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Abstract: At present, the non-intrusive load decomposition method for low-frequency sampling
data is as yet insufficient within the context of generalization performance, failing to meet the
decomposition accuracy requirements when applied to novel scenarios. To address this issue, a non-
intrusive load decomposition method based on instance-batch normalization network is proposed.
This method uses an encoder-decoder structure with attention mechanism, in which skip connections
are introduced at the corresponding layers of the encoder and decoder. In this way, the decoder
can reconstruct a more accurate power sequence of the target. The proposed model was tested on
two public datasets, REDD and UKDALE, and the performance was compared with mainstream
algorithms. The results show that the F1 score was higher by an average of 18.4 when compared with
mainstream algorithms. Additionally, the mean absolute error reduced by an average of 25%, and the
root mean square error was reduced by an average of 22%.

Keywords: non-intrusive load monitoring; instance-batch normalization network; attention mechanism;
skip connection; transfer learning

1. Introduction

Non-intrusive load monitoring (NILM) technology decomposes the total load informa-
tion at a power entrance to obtain information about the amount of electricity consumption
of each equipment load, providing technical support for efficient power management [1,2].
NILM technology is a low-cost energy consumption monitoring and management method
that can effectively reduce energy waste in buildings and has important practical implica-
tions for achieving “carbon peaking” and “carbon neutrality” [3,4].

NILM was first proposed by Professor George W. Hart in 1992 and was developed
to simplify the process of collecting energy consumption data [5]. The development of
instrumentation, computer technology, and the release of various public datasets such
as REDD [6] and UK-DALE [7], provided a database and technical support system for
non-invasive load decomposition [2]. Kelly et al. developed a non-invasive load decom-
position toolkit (NILMTK) based on traditional algorithms in 2014 [8]. Then, they started
investigating the application of deep learning algorithms in this field and used long short-
term memory (LSTM) networks, denoising autoencoders (DAE), and convolutional neural
networks (CNN) to solve non-intrusive load decomposition problems in 2015 [9]. In 2019,
Batra et al. updated the toolkit by including the latest algorithms capable of performing
load decomposition tasks at that time [10].

Up until now, the vast amount of NILM research that has been conducted by do-
mestic and foreign scholars can be divided into two categories based on the frequency
of data acquisition: (1) load decomposition methods based on high-frequency data and
(2) load decomposition methods based on low-frequency data [2]. The data acquired by
high-frequency acquisition (>1 Hz) contain richer information in regard to certain electrical
parameters, such as harmonics, electromagnetic interference, V-I trajectory information, etc.
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For example, reference [1] collects harmonics, voltage-to-ampere ratio coefficients, and
other features from real data, and proposes a non-intrusive load identification method
based on the feature-weighted k-nearest neighbor (KNN) algorithm, solving the prob-
lem of misjudgment when identifying certain classes of loads in unbalanced datasets. In
prior research [3], there have been instances of U-I trajectory images being constructed
using voltage and current data acquired at high frequencies, while devices are accurately
identified using a non-intrusive load decomposition method based on color coding. How-
ever, the acquisition of high-frequency data requires high-level measurement equipment,
which involves a complex process of high costs and is therefore not suitable for residential
electricity loads [11].

For these reasons, researchers have shifted their focus to the study of improving the
accuracy of load decomposition based on low-frequency data (≤1 Hz) obtained from smart
meters [12]. Prior work [13] proposed the adaptive density peak clustering-factorial hidden
Markov model (ADP-FHMM) to reduce the dependence of prior information. Another
study [14] introduced the appliances ON-OFF state identification factor in the hidden
Markov model (HMM) to improve the accuracy of load decomposition. In [15], a non-
linear support vector machine (SVM) approach is proposed to address the NILM problem.
The method uses power differences to detect events for the switching states of electrical
equipment, and [16] used the K-nearest neighbor algorithm (KNN) to solve the NILM
problem, investigating the optimal settings of KNN variants.

However, both HMM-based methods and machine learning methods, such as SVM
and KNN-based methods, require manual feature extraction. In contrast, deep neural
network methods can automatically extract features without human involvement [17].
Prior work [18] has used the convolutional neural nets (CNN) model with sequence to point
(seq2point) to reduce the misclassification rate of load decomposition. In another study [19],
a preliminary exploration of the appliance transfer learning (ATL) and cross region transfer
learning (CTL) capabilities of the model proposed in reference [18] was conducted, and the
experimental results demonstrated that, while the seq2point model displays some capacity
for generalization performance, parameter tuning is still required when applied to different
datasets. Others [11] improved on this algorithm [18] by introducing the channel attention
and spatial attention mechanisms into the sequence-to-point model, which improved the
load decomposition efficiency. Another study [20] proposed a load disaggregation with
attention (LDwA) model, which combines a regression sub-network with a classification
sub-network. Here, the regression sub-network uses an encoder-decoder structure with an
attention mechanism, and the classification sub-network uses a full convolutional network,
relatively improving the generalization ability of the model. However, there is no evidence
of any improvement with regard to the decomposition effect for multi-state appliances.

Although the performance of non-intrusive load decomposition methods for low-
frequency sampling has greatly improved, generalization performance remains a com-
paratively difficult challenge to overcome. Therefore, in this paper, we seek to improve
upon the classical seq2point model by applying instance-batch normalization networks
(IBN-Net) to achieve better generalization performance capabilities in the field of non-
intrusive load decomposition. The proposed model uses an encoder-decoder structure with
a fused attention mechanism, in which the encoder and decoder are composed of multiple
layers of IBN-Net with integrated instance normalization (IN) and batch normalization
(BN) structures. This model allows the shallow output of the encoder to be fed into the
corresponding layer of the decoder using a skip connection, improving the multi-scale
information fusion capability of the network, and helping the encoder to construct more
accurate power sequences of the target appliances. In this paper, the model is trained and
tested using two publicly available datasets, REDD and UK-DALE. We also compare the
proposed algorithm with current, more advanced algorithms, and the experimental results
provide support for the accuracy and effectiveness of our proposed algorithm.
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2. Non-Intrusive Load Decomposition Model
2.1. Non-Intrusive Load Decomposition Problem Modeling

The purpose of non-intrusive load decomposition is to obtain the power information
of individual power-using devices by collecting the total load power information at the
power inlet via the energy decomposition method. The only power information required
by the proposed algorithm is the active power data that can be sampled at low frequencies.
The decomposition task model can be described as follows: the total power sequence of a
household within a period of time T is Y, where Y = {y1, y2, · · · , yT}, and each element
within the sequence yt is the sum of the power of all power-using devices in the household
at the time of t; and assuming that the household has M devices, the power sequence of the
i device at the corresponding time can be expressed as Xi, where Xi = {xi1, xi2, · · · , xiT},
and xit represents the power of the t device at the time of i. The model can then be expressed
as follows:

yt =
M

∑
i=1

xit + ε (1)

where ε is a Gaussian noise factor with zero mean. The principle of non-intrusive load
decomposition is to use the total power measurements to estimate the power values of
individual devices.

2.2. Seq2point Framework

In recent years, the seq2point model and its variants have been widely used in the field
of load decomposition; these predict the corresponding window sequence midpoint values
of individual equipment loads from a fixed-length sequence of total load windows [11].
The load decomposition model of the seq2point architecture can be expressed as

xτ = Fb(Yt:t+L−1) + ε (2)

where the input to the model is Yt:t+L−1, which is a sequence of total power windows with
a window length of L; the output is the midpoint element of the corresponding sequence
of target appliance windows xτ , where τ = t + [L/2]. Fb is the neural network that maps
the input Yt:t+L−1 to the output and xτ ; and ε is the L dimensional Gaussian noise. Before
processing the input power sequence, it is necessary to complete the first and last ends of
the complete input power sequence with L/2 zero elements [18]. The method described in
the paper uses a sequence-to-point mapping approach, which avoids interference from edge
information of window sequences and improves the model’s generalization performance.

2.3. Flow Chart of Load Decomposition in This Paper

Figure 1 shows the flow of non-intrusive load decomposition in this study. It is
easy to see from the flow chart that this study utilizes specific models for each individual
appliance, while the network structure is constructed according to: (1) the physical meaning
of non-intrusive load decomposition, and (2) the balance between the related strengths and
weaknesses of each sub-network for the encoding and decoding processes. This approach
avoids the potential network redundancy caused by the simple splicing of deep learning
network structures.
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3. Seq2point Model Based on IBN-Net Codec Mechanism

In this paper, a sequence-to-point architecture is used, with internal replacement
serving as an IBN-Net-based encoding-decoding mechanism, while the whole network
consists two components, as shown in Figure 2. The encoder extracts the power information
of the target appliance from the total power window sequence Yt:t+L−1 and maps it to the
context vector C, C = {h1, h2, . . . , hL}, ht for the hidden state at the moment of the input
sequence t generated during the encoding process. This is represented by Equation (3).

C = fe(WYt:t+L−1 + b) (3)
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The decoding process is shown by Equation (4):

xτ = fd
(
W ′C′ + b′

)
(4)

where: fe is the encoding function; fd is the decoding function; W, b and W ′, b′ are the
function weights and biases of the encoding and decoding layers, respectively; and C′ is
the dynamically variable context vector in the decoding process, which is generated by the
attention mechanism between the encoder and decoder.

The encoder primarily consists multiple IBN-Net sub-modules, each of which is followed
by a maximum pooling layer to reduce the temporal resolution and facilitate the network
learning the high-level features of the target device, while the output of the IBN-Net stack
is converted into a context vector C by a fully connected layer (Dense). The decoder has a
similar structure to the encoder, consisting the same number of IBN-Net modules, where
each IBN-Net is followed by a deconvolution layer to progressively increase the temporal
resolution and reconstruct the signal from the target device. In addition, a skip connection
function has been added to connect the output of the corresponding IBN-Net layer from
the encoder to the decoder, as shown in Figure 2. The skip connection can help the decoder
better fuse the features extracted from the shallow network of the encoder and allow for a
more accurate reconstruction of the target device power sequence. Skip connections between
corresponding layers in the encoder and decoder are implemented using the concatenate
(Conc) layer. After repeated experiments, the number of layers of the IBN-Net sub-module
in the encoder was determined to be five layers. The maximum pooling layer divides the
temporal resolution by two for each step in the encoder, while the deconvolution operation in
the decoder multiplies the temporal resolution in the decoder by two.
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3.1. IBN-Net Sub-Module

The instance and batch normalization network is a new convolutional network struc-
ture that integrates instance normalization (IN) and batch normalization (BN) [21,22]. This
integration enhances the CNN’s generalization ability across domains (e.g., load data of
other households or other datasets) without fine-tuning [23].

Depending on the different configurations of BN and IN, the IBN-Net can have dif-
ferent structures and be applied to a variety of scenarios. The structure of the IBN-Net
sub-module in this paper is shown in Figure 3. The IBN-Net consists three consecutive
convolutional layers with a shallow convolutional module combining batch normalization
and a corrected linear unit activation function (ReLU). The number of filters in the con-
volutional layers in all IBN-Net networks is either 64 or 256, respectively, and the kernel
size is three. The input of the IBN-Net is connected to the instance normalization layer
using residual connections so that the gradients can circulate throughout the model during
training, effectively preventing the gradient disappearance problem.
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3.2. Attention Mechanism

In the classical encoder-decoder architecture, only the context vector C is used between
the codecs to represent the information of the whole input sequence. As a result, the fixed-
length vector C is not capable of carrying all the information from the input when the
length of the input sequence increases to a certain level, revealing the limitations of the
model’s information processing capabilities. The introduction of the attention mechanism
solves this problem by providing the model with a corresponding focus that can be enabled
at different points during decoding, thus enhancing the information utilization capability
of the model [24].

Inspired by a previous study [18], the attention mechanism between the encoder and
the decoder in this study was designed as a single-layer feedforward neural network. This
neural network computes the attention weights and returns a weighted average of the
encoder’s output over time, i.e., the context vector C′. The attention unit captures moments
of significant activation by the target device in the encoder output features, extracting the
feature information that is deemed to be most valuable for decomposition. This process
allows the network to implicitly detect certain events (e.g., turning devices on or off) and
specific signal components (e.g., high power consumption) for the purpose of assigning
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them higher weights. The calculation process of the attention unit is shown in Figure 4. Its
mathematical definition is shown in Equations (5)–(7).
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Its mathematical definition is

et = Va
T × tanh(Waht + ba), t = 1, 2, · · · , L (5)

αt =
exp(et)

L
∑

j=1
exp(ej)

, t = 1, 2, · · · , L (6)

C′ =
L

∑
t=1

αtht (7)

where Va, Wa, and ba are parameters learned in conjunction with other components of the
network and are continuously adjusted with training.

4. Data Pre-Processing and Experimental Setup
4.1. Dataset Selection

The following two publicly available datasets, which contain data from different
countries, were selected for this paper.

The UK-DALE dataset [6] was first published by Jack Kelly in 2015 and contains
data on the active power (as distinguished from total power) and sub-devices of five UK
homes. The five houses that were analyzed contain 54, 20, 5, 6, and 26 sub-metering devices,
respectively, with a sampling period of 6 s collected over roughly 1 to 2.5 years.

The REDD dataset [7] was released in 2011 and collected data on the total house power
and sub-equipment energy consumption from six U.S. households, sampled at 1 Hz. It also
contains high-frequency data on the main power supply of the two houses, though it should
be noted that the model in our study is primarily concerned with energy consumption data
sampled at low frequencies.
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4.2. Electrical Selection

Regarding appliance selection, four appliances were selected for this paper: a refrig-
erator, a dishwasher, a microwave oven, and a washing machine. These four appliances
were chosen in accordance with the findings of prior research, while also considering
the distribution of appliances in the two aforementioned datasets. Additionally, the dif-
ferent operating characteristics of the four appliances allow for a full verification of the
proposed model’s load decomposition performance. Refrigerators (RF) and microwaves
(MW) are typical switching appliances, while washing machines (WM) and dishwashers
(DW) are multi-state appliances. They exist in multiple households in both datasets, which
is beneficial when testing for generalization performance.

4.3. Data Pre-Processing

Since the sampling frequencies of the two datasets are not uniform, it was neces-
sary to downsample the REDD dataset; this downsampling was performed using a 6 s
sampling interval.

After downsampling, missing data were patched and missing data longer than 3 min
(i.e., those with more than 30 consecutive missing data points) were attributed to device
shutdown; therefore, the corresponding elements were nullified. Gap filtering was per-
formed for data segments that were missing data shorter than 3 min (i.e., those with less
than 30 consecutive missing data points). The gap filtering was performed according to
previously established methods [25].

After obtaining the experimental data, the data were normalized using Equation (8).

z =
zt − zp

σ
(8)

where z is the normalized value; zt indicates the reading of the total power supply or
experimental appliance at time t; zp indicates the mean value of the total power supply or
experimental appliance, and σ indicates the standard deviation of the total power supply
or of the experimental appliance. The mean and standard deviation were calculated from
the data used in the current experiment.

4.4. Experimental Setup

The hardware environment uses a 64-bit computer with an Intel(R) CoreTM i7-11700
CPU @ 2.5 GHz and a GeForce GTX3060. The software platform is a Win10 operating system
running Python 3.6.13 (64-bit) and the Tensorflow 2.4.0 framework. The development
environment of the experiment was created using the NILMTK v0.4. Keras, an artificial
neural network library using TensorFlow as its backend, was used to build the model in
this study. The mean square error was chosen as the loss function and the Adam optimizer
was used to adjust the model parameters. The validation set loss during training was
monitored using the ModelCheckpoint callback function in Keras for the purpose of saving
the best models that emerged during the training process. All experiments were iterated for
100 epochs, and early stopping was used during the training process to prevent overfitting.
The patience of the early stopping mechanism was set to 20, i.e., we waited for 20 epochs
following the last validation loss improvement before interrupting the training loop.

Figure 5 shows the trend of validation loss and training loss during one of the training
sessions. The yellow curve represents the validation loss, and the blue curve represents
the training loss. The horizontal axis indicates the number of training iterations, and the
vertical axis represents the value of loss. During the training process, the validation loss
reached its minimum value at the 67th iteration, at which point the weights and other
training parameters were saved. The validation loss did not decrease further during the
next 20 iterations, so the training loop was interrupted at the 87th iteration, according to the
early stopping mechanism. It is worth noting that both the “train_loss” and “val_loss” are
dimensionless values because they were normalized during the data pre-processing stage.
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4.5. Performance Metrics

Mean absolute error (MAE) and root mean square error (RMSE) are commonly used
in the field of non-invasive load decomposition as metrics to evaluate the decomposition
accuracy of algorithms [2]. Therefore, this study likewise used these two kinds of perfor-
mance metrics to analyze the load decomposition accuracy. The calculation methods are
shown in Equations (9) and (10), respectively.

MAE =
1
m

m

∑
k=1

∣∣x′k − xk
∣∣ (9)

RMSE =

√√√√ 1
m

m

∑
k=1

(
x′k − xk

)2

(10)

where m is the number of sample points; xk is the true value of the kth sample point of
the target appliance; and x′k is the predicted value of the k-th sample point of the target
appliance. Both MAE and RMSE are expressed in watts.

In addition, to measure the recognition accuracy of each device being in either the
on or off state, we used the classification metric F1 score, which is the harmonic mean of
precision (P) and recall (R).

F1 =
2P · R
P + R

(11)

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

where TP indicates the number of samples when the target appliance is actually in operation
and the predicted value is determined to be in operation; FP indicates the number of
samples when the target appliance is actually off and the predicted value is determined
to be in operation; and FN indicates the number of samples when the target appliance is
actually in operation and the predicted value is determined to be off [20]. When the active
power is greater than a specific threshold, the appliance is considered to be “on”, and when
the active power is less than or equal to the same threshold, it is considered to be “off.”
The particular threshold, 15 W, was chosen in accordance with prior studies [20]. Precision,
recall, and the F1 score were represented by a value between 0 and 1. A higher F1 score
indicates a better classification performance for the model [12].
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5. Discussion

In order to verify the decomposition ability and generalization of the method in this
paper, the same experimental appliances were trained and tested within the same house, as
well as within different houses in the UK-DALE dataset. The proposed method was also
compared and analyzed against the more advanced DAE [9], Seq2seq [18], Seq2point [18],
and LDwA [20] algorithms. The evaluation metrics obtained from the experiments were
retained to three decimal places.

5.1. Comparison and Analysis of Experimental Results of the Same House

In the same house experiment, four kinds of experimental appliances—refrigerator, mi-
crowave, washing machine, and dishwasher—were trained and tested using low-frequency
power data from house 1. Different time periods were selected for the training and testing
sets, and there was no intersection between them. The results of the performance metrics for
this experiment are shown in Table 1. The last column of Table 1 is the average value of the
performance metrics of the four types of electrical appliances obtained by each algorithm
in the experimental results. “IBN-Net” in Table 1 denotes the model proposed in the paper.

Table 1. Comparison of experimental results of several algorithms.

Metric Models RF WM DW MW Average

MAE
(W)

DAE 24.071 23.352 13.631 13.376 18.608
Seq2seq 23.441 15.315 8.794 9.725 14.319

Seq2point 20.169 18.967 8.759 11.659 14.889
LDwA 19.037 13.416 8.954 8.694 12.525

IBN-Net 15.855 9.707 7.057 8.192 10.203

RMSE
(W)

DAE 37.578 141.003 119.317 86.412 96.078
Seq2seq 34.437 117.376 95.186 73.740 80.185

Seq2point 34.665 118.916 88.592 83.978 90.788
LDwA 29.154 85.112 66.712 76.037 64.254

IBN-Net 28.529 75.163 59.491 71.365 58.637

F1

DAE 0.783 0.253 0.332 0.313 0.420
Seq2seq 0.792 0.533 0.608 0.454 0.597

Seq2point 0.832 0.664 0.646 0.480 0.656
LDwA 0.905 0.822 0.672 0.689 0.772

IBN-Net 0.916 0.871 0.753 0.819 0.840

From the results of the evaluation metrics in Table 1, it can be seen that the error and
F1 scores of Seq2point and LDwA place them in a better position among the algorithms
compared, but both are inferior to the algorithm proposed in this study. In terms of average
values, when compared with the Seq2point and LDwA algorithms, our model shows a
reduction in the RSME by 35.4% and 8.7%, while the MAE is reduced by 31.5% and 18.5%,
and the F1 scores are improved by 28% and 8.8%, respectively. Among them, the reduction
of error indicators for the dishwasher and washing machine is larger; the RMSE is reduced
by 10% and 11.7%, and the MAE is reduced by 21% and 27.6%, respectively. It demonstrates
that the model proposed in this study greatly improves the load decomposition capabilities
of multi-state appliances. Preliminary analysis concludes that this is due to the introduction
of the skip connection, which is further supported by the ablation experiment in Section 4.4.
In summary, the model proposed in this study displays a higher load decomposition
accuracy for low-frequency sampling data.

Figure 6 shows results from the same house experiment, and the graphs show the
comparison curves of the four kinds of experimental appliances’ real power usage along
with the power usage predicted by the proposed model. According to the fitting degree
and tracking effect shown in the figure, it can be concluded that the power decomposition
results of the proposed model are close to the real power usage.
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5.2. Comparison and Analysis of Experimental Results of Different Houses

In the practical application of NILM, trained models are mostly applied to unknown
families; therefore, the generalization performance of a model is especially important.
To assess this aspect, experiments were conducted using different room data from the
UK-DALE dataset for training and testing, respectively, with the training set coming from
Households 1 and 2 and the test set coming from Household 5. The Seq2point and the
LDwA model, with a high accuracy of load decomposition in the experiments of the
previous section, were chosen to compare the generalization performance with the model
proposed in this paper. The experimental results of different houses are shown in Figure 7,
which shows the average values of the four experimental appliance evaluation metrics.
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According to the results in Figure 7, it can be seen that the decomposition accuracy
of our proposed model is higher when the experiments are conducted in different houses.
This indicates that the generalization performance of our model is better than that of the
two comparison models.

5.3. Comparison and Analysis of Experimental Results of Transfer Learning

Considering the comprehensiveness of the evaluation, the cross-region transfer learn-
ing capability (CTL) of the model was verified. The UK-DALE dataset was selected as the
training set and the REDD dataset was selected as the test set. The experimental results
are shown in Figure 8, where the evaluation metrics are taken as an average of the four
experimental appliances. From Figure 8, it can be seen that, compared with the seq2point
and LDwA models, the model proposed in this study has fewer errors and higher F1
scores. That is, the proposed model exhibits a better cross-region transfer learning ability
while still maintaining accuracy when applied to unknown rooms in different regions. The
experimental results of CTL have achieved the desired objectives and verify the validity of
the model.
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5.4. Ablation Experiment

To verify the effectiveness of the network, we conducted ablation experiments for
family 1 in the UK-DALE dataset, and verified the effectiveness of the attention mechanism,
instance and batch normalization, and skip connection. The model’s performance was
further improved by setting up three different codec model construction schemes and
quantitatively evaluating the performance of the different modules. The experimental
results are shown in Table 2. Scheme A involves replacing the IBN-Net subnetwork of the
model depicted in Figure 2 with CNN and removing the skip connections. Scheme B builds
upon Scheme A by adding skip connections between corresponding layers in the encoder
and decoder. Scheme C refers to the removal of the attention module from the model shown
in Figure 2. This is done to perform an ablation analysis of the attention mechanism and
to investigate its contribution to the performance of the model. Compared with the other
three schemes, our model performed better based on both evaluation metrics. In terms of
average values, the F1 score of Scheme B was reduced by about 6% and the MAE increased
by about 34% compared with our proposed method. Comparing with Scheme B, it was
found that the F1 score of Scheme A was reduced by about 7% and the MAE of Scheme
A increased by about 16%, indicating that the skip connection had a positive effect on the
performance of the model. Comparing Scheme C with our method, it can be observed that
the F1 score is reduced by 3% and the MAE is increased by 12%. These results show that
the attention mechanism, instance and batch normalization, and the skip connection have
an enhancing effect on network performance.
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Table 2. Comparison of results of ablation experiments.

Metric Model
Solutions IN and BN Skip

Connection Attention RF WM DW MW Average

MAE
(W)

A
√

21.243 13.445 9.386 10.538 13.653
B

√ √
24.005 15.865 11.175 12.263 15.827

C
√ √

17.758 10.874 7.907 9.170 11.427
Complete

model
√ √ √

15.855 9.707 7.057 8.192 10.203

F1

A
√

0.817 0.744 0.643 0.732 0.734
B

√ √
0.861 0.818 0.707 0.770 0.789

C
√ √

0.887 0.845 0.732 0.798 0.815
Complete

model
√ √ √

0.916 0.871 0.753 0.819 0.840

It is worth noting that the ablation of the skip connection has a more significant impact
on the experimental results for washing machines and dishwashers. In the configuration
without the skip connection (Scheme A), the F1 score for these appliances was reduced
by about 9% and the MAE increased by about 20% compared with the skip connection
(Scheme B) configuration. This indicates that when the skip connection is used to fuse the
features extracted from the encoder layer to the corresponding decoder layer, the ability
to identify multi-state devices is improved. The results of the ablation experiments are
consistent with the previous analysis. It suggests that the inclusion of attention mechanism,
skip connection, and application of IN and BN can enhance the performance of the model
for decomposition in this particular study.

6. Conclusions

In this paper, we proposed a non-invasive load decomposition method based on
an attention mechanism and a sequence translation model. The model consists mainly
multilayer IBN-Net subnetworks in the encoder and decoder. The batch normalization
(BN) module in the subnetwork enhances the network’s ability to discriminate features and
facilitates the encoder’s ability to map more relevant features to the hidden layer, while the
shallow instance normalization (IN) module in the subnetwork improves the generalization
performance of the network. The skip connection between the encoder and decoder trans-
mits the features extracted from the IBN-Net in the encoder directly to the corresponding
IBN-Net layer in the decoder, enabling the decoder to reconstruct a more accurate power
sequence of the target appliance. The usefulness of the skip connection is especially obvious
when targeting multi-state appliances. In addition, the attention mechanism between the
encoder and decoder can help the decoder generate more accurate appliance activation
by changing the context vector. The proposed model was compared with state-of-the-art
NILM methods using the UK-DALE and REDD data sets, and significant results were
obtained. Compared with current, more advanced algorithms, our model increases the F1
score by 18.4% on average, while decreasing the MAE by an average of 25% and the RMSE
by an average of 22%.
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