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Abstract: The corrosion rate is an important indicator describing the degree of metal corrosion, and
quantitative analysis of the corrosion rate is of great significance. In the present work, the support
vector machine (SVM) and the artificial neural network (ANN) integrating the k-fold split method
and the root-mean-square prop (RMSProp) optimizer are used to evaluate the corrosion rates of alloys,
i.e., copper H65, aluminum 3003, and 20# steel, applied to the heating tower heat pump (HTHP) in
various anti-freezing solutions at different corrosion times, flow velocities, and temperatures. The
mean-square error (MSE) versus the epoch of the ANN model shows that the result breaks the local
minimum and is at or close to the global minimum. Comparisons of the SVM-/ANN-evaluated
corrosion rates and the measured ones show good agreements, demonstrating the good reliability of
the obtained SVM and ANN models. Moreover, the ANN model is recommended since it performs
better than the SVM model according to the obtained R2 value. The present work can be further
applied to predicting the corrosion rate without any prior experiment for improving the service life
of the HTHP.

Keywords: corrosion rate; alloys; heating tower heat pump (HTHP); support vector machine (SVM);
artificial neural network (ANN); machine learning

1. Introduction

According to the International Energy Agency (IEA), calculation results for the global
energy consumption in the field of construction, the global construction industry (including
house construction and infrastructure construction), and end-use energy related to building
operation accounted for 35% of the global energy consumption in 2018. Among these,
the end-use energy of building construction and infrastructure construction accounted for
6%, while the energy consumed by building operation accounted for 30% of the global
energy consumption. Moreover, in the construction sector, heating and cooling consume
more than 60% of the overall energy consumption [1]. Therefore, reducing air-conditioning
energy consumption and developing renewable energy are critical ways to building a
resource-saving and environment-friendly society.

The heating tower heat pump (HTHP) is a convenient heating and cooling source for
air-conditioning. The detailed strategy of the HTHP system is illustrated in Figure 1. As
shown in Figure 1, the cold anti-freezing solution is sprayed from the top of the tower during
heating; this solution comes in contact with air and thus absorbs the sensible and latent heat
energy from the air. Subsequently, the solution is sent into the evaporator, where the heat
energy can be transferred from the solution to the refrigerant. Therefore, the anti-freezing
solution is cold again and then is pumped back to the heating tower for the next circulation.
In the heat pump system, the heat energy absorbed by the heating tower is transferred to
the indoor environment through the reverse Carnot cycle. In summer, the system stores the
anti-freezing solution in a liquid storage tank to avoid solution waste and environmental
pollution. Meanwhile, the system injects water into circulation, and the heat source tower
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functions as a cooling tower. Thus, there is no issue of frosting for the HTHP system during
running [2–4].
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Figure 1. Schematic diagram of the heating tower heat pump (HTHP).

Therefore, the HTHP has unique advantages and has been widely researched and ap-
plied. However, the current research on HTHP mainly focuses on operating characteristics
and structural optimization [5–7]. To summarize, Liang et al. [8] built an experimental
platform for the HTHP to study the heat transfer performance of the open heating tower
at different temperatures of the inlet solutions. Huang [9] studied the laws and design
methods of heat and mass transfer, the characteristics and optimization of system operation,
and the performance evaluations of the heating tower by combining theory, simulation,
and experiment. Su [10] used a 25% NaCl solution as the anti-freezing solution to build a
cross-flow HTHP system in Tianjin, China, to explore the feasibility of the HTHP system in
winter, when the temperature and humidity are low. Lv [11] studied the optimization of
the structure of the heating tower. However, in the HTHP system, the key equipment, such
as heat exchangers and pipelines, is all metal and anti-freezing solutions (such as calcium
chloride, ethylene glycol, lithium bromide, and other salt solutions) are corrosive to metals.
The corrosion of the HTHP system can not only reduce the productivity during running
but also increase the energy consumption and maintenance costs and even lead to the loss
of commercial income during downtime. Figure 2 was shot for the HTHP system applied
in one project in Changsha, China, in which Figure 2a presents the part inside the removed
pipe from the HTHP system and Figure 2b shows the anti-freezing solution dissolving
the corrosion product. From Figure 2, it can be clearly seen that the corrosion problems
for the HTHP system are serious, which can lead to not only wastage of resources but
also pollution of the environment. Thus, corrosion of the HTHP system should receive
more attention from researchers [12,13]. Corrosion is commonly referred to as rust. BS
EN ISO 8044 formally defines corrosion as “physicochemical interaction between a metal
and its environment that leads to changes in properties of the metal and that may result in
the significant impairment of the function of the metal, the environment, or the technical
system, of which these form a part” [14]. Corrosion of metals and alloys is a critical issue
in industry fields worldwide that is deleterious to both safety and environment and can
also generate huge economic and energy costs [15,16]. Therefore, study of the methods
to accurately measure and predict corrosion can contribute to saving both economic and
energy costs.
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The most commonly used method of measuring the corrosion rate is the corrosion
coupon, which involves suspending a metal coupon with the same components as the ones
for the practical application, such as pipes and heat exchangers, in a suitable solution. After
some time, the metal coupon is taken out and the corresponding weight loss is measured,
which can be then transformed into the corrosion rate using the following equations:

Rate of weight loss : V− =
W1 − W2

A·t (1)

Rate of weight gain : V+ =
W2 −W1

A·t (2)

where V± (g/m2h) represents the rate of weight loss/gain, W1 (g) the initial mass of the
metal, W2 (g) the mass of the metal after corrosion treatment and drying, A (m2) the surface
area of the test piece, and t (h) the corrosion time of the coupon [17].

By using this method, Zhang [18] measured the corrosion rates of copper H65, alu-
minum 3003, and 20# steel in different anti-freezing solutions at various temperatures,
corrosion times, and flow velocities. Zhang selected sodium acetate, magnesium chloride,
and ethylene glycol as the primary materials and prepared six anti-freezing solutions
of different compositions. Since the thermal conductivities of these prepared solutions
are close to that of water and the thermophysical properties are generally good, these
anti-freezing solutions are suitable for the HTHP system and should be further investi-
gated. However, no quantitative analysis has been given in the available literature of the
relationship between the corrosion rate and the various conditions. It is well known that
the support vector machine (SVM) and the artificial neural network (ANN) are powerful
mathematical methods to find the mapping relationship between input parameters and
output parameters and have already been used in many fields, such as biology, medicine,
and economy. [19–22]. Therefore, to perform quantitative analysis of the corrosion rate
that can contribute to the prediction without any prior experiment, both SVM and ANN
models are applied in the present work.

2. Models
2.1. Support Vector Machine

The support vector machine (SVM) is one of the common machine learning methods
that can be applied to conduct classification and regression. In this work, for regression,
the SVM is applied, which can map the input space to a high-dimension space by using a
kernel function. In the high-dimension space, linear regression is then performed to obtain
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the best model [23]. In the present work, the radial basis function (RBF) [24] is selected as
the kernel function, which can be expressed as follows:

K(xi, xj) = exp(−
‖xi − xj‖2

2σ2 ) (3)

The final model represented by the kernel function is

f (x) =
N

∑
i=1

(αi − α∗i )K(x, xi) + b (4)

where αi and α∗i are Lagrange multipliers and b the bias. After optimization using the
experimental data, all the parameters can be obtained and the corresponding values can
then be predicted by Equation (4) and the input x.

2.2. Artificial Neural Network

The artificial neural network includes three layers and several neurons in each layer.
As shown in Figure 3, the first layer is the input layer, which contains the input features,
i.e., the kind of metal material and anti-freezing solution, flow velocity, temperature, and
corrosion time. The second layer is the hidden layer, which is used to connect the input
layer and the output layer. The last one is the output layer, which represents the corrosion
rate in the present work.
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The number of hidden layers and the number of neurons in each hidden layer can
critically affect the quality of the model, which can be adjusted according to the training
performance. In each neuron, the linear superposition of all the connected neurons in the
last layer and the activation function should be performed as shown in Figure 4, where w
is the weight and b is the bias. It should be noted that the weights and bias in the linear
superposition are what we should train and validate by the experimental data in order to
find out the correct connection of the input and output layers. Meanwhile, in this work,
the sigmoid function is chosen as the activation function since it can considerably improve
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gradient exploding and gradient vanishing problems [25–27]. The sigmoid function is
expressed as

f (x) =
1

1 + e−x (5)
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The fully connected neural network used in this work is shown in Figure 4, where
the neurons in green represent the three input features and the neuron in red represents
the output corrosion rate. For the hidden layers, a two-layer structure is selected and each
layer contains 10 neurons.

When training the neural network, the mean-square error (MSE) is selected as the
metric of the loss function since this work is a kind of regression analysis. The purpose of
training and validation is to minimize the MSE, which is shown as the following equation:

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)
(6)

where Yi indicates the measured data and Ŷi the predicted data. Meanwhile, the root-
mean-square prop (RMSProp) is chosen as the optimizer, which can speed up the training
rate [28,29]. To minimize the MSE, both forward propagation and back propagation should
be performed. Forward propagation is to calculate the final output value through the
network, which is shown in Figure 4. Back propagation is to adjust the weights and bias to
minimize the MSE between evaluated output values and the measured ones by computing
the gradient of the loss function with respect to each weight according to the chain rule.

3. Results and Discussion

As described in Section 2, the SVM and ANN were applied to evaluate the corrosion
rates of copper H65, aluminum 3003, and 20# steel in different anti-freezing solutions at
various corrosion times, temperatures, and flow velocities. It should be noted that copper
H65, aluminum 3003, and 20# steel were, respectively, represented by 1, 2, and 3 in the
SVM and ANN models, while the anti-freezing solutions BF2354, BK3000, BL3500, HG3500,
YH6830, and ZP3682 were represented by 1–6, respectively, in the SVM and ANN models.
Totally, five input parameters were considered in the present work, as shown in Figure 3.
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The SVM-evaluated corrosion rate is shown in Figure 5 in comparison with the ex-
perimental ones, which shows an R2 value of 0.9317. This result is reasonable but still not
satisfactory. Meanwhile, to improve the reliability and accuracy of the ANN model, the k-fold
cross validation was further used in the present work [30–34]. The main idea of k-fold cross
validation is to choose different partitions of the training set and the validation set and then
average the result so that the result will not be biased by any single partition. Moreover, k-fold
cross validation is an effective way to solve the over-fitting problem. As shown in Figure 6,
the dataset is first automatically split into k groups. Next, k-1 split groups are set to be the
training dataset, and the one remaining split group is the validation dataset. Therefore, totally,
k rounds of training and validation can be performed in one epoch, which critically improves
the efficiency and accuracy. The value of k is often set to 5 or 10, depending on the computing
resources. In the present work, k was set to 10 for achieving higher accuracy. Using the ANN
model integrating the k-fold method, the MSE can be decreased much faster. The values of
the MSE for the training dataset and the validation dataset along the epoch are shown in
Figure 7. As can be seen in Figure 7, the MSE of the training dataset generally decreases with
the increasing epoch and gets convergency. Meanwhile, the MSE of the validation dataset is
critical to evaluating the predicting function of the obtained model. The MSE of the validation
dataset first increases with the epoch and then decreases. After around 60,000 epoch, the
MSE of the validation dataset cannot further decrease and becomes stable and convergent,
demonstrating the best performance that can be achieved for the ANN model. Moreover,
there is a local minimum for the validation MSE at about 5000 epoch. To break this local
minimum, we used an optimizer called RMSProp, which can also adjust the training rate
automatically to improve the efficiency. By using the RMSProp optimizer, this local minimum
can be broken and thus the loss function can be close to the global minimum. We performed
several tests for 100,000, 200,000, and 300,000 epoch, only to find that the MSE for the training
dataset and the validation dataset can hardly decrease after about 60,000 epoch. Therefore, the
minimum 100,000 epoch was chosen in the present work to show the result. The final MSE
value for the training and validation datasets is 6.05 × 10−7 and 5.54 × 10−4, respectively.
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Subsequently, the ANN-evaluated corrosion rates were compared to the measured
ones to further validate the reliability of the presently obtained ANN model. The compar-
ison result is shown in Figure 8, where a good agreement can be seen since R2 is 0.9974,
demonstrating better reliability and accuracy of the ANN model than the SVM model. To
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summarize, the SVM-/ANN-evaluated corrosion rates and the measured rates in different
anti-freezing solutions at various temperatures, flow velocities, and corrosion times are all
listed in Table 1.
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Table 1. Summary of the measured and ANN-evaluated corrosion rates of aluminum 3003, copper H65, and 20# steel in
different anti-freezing solutions at different corrosion times, flow velocities, and temperatures.

Alloy Coolant
Corrosion

Time (Days)

Flow
Velocity

(m/s)

Temperature
(◦C)

Corrosion Rate (g/(h·m2))

Measured Uncertainty% SVR-
Evaluated

ANN-
Evaluated

Copper H65 BF2354 30 0 15 0.07528 0.08 0.03276 0.05264
Aluminum

3003 BF2354 30 0 15 0.00805 0.74 0.01409 0.00796

20# Steel BF2354 30 0 15 0.06005 0.10 0.03538 0.05975
Copper H65 HG3500 30 0 15 0.00259 2.31 0.01510 0.00260
Aluminum

3003 HG3500 30 0 15 0.00201 2.98 0.00443 0.00218

20# Steel HG3500 30 0 15 0.01580 0.38 0.02249 0.01563
Copper H65 BK3000 30 0 15 0.00862 0.69 0.02358 0.00925
Aluminum

3003 BK3000 30 0 15 0.00575 1.04 0.00819 0.00550

20# Steel BK3000 30 0 15 0.00201 2.98 0.02818 0.00222
Copper H65 BL3500 30 0 15 0.00517 1.16 0.01763 0.00548
Aluminum

3003 BL3500 30 0 15 0.00374 1.60 0.00494 0.00393

20# Steel BL3500 30 0 15 0.05229 0.11 0.02384 0.05274
Copper H65 YH6830 30 0 15 0.00287 2.09 0.01605 0.00295
Aluminum

3003 YH6830 30 0 15 0.00575 1.04 0.00663 0.00580

20# Steel YH6830 30 0 15 0.01207 0.50 0.02415 0.01209
Copper H65 ZP3682 30 0 15 0.01868 0.32 0.02035 0.01947
Aluminum

3003 ZP3682 30 0 15 0.01034 0.58 0.01143 0.01014

20# Steel ZP3682 30 0 15 0.06723 0.09 0.02869 0.06643
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Table 1. Cont.

Alloy Coolant
Corrosion

Time (Days)

Flow
Velocity

(m/s)

Temperature
(◦C)

Corrosion Rate (g/(h·m2))

Measured Uncertainty% SVR-
Evaluated

ANN-
Evaluated

Copper H65 BF2354 30 0 10 0.02772 0.22 0.02878 0.02764
Aluminum

3003 BF2354 30 0 10 0.01076 0.56 0.01184 0.01052

20# Steel BF2354 30 0 10 0.01265 0.47 0.03227 0.01239
Copper H65 HG3500 30 0 10 0.02045 0.29 0.01204 0.02026
Aluminum

3003 HG3500 30 0 10 0.00457 1.31 0.00294 0.00468

20# Steel HG3500 30 0 10 0.02422 0.25 0.02024 0.05067
Copper H65 BK3000 30 0 10 0.01884 0.32 0.01989 0.01836
Aluminum

3003 BK3000 30 0 10 0.01319 0.45 0.00621 0.00446

20# Steel BK3000 30 0 10 0.03929 0.15 0.02535 0.03791
Copper H65 BL3500 30 0 10 0.02018 0.30 0.01424 0.01953
Aluminum

3003 BL3500 30 0 10 0.00431 1.39 0.00321 0.00407

20# Steel BL3500 30 0 10 0.07185 0.08 0.02130 0.07100
Copper H65 YH6830 30 0 10 0.00942 0.64 0.01330 0.00970
Aluminum

3003 YH6830 30 0 10 0.00807 0.74 0.00537 0.00810

20# Steel YH6830 30 0 10 0.03337 0.18 0.02217 0.03379
Copper H65 ZP3682 30 0 10 0.03041 0.20 0.01791 0.03052
Aluminum

3003 ZP3682 30 0 10 0.00269 2.23 0.01036 0.00289

20# Steel ZP3682 30 0 10 0.05463 0.11 0.02696 0.05413
Copper H65 BF2354 30 0 0 0.03144 0.19 0.02149 0.03034
Aluminum

3003 BF2354 30 0 0 0.00928 0.65 0.00846 0.00918

20# Steel BF2354 30 0 0 0.08055 0.07 0.02680 0.07900
Copper H65 HG3500 30 0 0 0.00449 1.33 0.00662 0.00447
Aluminum

3003 HG3500 30 0 0 −0.00090 −6.65 0.00103 0.00012

20# Steel HG3500 30 0 0 0.01737 0.34 0.01646 0.01738
Copper H65 BK3000 30 0 0 0.01228 0.49 0.01323 0.01748
Aluminum

3003 BK3000 30 0 0 0.00120 4.99 0.00336 0.00112

20# Steel Bk3000 30 0 0 0.00449 1.33 0.02047 0.00426
Copper H65 BL3500 30 0 0 0.01228 0.49 0.00821 0.01194
Aluminum

3003 BL3500 30 0 0 0.00120 4.99 0.00086 0.00001

20# Steel BL3500 30 0 0 0.00449 1.33 0.01699 0.00468
Copper H65 YH6830 30 0 0 0.01288 0.46 0.00845 0.01267
Aluminum

3003 YH6830 30 0 0 0.00299 2.00 0.00383 0.00292

20# Steel YH6830 30 0 0 0.02126 0.28 0.01887 0.02090
Copper H65 ZP3682 30 0 0 0.02485 0.24 0.01359 0.02392
Aluminum

3003 ZP3682 30 0 0 0.00809 0.74 0.00912 0.00823

20# Steel ZP3682 30 0 0 0.08744 0.07 0.02408 0.08610
Copper H65 BF2354 30 0 −10 0.01886 0.32 0.01547 0.01757
Aluminum

3003 BF2354 30 0 −10 0.03342 0.18 0.00680 0.00111

20# Steel BF2354 30 0 −10 0.01125 0.53 0.02265 0.01039
Copper H65 HG3500 30 0 −10 0.00132 4.54 0.00245 0.00143
Aluminum

3003 HG3500 30 0 −10 0.00860 0.70 0.00070 0.00882

20# Steel HG3500 30 0 −10 0.00794 0.75 0.01391 0.00815
Copper H65 BK3000 30 0 −10 0.00894 0.67 0.00787 0.00880
Aluminum

3003 BK3000 30 0 −10 0.00132 4.54 0.00222 0.00101

20# Steel BK3000 30 0 −10 0.00199 3.01 0.01692 0.00194
Copper H65 BL3500 30 0 −10 0.00099 6.05 0.00348 0.00103
Aluminum

3003 BL3500 30 0 −10 0.00364 1.64 0.00017 0.00366

20# Steel BL3500 30 0 −10 0.01655 0.36 0.01398 0.01623
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Table 1. Cont.

Alloy Coolant
Corrosion

Time (Days)

Flow
Velocity

(m/s)

Temperature
(◦C)

Corrosion Rate (g/(h·m2))

Measured Uncertainty% SVR-
Evaluated

ANN-
Evaluated

Copper H65 YH6830 30 0 −10 0.00364 1.64 0.00476 0.00349
Aluminum

3003 YH6830 30 0 −10 0.00496 1.21 0.00376 0.00760

20# Steel YH6830 30 0 −10 0.01158 0.52 0.01669 0.00789
Copper H65 ZP3682 30 0 −10 0.01456 0.41 0.01028 0.01415
Aluminum

3003 ZP3682 30 0 −10 0.00993 0.60 0.00919 0.01119

20# Steel ZP3682 30 0 −10 0.02118 0.28 0.02218 0.02088
Copper H65 BF2354 30 0 −15 0.00919 0.65 0.01306 0.01709
Aluminum

3003 BF2354 30 0 −15 0.00201 2.98 0.00668 0.00198

20# Steel BF2354 30 0 −15 0.03274 0.18 0.02117 0.03165
Copper H65 HG3500 30 0 −15 −0.00057 −10.50 0.00094 0.00150
Aluminum

3003 HG3500 30 0 −15 0.00373 1.60 0.00119 0.00380

20# Steel HG3500 30 0 −15 0.01551 0.39 0.01319 0.01517
Copper H65 BK3000 30 0 −15 0.00460 1.30 0.00581 0.00469
Aluminum

3003 BK3000 30 0 −15 0.00115 5.21 0.00236 0.00107

20# Steel BK3000 30 0 −15 0.00287 2.09 0.01574 0.00275
Copper H65 BL3500 30 0 −15 0.00287 2.09 0.00172 0.00270
Aluminum

3003 BL3500 30 0 −15 0.00144 4.16 0.00052 0.00179

20# Steel BL3500 30 0 −15 0.01666 0.36 0.01305 0.01696
Copper H65 YH6830 30 0 −15 0.00230 2.60 0.00345 0.00233
Aluminum

3003 YH6830 30 0 −15 0.00172 3.48 0.00433 0.00181

20# Steel YH6830 30 0 −15 0.01264 0.47 0.01611 0.01202
Copper H65 ZP3682 30 0 −15 0.00632 0.95 0.00910 0.00619
Aluminum

3003 ZP3682 30 0 −15 0.00373 1.60 0.00978 0.00387

20# Steel ZP3682 30 0 −15 0.02097 0.29 0.02167 0.02010
Copper H65 YH6830 1 0 15 0.17857 10.06 0.09596 0.17803
Copper H65 YH6830 1 0.5 15 0.19345 9.28 0.13628 0.19239
Copper H65 YH6830 1 1 15 0.22321 8.05 0.18418 0.20934
Copper H65 YH6830 1 1.5 15 0.23810 7.54 0.23871 0.23679
Copper H65 YH6830 1 2 15 0.29762 6.03 0.29862 0.29576
Copper H65 YH6830 1 2.5 15 0.34226 5.25 0.36238 0.33825
Copper H65 YH6830 1 0 0 0.05952 30.17 0.06847 0.05850
Copper H65 YH6830 1 0.5 0 0.10417 17.24 0.10518 0.10302
Copper H65 YH6830 1 1 0 0.14881 12.07 0.14989 0.14674
Copper H65 YH6830 1 1.5 0 0.19345 9.28 0.20174 0.19167
Copper H65 YH6830 1 2 0 0.23810 7.54 0.25952 0.23625
Copper H65 YH6830 1 2.5 0 0.26786 6.70 0.32177 0.26566
Copper H65 YH6830 1 0 −15 0.07440 24.14 0.04583 0.07231
Copper H65 YH6830 1 0.5 −15 0.08929 20.11 0.07862 0.13068
Copper H65 YH6830 1 1 −15 0.11905 15.09 0.11957 0.11780
Copper H65 YH6830 1 1.5 −15 0.16369 10.97 0.16789 0.16144
Copper H65 YH6830 1 2 −15 0.22321 8.05 0.22248 0.22012
Copper H65 YH6830 1 2.5 −15 0.29762 6.03 0.28192 0.29403
Aluminum

3003 BL3500 1 0 15 0.11905 15.09 0.09180 0.11736

Aluminum
3003 BL3500 1 0.5 15 0.17857 10.06 0.13890 0.17757

Aluminum
3003 BL3500 1 1 15 0.19345 9.28 0.19413 0.18953

Aluminum
3003 BL3500 1 1.5 15 0.25298 7.10 0.25640 0.25226

Aluminum
3003 BL3500 1 2 15 0.34226 5.25 0.32425 0.34253

Aluminum
3003 BL3500 1 2.5 15 0.40179 4.47 0.39597 0.40071
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Table 1. Cont.

Alloy Coolant
Corrosion

Time (Days)

Flow
Velocity

(m/s)

Temperature
(◦C)

Corrosion Rate (g/(h·m2))

Measured Uncertainty% SVR-
Evaluated

ANN-
Evaluated

Aluminum
3003 BL3500 1 0 0 0.08929 20.11 0.06441 0.08807

Aluminum
3003 BL3500 1 0.5 0 0.10417 17.24 0.10599 0.10350

Aluminum
3003 BL3500 1 1 0 0.13393 13.41 0.15609 0.13267

Aluminum
3003 BL3500 1 1.5 0 0.20833 8.62 0.21373 0.20775

Aluminum
3003 BL3500 1 2 0 0.22321 8.05 0.27758 0.22328

Aluminum
3003 BL3500 1 2.5 0 0.28274 6.35 0.34602 0.28306

Aluminum
3003 BL3500 1 0 −15 0.05952 30.17 0.04289 0.05865

Aluminum
3003 BL3500 1 0.5 −15 0.08929 20.11 0.07847 0.08803

Aluminum
3003 BL3500 1 1 −15 0.11905 15.09 0.12269 0.11693

Aluminum
3003 BL3500 1 1.5 −15 0.14881 12.07 0.17469 0.14543

Aluminum
3003 BL3500 1 2 −15 0.23810 7.54 0.23327 0.23658

Aluminum
3003 BL3500 1 2.5 −15 0.26786 6.70 0.29691 0.26711

20# Steel HG3500 1 0 15 0.04464 40.23 0.10779 0.04397
20# Steel HG3500 1 0.5 15 0.08929 20.11 0.15330 0.14748
20# Steel HG3500 1 1 15 0.20833 8.62 0.20671 0.20808
20# Steel HG3500 1 1.5 15 0.26786 6.70 0.26696 0.26697
20# Steel HG3500 1 2 15 0.41667 4.31 0.33266 0.41335
20# Steel HG3500 1 2.5 15 0.52083 3.45 0.40214 0.51756
20# Steel HG3500 1 0 0 0.04464 40.23 0.07977 0.04391
20# Steel HG3500 1 0.5 0 0.08929 20.11 0.12065 0.08815
20# Steel HG3500 1 1 0 0.16369 10.97 0.16984 0.16211
20# Steel HG3500 1 1.5 0 0.25298 7.10 0.22639 0.25071
20# Steel HG3500 1 2 0 0.38690 4.64 0.28899 0.38353
20# Steel HG3500 1 2.5 0 0.46131 3.89 0.35603 0.45923
20# Steel HG3500 1 0 −15 0.02976 60.35 0.05674 0.02929
20# Steel HG3500 1 0.5 −15 0.11905 15.09 0.09255 0.11791
20# Steel HG3500 1 1 −15 0.13393 13.41 0.13682 0.13187
20# Steel HG3500 1 1.5 −15 0.22321 8.05 0.18869 0.21997
20# Steel HG3500 1 2 −15 0.35714 5.03 0.24697 0.35405
20# Steel HG3500 1 2.5 −15 0.44643 4.02 0.31016 0.44662

The evaluation of the measurement uncertainty was further performed in the present
work. The uncertainty of the electronic balance used in the present work is 0.1 mg, and thus
the maximum uncertainty should be 0.2 mg because each metal sample is weighed twice,
i.e., before and after corrosion. According to the calculation of the corrosion rate, the relative
uncertainty can be finally obtained, which is also listed in Table 1. From Table 1, it can be
concluded that parameters such as temperature and corrosion time can critically influence the
accuracy of the measured results. The reason is that these parameters can influence the total
weight variation of the metal samples before and after corrosion. If the total weight variation
is much larger than the maximum uncertainty, i.e., 0.2 mg, the relative uncertainty caused
by the electronic balance is less obvious, and vice versa. For example, as shown in Table 1,
when the corrosion time is longer, the corrosion is more obvious and the relative error of the
measurement result is smaller, which leads to higher accuracy.

4. Conclusions

The SVM and ANN models integrating the k-fold split method were used in the
present work to evaluate the corrosion rates of copper H65, aluminum 3003, and 20# steel
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in six anti-freezing solutions at different corrosion times, temperatures, and flow velocities.
The conclusions are as follows:

• The SVM can be used to obtain a reasonable corrosion rate, the R2 value being 0.9317.
• The MSE of the training dataset for the ANN decreases with the epoch and can be

convergent. Meanwhile, there is a local minimum region broken by the presently used
optimizer RMSProp for the MSE of the validation dataset. It can be concluded that
after around 60,000 epoch, the obtained ANN model can achieve the best performance.

• The good agreement between the ANN-evaluated corrosion rate and the measured
ones indicates that the presently obtained ANN model is of better accuracy and relia-
bility since the R2 value is 0.9974. The present work can contribute to the prediction of
the corrosion rates of copper H65, aluminum 3003, and 20# steel without any prior
experiments, thus improving the performance and service life of the HTHP.
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