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Gołaś, A. Design and

Implementation of a Particulate

Matter Measurement System for

Energy-Efficient Searching of Air

Pollution Sources Using a Multirotor

Robot. Energies 2023, 16, 2959.

https://doi.org/10.3390/en16072959

Academic Editor: Maryam Ghodrat

Received: 23 January 2023

Revised: 12 March 2023

Accepted: 22 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Design and Implementation of a Particulate Matter
Measurement System for Energy-Efficient Searching of Air
Pollution Sources Using a Multirotor Robot
Grzegorz Suchanek * , Roman Filipek and Andrzej Gołaś
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Abstract: Analyzing air pollutants is of key importance for the environmental protection goals. High
concentrations of particulate matter (PM) have a particularly negative impact on human life and
health. The use of an autonomous multirotor flying robot (drone) for the purposes of locating PM
sources requires the design of a dedicated measurement system from scratch. The aim of this study
was to make the most important design decision, which is the correct localization of the inlet of
the measurement system, taking into account disturbances in the flow field caused by the rotors.
To achieve this, a computational model was built with the use of a finite-volume method in Ansys Fluent
software. Based on its results, a novel criterion was proposed and applied. In addition to the trivial
position outside the rotors on the extended arm, it gave the second location in the space limited by the
rotors below the robot. Finally, a robot prototype was built, and a series of verification experiments were
carried out, first indoors and then outdoors, at different levels of ambient PM concentrations with and
without a pollution source. The field results were compiled as histograms and scatter plots and clearly
demonstrated the validity of the adopted criterion. The determination coefficient between measured
concentrations showed a stronger relationship when the rotors were operating. Furthermore, in cases
with a present pollution source, higher concentrations were observed around the internal sensor, making
it more suitable for the studied application.

Keywords: air pollution; particulate matter; pollution source localization; multirotor flying robot;
UAV application; measurement system design; CFD; finite-volume method

1. Introduction

Air pollution analysis, especially particulate matter (PM) monitoring, is of crucial
importance for environmental protection objectives. Polluted air is currently one of the most
important environmental threats to human health and well-being. According to a study [1],
it is the fourth leading factor in increasing the risk of death. Factors, such as smoking, high
blood pressure, dietary risks, and high blood glucose levels, also contribute to the risk.
The literature shows a significant relationship between public health and air pollution [2].
For example, the high concentration of PM2.5 particles is responsible for respiratory diseases.
The study [3] indicates that there is an increased risk of AECOPD (acute exacerbation of
chronic obstructive pulmonary disease) under conditions of high concentrations of solid
particles, low ambient temperature, and low humidity. These conditions occur especially
in the winter season when, due to low emissions, increased concentrations are observed.
The literature [4] also indicates that high concentrations of PM reduce the benefits of
outdoor activities, such as walking or cycling.

The use of flying robots for particle measurement has been reported in the literature,
for example, in [5,6]. In [7], a balloon/drone-based platform was developed to monitor
PM2.5 pollutants at different altitudes. The [8] study compares the results of PM and
ozone measurements using a fixed-wing drone and an aircraft carrier at high altitudes
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in a low troposphere. Similar research using drones with wings is presented in [9]. The
work [10] uses a multirotor robot to measure air pollution during fires in a large area
(that is, more than 1000 ha). Similar studies on the measurement of bioaerosols, which
are aerosols of biological origin, are presented in [11,12]. The work [13] evaluated the
suitability of drones for volcanic observations, where a method was proposed to measure
the wind, PM, and gas velocities under field conditions. The work [14] presents the
possibility of using a drone to automatically neutralize CO and PM pollutants with the use
of activated carbon absorbing sheets. In [15], a robot-based four-rotor system was presented
for high-resolution measurement of the vertical distribution of PM particle concentration,
black carbon, ozone, nitrogen oxides (NOx), and carbon monoxide. Similar approaches
are presented in [16–18]. The article [19] estimated a 3D spatial profile of air pollution
spread at intersections in densely populated areas. The methodology of cooperation
between stationary measurements, measurements using drones, and the atmospheric
dispersion modeling process (WRF-CFD model) was applied. The comparability of the data
obtained experimentally and those obtained through the modeling process was indicated to
guarantee the possibility of identifying hotspots, which are areas with significantly higher
concentrations. However, the modeling process assumed that there were no other sources
of pollution other than traffic. Similar studies are described in [20], where vertical profiles
of solid particles were determined in a street canyon, which is a street surrounded by tall
buildings. In [21], a system was designed to measure air pollution, consisting of a low-cost
Arduino-compatible measuring system and a multirotor hexacopter robot. However, the
system is now equipped with sensors to measure only CO, NO2, temperature, and humidity.
The presented system was used to measure these pollutants under urban conditions, and
then, based on the collected data, pollution maps were generated. A similar low-cost
system that can be equipped with up to nine different sensors is shown in [22]. With the
proposed solution, many harmful chemicals, such as ammonia, hexane, benzene, carbon
monoxide, and carbon dioxide, as well as combustible substances, such as hydrogen and
methane, can be detected. Furthermore, a very important function is the ability to perform
particulate matter measurements: PM2.5 and PM10. The work [23] aimed to develop
a unified long-range communication and sensor system as an innovative platform for
atmospheric measurements using a multi-rotor robot.

A detailed analysis of the effectiveness of PM measurements using drones is presented
in [24]. It was shown that the influence of robot rotors on the measurement process has little
effect on the particle size distribution but strongly influences the particle concentration. In
the example of PM2.5 particles, differences in measured concentration ranging from −70%
to more than 400% were demonstrated when comparing the measurements before and after
turning on the rotors. It was also indicated that both the sensor mounting method and the
location of the inlet of the measurement system are critical aspects of the measurements
performed with the use of drones. There has also been guidance that the area directly
above the drone appears to be the optimal place to mount the sensor. In [25], particulate
matter air pollution tests were carried out for PM1.0, PM2.5, and PM10 using inexpensive
sensors mounted on an unmanned aerial vehicle. The analysis included the change in the
measured concentration values depending on the flight altitude of the drone. The decision
tree method was used, which allowed one to determine the optimal flight height of the
measurement drone in a specific area.

Flying robots present significant challenges in terms of the dimensions and weight
of the measuring system that can be mounted on them, making it generally impossible to
install laboratory-grade measurement instruments on them. Consequently, miniaturized
and low-cost sensors [26,27] are commonly employed in this type of robot for monitoring
air pollution. The selection of sensors for a measurement system must consider not only
connection interface, power requirements, dimensions, and weight, but also the method
of particulate matter measurement [28], such as gravimetric, optical, and microbalance.
The study [29] presents an innovative sensor calibration algorithm, while also discussing
the impact of atmospheric conditions, such as humidity, temperature, and ambient light



Energies 2023, 16, 2959 3 of 16

intensity on measurement results, particularly the negative effects of high humidity on mea-
surement accuracy. The article [26] provides an overview of 50 low-cost PM sensors from a
developer’s perspective. Several studies [30,31] have been conducted to evaluate the perfor-
mance of low-cost sensors under different environmental conditions. The most extensive
research on this topic, presented in [32], analyzes the measurement properties of 40 different
low-cost sensors and compares their data to that of laboratory-grade instruments. Using the
insights gained from these studies, the appropriate sensor type can be selected for the robot
being developed.

In summary, a dedicated multirotor flying robot can be employed to not only measure
but also autonomously locate sources of air pollution [33]. However, the operation of robot
rotors causes significant disruptions to the natural airflow and gas-transported particle
fields, which can negatively impact measurements. One of the greatest research gaps in
this area is the inability of a robot to automatically locate the source of pollutants in an
energy-efficient manner. This is a complex issue that requires not only the incorporation of
appropriate search algorithms [34], but also the determination of the appropriate sensor
location and the structure of the measurement system. The current literature contains
conflicting design guidelines that primarily focus on measurement accuracy but may not
be suitable for source-location applications. For example, overestimating the measured
concentrations may be beneficial in practical applications, as the pollution plume becomes
weaker as it moves away from the source. The measured concentrations are then only
slightly higher than the ambient concentration level. Therefore, the objective of the study
is to estimate the disturbance of the natural flow field caused by the rotors of a dedicated
flying robot. Estimation will allow for the correct design of the measurement system.
Another goal is to trace the trajectory online and then to obtain guidance to reach the source.
The preliminary findings of our research [35], which include both computational fluid
dynamics (CFD) simulations and an experimental flight test of a measurement system with
an estimated inlet location, have confirmed the proposed methodology. To further enhance
the approach, a computer model of the flow field will be developed to optimize the location
of the measurement system inlet based on new design criteria. Real field measurements
on a large scale will then be performed, and correlation analyzes will be performed for
PM sensors, taking the inlet location into account. The results obtained from this study
will allow improvements in the design of the autonomous robot measurement system,
as well as improvements in the control system for a more accurate and efficient source
location of pollution. It is important to note that the proper design of the measurement
system increases the energy efficiency of the robot. A more sensitive measurement system
leads to faster detection, identification, and neutralization of pollution. Furthermore, the
initial search can be carried out on a sparser grid of points, resulting in a shorter flight time
required for the drone [36], ultimately leading to a reduction in energy consumption.

2. Model-Based Measurement System Design
2.1. CFD Model

The present study uses a computational fluid dynamics (CFD) model to analyze a fly-
ing hexacopter robot, which has a six-rotor configuration shown in Figure 1a. This research
builds on previous work [35,37] which described the methodology for the development of
the computational model, presented the comparison of the results for various rotor config-
urations, and identified the optimal one. The mesh independence of the solution was also
examined and obtained, with the criterion adopted that the difference from the previous
step should be less than 10% for the next step in computational mesh refinement. For
example, in the case of a configuration with one rotor, the difference in the rotor parameters
was about 1%, and in the case of velocity magnitude, about 8%. The validity of the model
was established by comparing it with experimental data obtained from a custom-built
single-propeller dynamometer station. Factors such as thrust force, torque, and mechanical
power were compared, with the most significant difference found for mechanical power,
which was approximately 10%. When comparing the configuration of six rotors with a
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single rotor configuration, the differences amounted to approximately 5%. These results
were considered accurate, and the modeling process was deemed correct. It is important
to note that the model used in this analysis is a simplification of the actual system, as
it includes only the rotors and excludes the body and supporting structure of the robot.
The fundamental aspect of drone design is to ensure that these volumes do not significantly
impact the air flow generated by the rotors. Therefore, the proper truss-shaped geometry
of the arms minimizes their influence on the flow field. As previously reported in [37],
the flow streamlines do not intersect the region where the body of the drone would be
located, indicating that the primary flow bypasses it.

Figure 1. The six-rotor configuration: (a) geometric model; (b) boundary conditions—top view;
(c) side view. Boundary conditions are as follows: pressure-inlet—1; pressure-outlet—2; interface—3;
rotating-wall—4; dynamic zones—5; static zone—6.

The model was developed using the finite-volume method (FVM) implemented in
Ansys Fluent software. It is based on the Navier–Stokes equations, which are derived from
the principles of mass conservation and momentum [38]. Simplifications were made by
assuming a lack of mass sources, external and gravitational forces, and a constant fluid
density. This gives a mass conservation equation in a control volume as

∇ · u = 0 (1)

Since momentum in a control volume remains constant, the conservation of mo-
mentum implies that momentum can only change through the action of forces based on
Newton’s laws. The corresponding equation in terms of the volume of the particle is
expressed as

ρ

[
∂u
∂t

+ (u · ∇)u
]
= −∇p +∇ · ( ¯̄τ) (2)

where ρ is the density of the fluid, u is the velocity vector in the Cartesian coordinate system,
and p is the static pressure. According to the general deformation law of the Newtonian
viscous fluid given by Stokes, the stress tensor ¯̄τ is expressed as

¯̄τ = µ

[(
∇u +∇uT

)
− 2

3
∇ · uI

]
(3)

where µ is the kinetic viscosity, and I is the identity tensor. The approximate solution is
calculated using the RANS (Reynolds-average Navier–Stokes) model, which decomposes
the solution variables in instantaneous (accurate) equations into means and variable com-
ponents. For the flow velocity ui in direction xi (i = 1, 2, 3) and the scalar quantities φ, this
can be written as

ui(xi, t) = Ūi(xi) + u′i(xi, t), φ(xi, t) = Φ̄(xi) + φ′(xi, t) (4)
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where Ūi and u′i are the average and time-varying components of velocity, respectively,
and Φ̄ and φ′ are the average and time-varying components of scalar quantities such as
pressure, energy, or intensity. The averaging process in the time period T can be described
as follows

Ūi(xi) = lim
T→∞

∫ T

0
ui(xi, t) dt, Φ̄(xi) = lim

T→∞

∫ T

0
φ(xi, t) dt (5)

The standard model of k − ω proposed by Wilcox [39] is based on the transport
equations of the kinetic energy of the turbulence k and the specific dissipation rate ω. The
shear stress transport (SST) k− ω model [40,41] includes a mixing function designed to
activate the standard k−ω model when it has a value of one and to activate the transformed
model k − ε when zero. This model also features the principal turbulent shear stress
transport when defining turbulent viscosity. These characteristics make the SST k − ω
model more accurate and reliable than the standard k−ω model for a wide class of flows,
especially in rotating machines. The intensity of the turbulence I is an important field
parameter and is defined as

I =
u′

Ū
=

√
1
3 ∑3

i=1 u′i
2√

∑3
i=1 Ūi

2
(6)

where u′ is the root mean square of turbulent velocity fluctuations, and Ū is the mean
velocity magnitude. Typically, for the high-turbulence case, the intensity of the turbulence
is between 5% and 20%, and for the medium-turbulence case it is in the range of 1% to 5%.

In the case of the studied system with six rotating rotors, it is not only advantageous
but also necessary to solve flow equations in the non-inertial reference frame. Ansys Fluent
software by default solves them in a stationary reference frame. However, after activating
the MRF (multiple reference frame) for each rotor by assigning to it a specific rotational
speed, the equations of motion are modified based on the added acceleration terms. At the
domain contact surfaces (interfaces) between rotating and stationary zones, a local datum
transformation is performed. That allows for transfer of the flow parameters in one zone to
the boundaries of a neighboring one.

The propellers used are 0.25 m in diameter (10′′) and 0.11 m pitch (4.5′′). The outer
diameter of the computational domain is 1 m, while the height is 0.2 m. The boundary
conditions adopted are shown in Figure 1b,c. A non-structural and non-conformal mesh
(Figure 2a) was prepared due to the complex geometry of the rotor. It was also necessary
to model a boundary layer, which was achieved by a significant local refinement of the
mesh (as shown in Figure 2b). As mentioned at the beginning of the section, the guidelines
for creating this computational mesh are based on our previous work. The mesh quality
parameters were acceptable; for example, the maximum value of the skewness was 0.87.
The percentage of skewness of the elements in the range from 0.5 to 0.87 represented a
maximum of 6% of all the elements in the model. The total number of all mesh elements
was approximately 15.3 million. An approximate 0.98 maximum value of the y+ parameter
was reached on the surface of the propellers.
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Figure 2. The prepared mesh: (a) entire domain; (b) close-up on the boundary layer of the rotor.

2.2. CFD Results and Design Decisions

The modeling process was carried out to obtain information about a phenomenon that
is very difficult or even impossible to determine experimentally. The examples of such
are, i.a., the distributions of velocity and turbulent intensity. These data in the form of
isosurface visualization are presented in Figure 3.

(a) (b)

Figure 3. Isosurface visualisation of the field parameter distribution: (a) velocity magnitude—0.3, 1.0,
3.0 m/s (grey, red, black); (b) turbulence intensity—1, 5, 14% (grey, red, black).

The following procedure was applied to determine the best possible inlet location
of the measurement system (first presented in [37] and used there for comparison of
the rotor configurations). In the postprocessing stage, and using the polar coordinate
system, the control points were placed in circles of increasing radii with a step of 0.001 m.
A constant quantity of 500 points was kept in each circle. At all points, the values of the
flow field parameters were read. For each of the circles, the maximum (MAX), minimum
(MIN), and mean (MEAN) values of these were summarized in Figure 4. These points
are placed in two planes located 0.05 m and 0.10 m, below and parallel to the rotor plane.
These distances correspond to the location of the motor mounting and the extended arm
surfaces, respectively. The greatest values occur at distances of about 0.15 m to 0.4 m from
the robot’s center, that is, directly under the rotors.

The values of the radii for which the MIN, MAX, and MEAN field parameter values are
similar in magnitude are areas where the influence of rotors on the flow field is insignificant.
In particular, for the velocity magnitude, the difference between the MEAN and MAX
values disappears almost completely for a value of about 1.0 m/s. Based on the analysis of
the parameters indicated in Figure 4, it was decided to adopt the criterion of not exceeding
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the maximum velocity magnitude. For Vmax, three thresholds Vt were considered Vmax < Vt,
that is: 0.5, 1.0, and 2.0 m/s. Since the flow velocity is maximal within a limited range,
two radius values r were found for these thresholds, that is, rmin and rmax for which the
threshold value is exceeded. In other words, the flow velocity is greater than the threshold
for a radius smaller than rmin and greater than rmax. The results for both sections analyzed
are summarized in Table 1. The table also includes the values of Imax of the maximum
turbulent intensity for the given radii.
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Figure 4. Minimum (MIN), maximum (MAX), and average (MEAN) values of parameters from the
CFD computer model for sections located (0.05 m) and (0.1 m) under the rotors’ plane: (a) velocity
magnitude; (b) turbulent intensity.

Table 1. Parameters in the sections analyzed for selected velocity magnitude thresholds.

Vt Section rmin rmax Imax(rmin) Imax(rmax)

0.5 m/s 0.05 m 0.065 m 0.470 m 3.98% 1.87%
0.10 m 0.032 m 0.448 m 2.52% 2.58%

1.0 m/s 0.05 m 0.118 m 0.428 m 6.71% 3.77%
0.10 m 0.105 m 0.421 m 5.33% 11.6%

2.0 m/s 0.05 m 0.144 m 0.389 m 24.2% 45.5%
0.10 m 0.142 m 0.404 m 33.6% 41.1%

It was decided to adopt the Vt threshold value equal to 1.0 m/s. This value was the
most appropriate since for the 0.5 m/s threshold the found radii are practically within the
boundaries of the computational domain. On the other hand, for the 2.0 m/s threshold, the
turbulence intensities are in the range from 24.2% to 41.1%, so they are a very high case.
When the turbulence intensity is also taken into account, the inlet of the measuring system
should be located:

• Under the robot—0.10 m under the rotors’ plane, not further than 0.105 m. For this
radius, the maximum turbulent intensity does not exceed 5.33%;

• On the extended arm—0.05 m below the rotors’ plane, at a distance greater than 0.428 m.
For this radius, the maximum turbulent intensity does not exceed 3.77%.

During the construction of the prototype, it was decided to further investigate two
locations for the inlet of the robot’s measurement system. According to the guidelines
given, the inlet below the robot was located 0.10 m below the rotors’ plane and 0.10 m from
the robot center of gravity (COG). The maximum value of the turbulent intensity for this
location is 4.80%. The extended arm inlet was located 0.05 m below the rotors’ plane and
0.50 m from the COG where the maximum value of turbulent intensity was 1.96%.

2.3. Final Prototype of the Measurement System

The final design robot has six drive sets, which include: EMAX MT2213 BLDC motors,
30 A ESCs, and 10 inch propellers. The maximum external dimensions of the robot are ap-
proximately 0.81 m × 0.81 m × 0.23 m. The robot is equipped with 2 identical high-current
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lithium polymer batteries (LiPo) with a nominal voltage of 11.1 V and a total capacity of 13 Ah.
The weight of the robot with the measurement and control system is 2.54 kg, which does not
exceed its lifting capacity of about 5 kg and allows for up to 25 min of flight.

The robot was equipped with two identical low-cost Plantower PMS5003 sensors.
Their inlet locations are marked in Figure 5 as INT and EXT, which means internal and
external. The sensors were mounted directly to the supporting structure without inlet
extrusions to not adversely affect their measurement properties. The selected sensors are
characterized by an active air intake system and a low overall response time. With these
benefits, the robot can move faster and spend less time at the designated measurement
points. The main sensor properties provided by the manufacturer are: measuring range
0.3 – 1.0, 1.0–2.5, and 2.5–10.0 µm, counting efficiency of 50% for particle sizes 0.3 µm and
98% for greater than 0.5 µm, resolution 1 µg/m3, and total response time less than 10 s. The
external dimensions of the sensor are 50 mm × 38 mm × 21 mm, and weight is about 38 g.

Figure 5. Final robot and measurement system schematic.

A simplified block diagram of the robot is presented in Figure 6. The robot was
equipped with a flight controller and a prepared measurement and control system. The mea-
surement and control system has external dimensions of about 0.12 m × 0.12 m × 0.04 m,
it is powered by an independent converter, and its total mass with a PMS5003 sensor is
about 0.33 kg. The key components of the system, apart from the microcontroller, are
the fast flash memory that allows data recording, and the particle sensors. Additionally,
the robot was fitted with a ready-made Pixhawk flight controller that is responsible for
keeping the robot in the air. The measurement and control system takes measurements and
directs the robot to the required coordinates. The robot was also equipped with additional
components, such as GPS, RC receiver, telemetry radio, or battery monitor. Equipping the
robot with a ready-made flight controller was a practical measure due to the simplification
of the structure by dividing the functions directly related to the flight and the algorithm
of searching for the source of pollution or PM measurements. Communication between
the two controllers in the hardware layer takes place using the UART interface. For the
software side, the Mavlink protocol was used.

Figure 6. Simplified block diagram of the designed robot.

3. Experimental Results
3.1. Measurement System Analysis

The analysis of the measurement data collected by the particulate matter sensors began
with evaluating the properties of the sensors themselves. The sensors were found to have a
variable sampling frequency that increased with higher levels of measured concentration.
The measured PM10 concentration, which includes all particles counted by the sensor, was
analyzed over time and is presented in Figure 7. The minimum, maximum, and average
sampling frequencies were found to be 1.087 Hz, 1.191 Hz, and 1.123 Hz, respectively.
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This behavior of the sensors presents an additional challenge when comparing data from
multiple independently operating sensors. To synchronize the data from various sensors, it
was decided to determine the mean and median of the data for selected averaging periods.
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Figure 7. Raw data and average of PM10 data from the single sensor for selected averaging periods:
(a) 1 s; (b) 2 s; (c) 5 s; (d) 10 s.

The analysis was designed to examine the measurement properties of the sensors used
and to select the appropriate averaging period. As there were no significant differences
between the two versions, it was decided to use the mean, not the median. As the sensor is
mounted on a multirotor robot, the averaging time cannot be too long. Based on the data
presented, the most appropriate value is in the 2 s to 5 s range. The value of 3 s for the
averaging time was adopted. When this value was taken into account, the concentrations
were measured first in a closed room with the use of two identical sensors. The concen-
tration data for PM1.0, PM2.5, and PM10 were recorded in 10 min. The results for PM10 are
presented in Figure 8. On the basis of these data, an analysis was performed to verify that
the obtained distributions have the character of a normal distribution. The graphic analysis
is presented in Figure 8c,d in the form of a histogram and a quantile graph. In particular,
based on Figure 8d, it should be assumed that the data are normal in a practical sense.
Furthermore, the statistical parameters were determined and summarized in Table 2.
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Figure 8. PM10 data from both sensors: (a) time series; (b) box plot; (c) histogram; (d) qq plot.

Table 2. Statistical data determined for two PMS5003 sensors tested.

Parameter
INT EXT

PM1.0 PM2.5 PM10 PM1.0 PM2.5 PM10

Mean [µg/m3] 13.38 21.39 24.70 11.93 19.88 21.76

Standard deviation [µg/m3] 1.03 1.82 1.89 0.74 1.87 2.02

Expanded uncertainty [µg/m3] 0.15 0.26 0.27 0.10 0.26 0.29

The average sampling rates for this example were 1.1476 Hz and 1.1560 Hz, and the
numbers of samples collected was 687 and 692, respectively. After averaging, the number
of samples was equal to 200 for both sensors. With such a large number of observations,
the coverage factor was assumed to be 2.0 to obtain a confidence interval of 95.45%. Based
on Table 2, it should also be noted that the concentration of PM10 is the highest and that
PM1.0 is the lowest. This is because the PM2.5 particles include the PM1.0 particles, and the
PM10 particles include both PM2.5 and PM1.0 in the same way.

3.2. System Validation in Field Conditions

Field testing was carried out in flat areas without buildings, traffic, or bystanders. For
measurements with a pollution source, the source was a small gastronomic grill located
at a height of 0.5 m. During the tests, the robot maintained a constant altitude of about
4 m above ground level, and the horizontal speed of the robot was limited to 1.0 m/s. In
addition, the robot also kept a constant orientation; that is, the nose (front) is to the north.
Constant orientation was prepared in light of the fact that the sensor position at the end of
the extended arm can be very easily determined by adding a constant value to the current
position of the robot. In the case of measurements on a pole, the robot was located at a
height similar to that when hovering. Measurements were made for the robot in a hovering
state, stationary on a pole, and moving along various trajectories. In the cases where a
pollution source was present, the robot also moved along the trajectories to find it.
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Earlier analyses allowed us to indicate the proper way to process measurement data.
With this knowledge in mind, a number of field measurements were performed for different
atmospheric conditions and different average background concentrations of solid particles.
The data were classified into three main groups, i.e., measurements made without the
source of pollution during the flight and on the pole and measurements with the pollution
source present. Figures 9–11 present the collected data in the form of histograms and scatter
plots with Pearson’s correlation coefficients determined. The results of PM10 from the
first measurements, when the source of pollution was absent, were compared with those
obtained from the nearby ground station, and the differences do not exceed 10%. Placing a
reliable commercial grade particle counter on a drone is a difficult technical challenge and
will be covered in future research.

The most important aspect of the research was to check the presence of strong linear
correlations, independent of external conditions or the robot’s trajectory. The figures
presented confirm the existence of such a relationship. The high internal correlation of the
sensors results from including smaller-diameter particle measurements in larger-diameter
particle measurements. The relationship discussed becomes even stronger under operating
conditions of the rotors and when a pollution source is present. This is because both the
speed of the air flow and the contaminants it contains, caused by the movement of the
rotors, are dominant in relation to the speed of the air flowing around the drone.

Figure 9. Histogram and correlation of measured PM concentrations without pollution source.
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Figure 10. Histogram and correlation of measured PM concentrations without pollution source
during flight.

Figure 11. Histogram and correlation of measured PM concentrations with the source of pollution
during flight.

When the source of the pollution was present, the histograms clearly showed more
values at the ambient concentration level compared to the extreme values. These are
background concentrations, while extreme values occurred during the robot’s contact with
the pollution plume. The correlation of the internal values of the sensor concentrations,
which also occurs in this case, is divided into two separate groups because of different
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types of contamination, namely the stage of the combustion process. It is most noticeable
for the smallest particles (PM1.0 and PM2.5). Table 3 summarizes the total measurement
time and the coefficients of the linear dependence equation

PM10,int = a · PM10,ext + b (7)

where PM10,int is an internal measurement, and PM10,ext is an external measurement.

Table 3. Summary of data collected under field conditions.

Rotors State Pollution Source Total Time PM10 Coefficients
R2

a b

OFF ABSENT 57 min 30 s 0.5970 14.3742 0.55

ON ABSENT 72 min 54 s 0.7362 8.5585 0.87
PRESENT 90 min 45 s 1.1984 4.9370 0.70

Note that the highest value of the determination coefficient occurs for cases where
the robot’s rotors are turned on. The determination coefficient (Table 3) indicates that with
the rotors turned off, the results were less correlated (55%), compared to the rotors turned
on (more than 70%). This means that the difference between sensor readings increases
under such conditions. In the case of the concentration of PM10 covering all the measured
particles, the concentrations on the internal sensor are overstated relative to the external
sensor. Therefore, an internal sensor is more appropriate to find the source of the pollution.
Both the occurrence and the proven correctness of such a relationship prove that on the
basis of the measurement from one of the sensors, it is possible to estimate the value of the
other one.

4. Conclusions

In summary, a prototype of a measurement system for an autonomous multirotor
flying robot dedicated to searching for sources of air pollution was designed and tested
under field conditions. The design of the measurement system incorporated energy-
efficient considerations, such as the sensitivity of the system to contamination, to min-
imize the required flight time of the drone and ultimately reduce energy consumption.
The effectiveness of the measurement system was achieved using a flow field computer
model, which was built using the finite-volume method implemented in the numerical
simulation software Ansys Fluent. Based on the data from the model, a novel criterion was
proposed and applied that allowed the selection of the most appropriate locations of the
measurement system inlet. It indicated the second placement within the space restricted by
the rotors underneath the robot, in addition to the first most prominent placement on the
extended arm. The measurement properties of the two PM sensors used were then investi-
gated to determine their performance. This part of the work also proposes an appropriate
method to process measurement data and defines guidelines for field research. Validation
experiments were conducted first indoors at a constant concentration and then outdoors at
a different level of background concentration and different atmospheric conditions. Field
tests were carried out in three categories: movement with stationary rotors, flights with
a pollution source present, and flights without a pollution source present, with the robot
following various trajectories. The data collected revealed strong correlations between
the readings from both sensors, regardless of external conditions or the robot’s trajectory.
The field results confirm the validity of the conclusions drawn from the model analysis.
Furthermore, when effectively searching for sources of pollution, the internal sensor located
under the robot was found to be definitely better.

An important direction for further research, in addition to improving the accuracy of
measurements, is the complex analysis of the possibility of recognizing the type of burnt
elements based on the data of both sensors because the correlation of sensor indications
in the case of the presence of a pollution source was clearly divided into two separate
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groups. Some aspects of modeling can also be improved, for example, by using a larger
computational domain or the sliding mesh method. It is also important to confirm the
assumed negligible influence of the robot body by including it in the model. Furthermore,
the design procedure presented in this article with a slight modification can be applied
to a drone measurement system that searches for many other sources of anthropological
and natural air pollution. Another series of verification tests are planned in which the
robot will first navigate using its internal sensor and then using its external one. Further
research is planned to verify the applicability of the observed correlations and conclu-
sions to other types of PM sensors, which may employ different measurement methods.
The operation of both sensors for different pollution source search algorithms will also be
verified. After this, the energy efficiency of the proposed solution can be quantitatively
estimated. Optimization of the robot’s frame in order to minimize its weight should also be
considered, as this will extend the flight time.
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