east microgrid is reduced by 50% due to extreme weather.
• Case 6: Independent microgrids in islanded mode, but the available PV panels in the

west microgrid is reduced by 50% due to extreme weather.

The optimization results calculated for Cases 4–6 are shown in Figure 20. The SOC of
batteries, PV utilization rates and load served rates in different cases are plotted. Comparing
with the results of networked operation Cases 1–3, it is observed that the load served
rates under extreme weather events are significantly improved by interconnecting and
coordinating adjacent microgrids into networked microgrids, i.e., the load shedding could
be significantly reduced or avoided by networking microgrids. Therefore, the resiliency
benefits of interconnecting and coordinating adjacent microgrids into networked microgrids
under extreme weather events are validated.

(a) (b) (c)

Figure 20. HIL testing results of the Adjuntas 2-microgrid system in independent operation cases.
(a) Case 4. (b) Case 5. (c) Case 6.

While the current focus of this paper is to enable all participants to contribute to
improving network operational objectives (such as bus voltage regulation, power factor
improvements and network power loss reduction), the proposed distributed optimization
model can be extended to include carbon emission costs of DG generation and energy
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purchased from distribution substation into the objective function, so as to reduce the total
carbon emission of the whole system.

7. Conclusions

A distributed energy management for the coordination of networked microgrids, util-
ity directly interfaced DERs and controllable loads is proposed in this paper. The objectives
include minimizing total system operating costs as well as optimizing network operational
objectives, e.g., bus voltage deviations, power factor improvements and network power
loss. Considering various ownership and privacy requirements of microgrids, utility di-
rectly interfaced DERs and controllable loads, the proposed distributed method provides
all participants with opportunities of contributing to improving network operational objec-
tives while still satisfying each participant’s constraints and preserving their privacy and
goals. The proposed method is validated using a practical two-microgrid system located in
Adjuntas, Puerto Rico through HIL testing.

Compared with centralized optimization-based methods, the proposed distributed
method is more scalable and computationally efficient since the solution process of sub-
problems could be parallel. In addition, the proposed distributed method does not require
any information behind the PCC, thus preserving the privacy and autonomy of microgrids
and reducing communication needs. Nevertheless, the success of the proposed distributed
method still requires a two-way communication system. Due to the nonconvexity of the
problem, the proposed distributed method cannot guarantee the global optimum, either.

In a real implementation, the efficiency of the calculated solution might be affected
by uncertainties of renewable generation or the unavailability of DERs. In grid-connected
mode, the power mismatch caused by uncertainties will be mitigated by the distribution
substation, which could increase the total operating cost. In islanded mode, significant
power mismatch might jeopardize the security of the whole system. Furthermore, the pro-
posed algorithm assumes a radial distribution network. The effectiveness of the proposed
algorithm in meshed distribution networks should be further investigated.

Robust distributed methods considering the uncertainties of renewable generation as well
as the unavailability of DERs will be investigated in future work. In addition, the proposed
method will be tested on more practical distribution networks with meshed topology.
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Nomenclature

A symbol with (k) on the upper right corner indicates its value of k-th iteration. A
symbol with m on the low right corner indicates it belongs to microgrid m, otherwise it is
utility directly interfaced. The bold symbols represent corresponding vectors/matrices.

Indices

m Index of microgrids, running from 1 to NM.
l Index of loads in microgrid m/distribution network, running from 1 to Nm

L /NDN
L .

g Index of distributed generators (DGs) in microgrid m/distribution network, running
from 1 to Nm

G /NDN
G .

b Index of batteries in microgrid m/distribution network, running from 1 to Nm
B /NDN

B .
v Index of PV in microgrid m, running from 1 to Nm

V .
w Index of wind turbines in microgrid m, running from 1 to Nm

W .
n Index of buses, running from 1 to NN .
f Index of feeders, running from 1 to NF.
t Index of time periods, running from 1 to NT .
k Index of iterations.
i Index of energy blocks offered by DGs, running from 1 to NI .

Variables
Binary Variables

umgt Binary indicator for unit g on/off status during period t.
uC

mbt, uD
mbt Binary indicator for battery b charging/discharging status during period t.

Continuous Variables

pmgt(i) Scheduled power from the i-th block of energy offer by DG g in microgrid
m during period t.

Pmgt, Qmgt Real and Reactive power injection of DG g in microgrid m during period t.
PC

mbt, PD
mbt Charging/discharging power of battery b in microgrid m during period t.

Qmbt Reactive power output of battery b in microgrid m during period t.
SOCmbt State of charge (SOC) of battery b in microgrid m during period t.
PW

mwt Output of wind turbine w in microgrid m during period t.
PPV

mvt Output of PV panel v in microgrid m during period t.
PLS

mlt, QLS
mlt Real/Reactive power shedding of load l in microgrid m during period t.

PPCC
mt , QPCC

mt Real/Reactive power injection at point of common coupling (PCC) of
microgrid m during period t.

PF
f t, QF

f t Real and reactive power flow in feeder f during period t.
Vnt Voltage magnitude of bus n during period t.
VSB

t Voltage magnitude of substation bus during period t.
PSB

t , QSB
t Real/Reactive injection at the substation slack bus during period t.

Rnt Generation-load mismatch at bus n during period t.
λnt Lagrange multiplier of power balance equation at bus n during period t.
PG, PB, PL Real power matrices of DGs, batteries and loads that directly interfaced

with distribution network.
QG, QB, QL Reactive power matrices of DGs, batteries and loads that directly

interfaced with distribution network.
SUmgt Startup cost of DG g in microgrid m during period t.
CMG

m Total operating cost of microgrid m.
CDN

m Total operating cost of utility directly interfaced devices.
CVD Total bus voltage deviations.
CLS Total power loss of distribution network.
CQ Total exchanged reactive power at substation.
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Constants

λSB,P
t , λSB,Q

t Price of real/reactive power exchange at distribution substation
bus during period t.

λmgt(i) Marginal cost of the i-th block of energy offer by DG g during
period t.

Cmbt Battery b degradation cost.
Cmlt Load l curtailment cost.
pmax

mg (i) Maximum power limits from the i-th block of energy offer by DG
g in microgrid m.

Pmin
mg , Pmax

mg Power limits of DG g of microgrid m.
PPCC,max

m Maximum power exchange of microgrid m at PCC.
PSB,max Maximum power exchange at distribution substation bus.
PC,max

mb , PD,max
mb Charging/discharging power limits of battery b in microgrid m.

SOCmin
mbt , SOCmax

mbt SOC limits of battery b.
ηC

mb, ηD
mb Charging/discharging efficiency of battery b.

Pmlt, Qmlt Estimated real/reactive power of load l.
αmlt Allow percentage of power shedding for load l.
κmg Operating Cost of DG g at minimum power output.
ρ Penalty factor of augmented Lagrange term.
4t Duration of time intervals.
Vmin

thr , Vmax
thr Limits of preferred voltage range for buses.

Vmin, Vmax Minimum/maximum voltage limits for buses.
VFix Constant voltage magnitude of distribution substation bus.
Smb, Smg, S f Apparent power limit of battery b, DG g and feeder f .
SPCC

m Apparent power limit of microgrid m at PCC.
SSB Apparent power limit of distribution substation.
r f , x f Resistance and reactance of feeder from f .
tan(ϕml) Power factor of load l.
tan(θmg) Power factor limit of DG g.
Rmax Limit of generation-load mismatch for convergence.
WC, WV , WQ, WL Weighting factors of the objectives.
APCC Incidence matrix for microgrids.
ASB Incidence matrix for distribution substation.
AF Incidence matrix for feeders.
ADN,G, ADN,B, ADN,L Incidence matrix for DGs, batteries and loads that directly

interfaced with distribution network.
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