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Abstract: Gasification is considered a clean and effective way to convert low quality biomass to
higher value gas and solve various waste utilization problems as well. However, only 80% of biomass
is converted through thermal processes. The remaining part is char, which requires more time for
conversion and in that case reduces the efficiency of gasifier. Seeking to optimize the process of
gasification, this work focuses on the intensification of residual char gasification in a gasifier. For this
purpose, three different types of char prepared from wood, sewage sludge and tire were examined
under different conditions in a lab-scale gasification setup. Results showed that the air flux increase
from 0.11 kg/(m2s) to 0.32 kg/(m2s) intensified the gasification process and the gasification rate
increased from 0.8 to 2.61 g/min with the decrease of duration of wood char gasification by 72%. An
additional introduction of pyrolysis gas into the char gasifier led to decreased bed temperatures, but
the gasification rate increased from 0.8 to 1.25 g/min and from 2.61 g/min to 2.83 g/min, respectively,
for the wood char and the sewage sludge char. Moreover, the use of pyrolysis gas coupled with air as
the gasifying agent enhanced the composition of produced gas from char, and the CO2 concentration
decreased by 1.68 vol% while the H2 concentration increased by 2.8 vol%.

Keywords: biomass; sewage sludge; waste tire; remaining char; gasification; energy recovery;
gasification rate; syngas enhancement

1. Introduction

Gasification is considered a clean and effective way to convert low quality biomass
to higher value gas and solve various waste utilization problems as well. For example,
low-quality wood, agricultural biomass, sewage sludge, timber waste, or bio-waste could
be converted to syngas consisting of CO, H2, CO2, CH4, N2 and other components at the
concentrations up to 0.2 vol% and consumed for heat and power production [1–3]. On the
other hand, the obtained products are suitable for further conversion to bio-methane [4,5],
hydrogen [6,7], or Fischer–Tropsch (F–T) synthesis [8]. However, the yield of the final
product depends on the syngas composition, which in turn is closely related to the used
feedstock, gasifying agent, temperature and gasifier design. Currently, there are proposed
many designs for gasifiers such as fixed bed (updraft or downdraft), moving bed, bubbling
fluidized bed and circulating fluidized bed [9]. Among these, fixed or moving bed gasifiers
are the most common for investigation of new feedstock or configuration and besides have
a wide applicability, sizing and range of thermal power [10]. Meanwhile, the fluidized
bed gasifiers like bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) are
well known for a stable temperature and operation, wide range of fuel, but basically are
developed in a large scale [11,12]. Despite the differences of these systems, normally only
up to 80% of biomass is converted into volatile matter through thermal processes [13,14].
The residual part is condensable tars and solid char, which requires several tens of times
more for full conversion than the release of volatile substances from solid biomass as
the oxidant hardly diffuses into the formed biochar [15]. The char conversion rate also
depends on the feedstock type and gasification temperature. According to the previous
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work [16], the gasification of wood chips at 1100 ◦C led to amount of char of 4.8 wt.%, but
using pelletized fuel (straw, poultry litter, sewage sludge) the gasification temperature
was between 800–850 ◦C to avoid bed agglomeration and the amount of remaining char
was higher and varied between 7.8 wt.% and 14.3 wt.%. Additionally, the remaining char
reduces the efficiency of gasifier as the char consists of 30–90 wt.% of carbon.

The gasification-derived char has gained a lot of attention due to its wide applicabil-
ity [17]. Considering energy applications, the char use for the tar reforming of pyrolysis
gas or syngas or char gasification has shown promising results. Palla Assima et al. [18]
used residual char pellets and ash from a gasification setup. The results revealed that the
tar content was reduced from 65 g/m3 to 90.2 mg/m3. A different setup was presented
by Zhang et al. [19], which coupled the pyrolysis and catalytic reactor. In that way, the
produced wood char via pyrolysis was used in the catalytic reactor for a hot gas filtration,
which reduced the tar content below 100 mg/m3. Another work [20] describes a two-stage
gasification setup, which separates pyrolysis and char gasification stages. Biomass is first
dried and devolatilized in the first stage. Next, the formed char falls to the second stage,
where it is gasified by steam and CO2. However, results showed that the system was not
flexible for different type of biomass and was most suitable for wood chips. A different
method of residual char usage was proposed by Van de Steene et al. [21], which focused on
wood char gasification in a continuous downdraft fixed bed reactor. The experiments using
the wood char were performed in a specially developed CFiB reactor. It was determined
that the char gasification took in the first 10 cm of the bed and 81% of carbon was consumed
if steam gasification was applied. Due to steam addition, the water-gas-shift reaction took
place and hydrogen concentration increased by 22%. In another work [22], the authors
compared the gasification of char from wood and wood pellets. Results showed that there
were no differences between pellets and chips on syngas quality and char conversion.
However, the reactive zone of the char bed was three times wider for chips compared to
pellets. Authors assumed that char pellets required less height of gasifier to fully convert
the residual char.

According to reviewed literature, char gasification is mainly performed in the two-
stage gasifier or even in a separate one. Though, another option related to thermal con-
version of char is to intensify the char gasification in the remaining gasifier, in which case
the gasifier efficiency increases, remaining energy from unconverted char is recovered
and syngas composition is enhanced. However, studies related to this option are lacking,
and in order to implement this method, the knowledge on conditions like the gasifying
agent amount and type, the bed temperature distribution, produced gas composition, fuel
equivalence ratio, etc. is required. To acquire required knowledge, a char gasification unit
was designed based on the reduction zone in the downdraft gasifier setup and three differ-
ent types of char prepared from wood, sewage sludge and tire were examined supplying
different air flux of air. In addition, to investigate syngas effect on char gasification and
enhancement on syngas composition, the pyrolysis gas was produced on site and supplied
to the char gasification unit.

2. Materials and Methods
2.1. Used Materials

Experiments based on intensification of residual char gasification were performed
using three different types of char: wood, sewage sludge and tires char. The type of char
was selected based on the purpose to compare common fuel (wood) char gasification with
ones causing gasification problems (sewage sludge, tires). These chars were collected after
feedstock gasification in a downdraft gasifier (Figure 1), which is described in previous
works [16]. The main parameters of used char are presented in Table 1.
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Figure 1. The downdraft gasifier (left) and experimental rig of char gasification (right) using different
gasification agents: (A) air and (B) pyrolysis gases + air: 1—an electrically heated furnace; 2—a
closed stainless-steel tube with char; 3—a mass flow controller; 4—a biomass pellet container; 5—a
screw conveyer; 6—a pyrolysis reactor, 7—a gas analyzer.

Table 1. Used char properties.

Wood Char Sewage Sludge Char Tire Char

Ash content, % 2.2 50.1 10.3
HHV, MJ/kg 33.8 16.3 31.4

2.2. Experimental Setup and Procedure

Experiments were performed in a lab-scale char gasification unit consisting of an
electrically heated furnace 1 and a closed stainless-steel tube 2 (1000 mm length, 37 mm i.d.)
(see Figure 1). The tube was mounted inside the furnace. In order to measure a temperature
distribution per reactor height during the gasification process, 6 K-type thermocouples
(accuracy ±0.75%) were installed inside the tube. Thermocouples were arranged in dif-
ferent locations: T1 at the bottom of the bed (0 mm), T2 at 0.075 m from the bottom, T3 at
0.12 m, T4 at 0.245 m, T5 at 0.375 m and T6 at 0.50 m. Readings of these thermocouples
were collected using a data logger TC-08 (Pico) and transferred to PC. Differential pressure
in the bed was measured as well. At the exit of the gasification reactor, a three-way valve
was installed to direct a part of gasification products for the gas and the tar analysis and
the rest part to a vent. A composition of gaseous products from the gasification reactor was
determined by a gas analyzer VISIT 03H.

Before starting the gasification experiments, the prepared char was loaded to the
tube (180 ± 3 g of char) and the gasification reactor was heated electrically up to 800 ◦C
temperature. The heating up to desired temperature guaranteed the self-gasification of
char upon an introduction of the gasifying agent. At the same moment as the gasifying
agent was supplied, the electrical heating of the gasification reactor was turned off. The
char gasification experiments were performed in two ways using different gasification
agents: (A) air and (B) pyrolysis gases + air (see Figure 1).

In the first case, the air was supplied from a compressed air reservoir and a flow of
air was precisely controlled by a mass flow controller (Brooks, 0.2% full scale). The char
gasification experiments were performed by maintaining different air fluxes, from 0.11 to
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0.32 kg/(m2s), and the temperature profile of char reactor and composition of producer
gas from char were determined. The air flux was calculated by the following equation:

D =
V
A

, (1)

where V—air flow rate to reactor (kg/s), A—grate area m2.
In the second case, pyrolysis gases were obtained in the following way: nitrogen

(99.6% purity AB “Achema”) was supplied to a container with fuel pellets at constant
pressure and flow of 1.8 L/min. A screw conveyer maintained a constant quantity of fuel
pellets (5 g/min) from the container to the pyrolysis reactor. Commercially available wood
pellets made from softwood, mainly spruce and pine (UAB “Baltwood”), were used for the
production of pyrolysis gases. The composition of pyrolysis gas is presented in Table 2. A
constant temperature of 850 ◦C was maintained in the pyrolysis reactor and the produced
pyrolysis gas was supplied to the bottom of the reactor (see Figure 1B). During experiments,
a constant gas flow of 6 L/min was maintained to ensure comparability of results. In both
cases, gasification conditions were maintained until the CO and CO2 concentrations at the
exit were below the detection limit.

Table 2. Composition of dry producer gas from pyrolysis reactor.

Compound Concentration

H2, vol% 11.2 ± 0.1
CO, vol% 16.3 ± 0.2
CH4, vol% 9.1 ± 0.1
CO2, vol% 19.1 ± 0.1
N2, vol% 44.3 ± 0.4
Tar, g/m3 21.1 ± 1.2

3. Results and Discussion
3.1. Analysis of Char Gasification under Air Conditions

The first set of char gasification experiments were performed at different air fluxes
using wood, sewage sludge and tires char to analyze char gasification under a supply of air.
The obtained bed temperatures of wood char gasification and produced gas composition
are presented in Figure 2. With the supply of air, the bed bottom temperature (T1) started
to increase, indicating the beginning of gasification process and reached about 960 ◦C
(Figure 2a). Meanwhile, the temperature at upper bed layers was lower approximately by
250 ◦C. After 2700 s, a peak in the T2 and T3 graph was observed. It was also observed
after 8400 s, 12,000 s and 13,200 s. This peak could possibly be related to a low amount
of supplied air (air flux 0.11 kg/(m2s)) causing uniform char oxidation per bed layer
and shrinking char particles that move down, creating air spots in the upper bed layers.
Additionally, the peaks in T2 and T3 graphs corresponded to CO decrease and CO2 increase
(Figure 2d), which could be related to the combustion process. However, this tendency
was not determined at higher air fluxes. Moreover, higher air flux led to a wider reaction
zone as an increase of temperatures T2–T3 was parallel to the temperature T1 till the end
of gasification process (Figure 2b,c). This also led to higher concentrations of CO and
the CO concentrations were 25 vol% and 28 vol%, respectively, at the air flux of 0.21 and
0.32 kg/(m2s) (Figure 2e,f). It could be related to more intensive char gasification and
ongoing Boudouard reaction (2) [23] as the temperatures in the reaction zone (T1) were
~1050 ◦C and ~1280 ◦C, respectively, at the air fluxes of 0.21 kg/(m2s) and 0.32 kg/(m2s).

C + CO2 → 2CO, (2)
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Figure 2. Bed temperatures and gas yield during wood char gasification at air flux of (a,d) 0.11 kg/(m2s)
(b,e) 0.21 kg/(m2s) and (c,f) 0.32 kg/(m2s).

However, a decrease in the CO2 concentration was determined as well at the air flux of
0.21 kg/(m2s) and the obtained concentration was about 4.5 vol% (Figure 2e). The highest
CO2 concentration decrease (to 3.5 vol%) was determined at the air flux of 0.32 kg/(m2s)
(Figure 2f). The CO concentration increased by 3.3 vol% in the produced gas from wood
char in both cases. Meanwhile, the hydrogen concentrations were near identical at all
investigated air fluxes (see Figure 2). Moreover, the duration of char gasification decreased
by 55% and 72% at the air fluxes of 0.21 and 0.32 kg/(m2s), respectively, compared to the
case of air flux of 0.11 kg/(m2s) (Figure 2).

Different results were obtained from gasifying sewage sludge and tires chars (Figure 3).
Compared to the wood char case, bed temperature graphs of the sewage sludge indicated
a reaction zone shift per the reactor height. It associated to a high ash content (Table 1)
as the formed ash layer blocked the char movement down and the reaction zone shifted
up, from the temperature measurement point of T1 to the point of T2 (Figure 3a). This
tendency was also observed in graphs of gas yield (see Figure 3c). The formed temperature
peak corresponded to the increase of CO and decrease of CO2 and vice versa. One of the
possible reasons for this may have been insufficient Boudouard reaction (2) efficiency due
to a lower surface area of the char in the gasification zone. Meanwhile, H2 concentration
was stable, but the concentration was low compared to the results obtained with the wood
char. In this case, the high ash content could also be attributed to a lower quality of the
produced gas. Further experiments with sewage sludge char at higher air fluxes resulted
in an agglomeration of the bed and the gasification process stopped. This problem is well
known in regards to gasifying the raw sewage sludge, which consists of various metals
(heavy, alkali) and non-metals and has a low ash melting temperatures [24]. A similar
situation was also observed gasifying the tires char at lower air fluxes and the gasification
process was only possible at air flux of 0.32 kg/(m2s) but still complicated (Figure 3b).
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During the gasification experiments, smaller particles of tire char were washed upwards
by the gas stream due to low density of the char and it caused an unstable gasification
process. The temperature fluctuations in the bed and changes in the gas composition were
observed (Figure 3b,d). In first place, the main reaction zone was observed at temperature
measurement points of T2–T3, but after 1400 s the gasification became unstable. The reaction
zone shifted up according to the temperature increase in points of T4–T5 and a peak of O2
was observed in the producer gas indicating ineffective gasification (Figure 3d). According
to the obtained results, the energy recovery from the waste tire char via the gasification
process was too complicated.

Figure 3. Bed temperatures and gas yield during (a,c) sewage sludge char gasification at air flux of
0.11 kg/(m2s) and (b,d) tires char gasification at air flux of 0.32 kg/(m2s)

3.2. Analysis of Char Gasification Supplying Air and Pyrolysis Gas

In order to intensify the char gasification process, the second set of the gasification
experiments were performed by supplying air and pyrolysis gases (see Figure 1B). The
gasification was performed using only two chars at different air fluxes: the sewage sludge
char at 0.11 kg/(m2s) and the wood char at the air flux of 0.32 kg/(m2s). The obtained results
supplying only air showed the shortest duration of the wood char gasification process
using the air flux of 0.32 kg/(m2s), while the sewage sludge char gasification was not
possible at higher air flux values due to clogging/agglomeration problem. The obtained
temperature graphs and gas yield are presented in Figure 4. An additional supply of
pyrolysis gas affected the gasification process of both chars causing an overall temperature
drop in the bed compared to the cases with air supply only. At the beginning of the
sewage sludge char gasification, the highest temperature of approximately 750 ◦C was
determined at point T1 and after the supply of pyrolysis gas started to decrease. According
to the readings of T3 thermocouple, the gasification zone shifted up and more intensive
gasification process started at 3400 s. It led to a sudden temperature increase of the bed
(see Figure 4a). With an increase of the bed temperature over 700 ◦C, a decrease of methane
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concentration was also determined (Figure 4c) and the gasification duration decreased by
44% compared to the results with air. It could be related to intensified Boudouard reaction
(2) and CH4 decarburation reaction (3) as the CH4 concentration drop corresponded to a
slight concentration increase of H2 and CO [25].

CH4 → C + 2H2, (3)

Figure 4. Bed temperatures and gas yield during (a,c) the sewage sludge char gasification at air flux
of 0.11 kg/(m2s) and the wood (b,d) char gasification at 0.31 kg/(m2s), respectively, supplying air
coupled with pyrolysis gases

Comparing the wood char gasification under supply of air and under supply of air and
pyrolysis gas, the gasification tendency was near identical. The gasification reaction zone
was also observed between the bed inlet and thermocouple T2. However, the temperature
T1 and T2 decreased by approximately 200 ◦C and 60 ◦C, respectively, compared to the
results with air. Further temperature values in other points (T3–T6) remained similar
compared to the results obtained with air. Even though the gasification temperature
was lower, the gasification duration kept almost the same. It was possibly due to supply
pyrolysis gas, which led to tar reforming and possibly intensified char reforming reactions.
The producer gas composition changes were not equal to the ratio of supplied air and
pyrolysis gases (Table 2 and Figure 4d). Additionally, during the char gasification, the tar
destruction was observed as the tar concentration was below the detection limit.

3.3. Air and Pyrolysis Gas Effect on Intensification of Char Gasification

To identify the gasification agent’s effect on char gasification process, the obtained
results at different fluxes were analyzed and the obtained temperature profiles are presented
in Figure 5. The temperature profile values were taken at 3000th second of the gasification
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process. The obtained temperature profiles clearly indicate the air flux impact on the bed
temperature. The air flux increase from 0.11 kg/(m2s) to 0.32 kg/(m2s) led to increased bed
bottom temperature (T1) from 880 ◦C to 1280 ◦C (Figure 5a). The temperature inside the
bed decreased to 620 ◦C and 850 ◦C per 75 mm (T2), respectively, at the air flux of 0.11 and
0.32 kg/m2s and stabilized slowly through the rest of the bed.

Figure 5. Temperature profiles along the bed of (a)wood char at different air fluxes; (b)wood char at
the air flux and the flux of air coupled with pyrolysis gas; (c) sewage sludge at the air flux and the
flux of air coupled with pyrolysis gas.

According to a previous study [26], char reforming reactions are more intense at
temperatures 900◦C and higher. Considering that, the use of air flux of 0.11 kg/m2s is
effective, as temperatures along the bed are too low and the determined char gasification
rate was only 0.8 g/min. An increase of air flux resulted in the growth of temperature
which in turn affected CO2 and CO concentrations in the produced gas from char (Figure 6)
and intensified ongoing reforming reactions as the gasification rate increased from 0.8 to
2.61 g/min (Figure 7). It also led to decreased char gasification duration by 67%. Using
gasifying agent as air coupled with pyrolysis gases, the temperature at the inlet (T1) and in
the upper layer (T2) of the wood char bed decreased to 1080 ◦C and to 790 ◦C, respectively,
compared to the results with air. Temperature at upper layers remained near identical
(Figure 5b). Similar temperature profiles have been presented by L. Van de steene [20].
Authors noted that the temperature drop in the wood char bed discussed above is caused
by the endothermic reactions that occur in the gasification reaction zone. However, the
gasification rate increased from 2.61 to 2.83 g/min compared to the results with air.
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Figure 6. Composition of producer gas from wood char and sewage sludge char at different flux of
gasifying agent.

Figure 7. Effect of air flux on gasification rate of different char.

As it was described in the sections above, during the sewage sludge gasification the
reaction zone shifted up along the bed and was mainly located between T3 and T4 points
(Figure 5c). The supply of air coupled with pyrolysis gases led to decreased temperature
by ~200 ◦C in the reaction zone as well, though the temperature at the inlet was higher.
Overall, the gasification rate increased by 0.45 g/min compared to the case with air.

Considering these results, in both cases, pyrolysis gas enters the reactor where en-
dothermic decomposition takes place. Consequently, this may be the reason for the temper-
ature decrease. Additionally, gas phase reaction and only further decomposition of char
to CO occurs (Figure 6). This change in process conditions is affected due to the gasifying
agent. In case of air, the char gasification to CO takes place only in a CO2 environment
and the partial pressure of this gas is the highest. It means that only CO2 reforming takes
place. Upon introduction of pyrolysis gases and air mixture, the concentrations of ac-
tive compounds of mixture change, thus changing the mechanism of reactions: several
oxidation–steam reforming reactions, carbon dioxide and methane reforming take place
simultaneously, the speed of which depend on concentration of their materials towards
the char surface. It also explains the changes in the composition of producer gas (Figure 6).
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Taking into account the pyrolysis gas and producer gas composition, the CO2 concentration
decreased by 1.68 vol% compared to the results with air as at the bed inlet the CO2 concen-
tration was approximately 4.78 vol%. The H2 concentration also increased by 2.2 vol% as
at the inlet concentration was around 2.8 vol% (Figure 6). Additionally, ongoing reforming
reactions intensified char gasification rate. During the wood char and the sewage sludge
gasification, it increased, respectively, by 56% and 8% compared to the results with air
(Figure 7). Considering these findings, the supply of pyrolysis gases or syngas during char
gasification enhances the producer gas composition and increase char gasification rate even
at low air supply rates. Additionally, the supply of pyrolysis gas and air during the sewage
sludge gasification drastically reduced the gasification duration by 50% compared to the
results with air.

4. Conclusions

The present study was carried out to investigate the intensification of residual char
gasification in a gasifier and enhance the producer gas composition. Three different types
of char prepared from wood, sewage sludge and tire were examined under different condi-
tions in a lab scale setup. It was determined that the air flux increase from 0.11 kg/(m2s) to
0.32 kg/(m2s) intensified the gasification process. The gasification rate increased from 0.8
to 2.61 g/min and resulted in the decreased duration of wood char gasification by 72%. At
the same time, gas with the highest calorific value was obtained, where the lowest CO2
concentration was 3.1 vol%, and the highest CO concentration was 27.4 vol%.

The gasification of the sewage sludge char was only possible at the flux of 0.11 kg/(m2s)
as at higher air fluxes the bed agglomeration occurred. The high ash content in the sewage
sludge char resulted in the gasification zone drift through bed height. Moreover, the highest
CO2 (11.9 vol%) and lowest CO concentrations (12.1 vol%) were determined in the pro-
duced gas from the sewage sludge char. However, the gasification rate was near identical
to the wood char case, but the char gasification duration was shorter by 13.3%. Compli-
cated gasification was determined using the tire char as the smaller particles of tire char
were washed upwards by the gas stream and the gasification process became unstable
and ineffective.

An additional introduction of pyrolysis gas into the char gasifier changed the process
conditions. The change in concentrations of mixture compounds resulted in change of
reaction mechanism and oxidation–water vapor reactions, carbon dioxide and methane
reforming took place simultaneously. It led to the decreased temperature of the wood char
bed and the sewage sludge bed, respectively, from 1280 ◦C to 1080 ◦C and from 880 ◦C to
700 ◦C. However, the gasification rate increased in both cases and the highest improvement
was determined during the sewage sludge gasification. The gasification rate increased
from 0.8 to 1.25 g/min. Analysis of the produced gases revealed that the most effective
carbon dioxide (CO2) conversion is at the temperature of 900–1200 ◦C in all cases of char
gasification. Moreover, the use of pyrolysis gas coupled with air as the gasifying agent
enhanced the composition of produced gas from char compared to the results with air. The
CO2 concentration decreases by 1.68 vol%, H2 concentration increased by 2.8 vol% and the
tar concentration was below the detection limit.
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