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Abstract: This paper focuses on the application using a solar-powered unmanned aerial vehicle
(UAV) to inspect mountain sites for the purpose of safety and rescue. An inspection path planning
problem is formulated, which looks for the path for an UAV to visit a set of sites where people
may appear while avoiding collisions with mountains and maintaining positive residual energy. A
rapidly exploring random tree (RRT)-based planning method is proposed. This method firstly finds
a feasible path that satisfies the residual energy requirement and then shortens the path if there is
some abundant residual energy at the end. Computer simulations are conducted to demonstrate the
performance of the proposed method.

Keywords: path planning; rapidly exploring random tree (RRT); unmanned aerial vehicles (UAVs);
solar-powered UAVs; surveillance and monitoring; safety and rescue missions

1. Introduction

With more and more people participating in activities in mountain environments
such as mountaineering in recent years and considering the potential hazards in these
types of activities, inspecting mountain sites where people, such as missing climbers, may
appear is an important safety and rescue mission [1]. Since mountain regions are usually
difficult for rescue personnel to quickly access, unmanned aerial vehicles (UAVs) become a
significant tool for this mission, and many publications have paid attention to search and
rescue missions performed by UAVs from sensing technique development to control and
path planning of UAVs [2,3].

The large size and high altitude of mountains create challenges for battery-powered
UAVs, since they are limited in energy capacity. Considering this, solar-powered UAVs
become an alternative [4,5]. In this paper, we consider using a solar-powered UAV to
inspect mountain sites; see Figure 1. A solar-powered UAV can harvest energy, and
the harvested amount highly depends on several factors. Firstly, the mountains may
create shadow areas where the UAV cannot have line-of-sight (LoS) with the sun. Then,
the harvesting power drops significantly. Moreover, the existence of clouds reduces the
intensity of solar power. A solar-powered UAV can harvest more energy when flying above
clouds than that when flying below clouds. Moreover, the harvesting power is influenced
by the sunlight direction [6,7]. For example, the harvesting power at noon is usually larger
than that at sunrise. It is necessary to take all these factors into account to obtain an accurate
estimation of the harvested energy.

We present an inspection tour planning model in which the solar-powered UAV
starts from its depot, visits a set of sites, and then returns to the depot while keeping
positive residual energy and avoiding collisions with mountains. Some problems that
may attract practitioners are considered in the model, such as the shortest completion
time and the minimum initial energy that the UAV should carry. Considering these
questions, the corresponding inspection tour planning problem falls into the framework of
the conventional travelling salesman problem (TSP) [8]. However, they may differ from

Energies 2021, 14, 1968. https://doi.org/10.3390/en14071968 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-2667-6423
https://orcid.org/0000-0001-9390-6634
https://doi.org/10.3390/en14071968
https://doi.org/10.3390/en14071968
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14071968
https://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/14/7/1968?type=check_update&version=1


Energies 2021, 14, 1968 2 of 19

TSP and the variants of TSP, such as the time-dependent TSP, the TSP with neighbourhoods
(TSPN), and the resource-constrained TSP, in the following aspects. In TSP and its variants,
the cost of an edge linking two sites is given [9], though they may be time-varying. In
our problem, the trajectory between two sites is determined as the corresponding cost.
Additionally, in our problem, the energy of the UAV can be regarded as a resource. Different
from the resource-constrained TSP where generally the resource keeps reducing, the UAV
residual energy can increase if the harvested amount is larger than the consumption. Thus,
the considered problem is more general and more difficult than TSP and its variants.

Figure 1. Inspecting mountain sites by a solar-powered unmanned aerial vehicle (UAV).

In this paper, we present a first trial to solve this complex problem. The proposed
method consists of two main steps. Firstly, we compute a visiting sequence by solving a
TSP instance where the cost between two sites is approximated by the Euclidean distance.
With this sequence, we propose a rapidly exploring random tree (RRT)-based method to
construct a feasible inspection tour. The feasible inspection tour satisfies the considered
constraints including the UAV maintaining positive residual energy at any time during the
flight and the UAV avoiding collisions with mountains. Following the idea of RRT* (an
optimized version of RRT), we further obtain an asymptotically optimal tour in terms of
energy efficiency by rewiring the vertices in the random trees. In the second step, we target
shortening of the feasible inspection tour, which is of paramount importance, as a shorter
revisit time means that remedial actions can be taken faster. Specifically, when there is
abundant energy in the battery at the end of the tour, we can reduce the completion time of
the feasible inspection tour by sacrificing energy efficiency. We rewire the vertices in the
random trees obtained in the first step to find a shorter tour while maintaining positive
residual energy and no collisions with mountains.

The main contributions of this paper are summarized as follows. Firstly, we present a
new problem statement about using a solar UAV to inspect mountain sites. We formulate
an inspection tour planning problem, which jointly accounts for the time to complete the
inspection of the given sites and the energy efficiency of the solar-powered UAV. Secondly,
an RRT-based inspection tour planning method is presented. It first finds a feasible tour
meeting the energy consumption requirements and then shortens the tour. This method
can answer practical questions such as how long it will take to complete the inspection and
how much initial energy should be used with the onboard battery.

The rest of the paper is organized as follows. Section 2 discusses the closely relevant
publications. Section 3 introduces the system model and formally states the studied prob-
lem. Section 4 presents the proposed inspection tour planning method. Section 5 presents
the simulation results, and finally, Section 6 concludes the paper.
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2. Related Work

A number of publications focus on optimizing the energy efficiency of solar-powered
UAVs. The papers [7,10,11] investigated a periodic optimal flight, in which the UAV
ascends using the stored energy in a battery to gain potential energy while recharging the
battery with surplus harvested solar energy until the battery is full, declines as a glider,
and then maintains level flight using the energy in the battery. Such a periodic scheme
is promising to enable sustained flight since the potential energy gained in the day can
be used to reduce energy consumption in the descending flight during the night. The
papers [6,12,13] considered the problem of two-boundary path planning to optimize the
final energy or the total amount of harvested energy during the flight. Specifically, constant-
altitude flight was investigated in [6], and the authors derived the necessary conditions for
energy-optimal flight. For the convenience of analysis, they considered that the flight time
is much shorter than a solar day so that the position of the sun is fixed in the sky during the
flight. The reference [13] considered the 3-dimensional (3D) two-boundary flight, and the
nonlinear programming was used to solve the problem. Moreover, energy-optimal path
planning in a loitering mission was considered in [14,15]. While the UAV maintained a
constant-altitude flight in [15], it flew on the surface of a vertical cylinder with a target as
the centre of the bottom base, and its trajectory was identified by periodic splines in [14].

The aforementioned references all considered that the UAV flies in a free space. When
the applications only require the UAV to remotely conduct missions such as surveillance, a
UAV can fly high enough for free-space flight. However, they may not be used in applica-
tions that require the UAV to be physically close to the targets, such as delivering resources
to ground sites. When the UAV needs to be close to ground targets, collision avoidance
should be considered in the path planning. The paper [16] used solar-powered UAVs to
track a mobile ground target in urban environments. The high-rise buildings were obstacles
to be avoided. The paper [5] exploited a solar-powered UAV to securely communicate
with a ground node in the presence of some no-fly zones. The reference [17] considered
UAV–target communications in urban environments, and the authors focused on the im-
pact of high-rise buildings on signal loss. Considering these application-dependent factors,
the path planning problem becomes more difficult. A number of methods have been
used to address the path planning problem such as RRT [5], the grasshopper optimization
algorithm [16], and the Hermite–Simpson collocation method [17]. Another approach is
the construction of geofence. When a certain area is mapped, a geofence can be constructed,
which divides the space into two parts: available space and no-fly space [18,19]. Then, the
UAV’s path is planned within the available space.

Another group of related work was conducted on multi-target surveillance. The
conventional TSP and its variants are commonly used to formulate the corresponding path
planning problem. The paper [8] considered surveying sites in a cluttered environment by
a UAV that does not harvest solar energy and that treats the problem as the generalization
of TSP, i.e., the vehicle routing problem (VRP). It generated a set of tours, and each of the
tours started and ended at the UAV depot. The UAV could complete each tour to survey
a subset of sites with the limited energy. It is clear that frequently returning to the depot
increases the inspection time, which degrades the quality of surveillance. The paper [9]
considered the battery capacity allowing a UAV to survey all the targets in one tour and
optimal path planning with minimal revisit time of the targets for persistent monitoring
over a longer period than that of one tour. Besides returning to a depot for recharging
or replacing the battery, the paper [20] considered using controllable ground vehicles as
mobile charging stations to address the energy limitation, while the paper [21] considered
the idea of installing charging stations on non-controllable public transportation vehicles.

The problem considered in this paper differs from the existing ones in several aspects.
Unlike the research on the energy-optimal flight of solar-powered UAVs, which assumes
free-space flight at high altitudes (such as 15 km reported in [6]), we consider that the
UAV flies in mountain regions. Not only collision avoidance but also shadow regions are
considered in our work. Additionally, unlike two-boundary path planning with no-fly
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zones [5], tracking of a moving target in urban areas [16], and assisting wireless commu-
nication around a group of cellular users [17], the considered problem involves multiple
targets to be surveyed. Moreover, compared with the publications on TSP-based or its
variant-based multi-target surveillance, where the cost between two sites is known, such a
cost in our model is unknown in advance. As the considered path planning problem for
a solar-powered UAV involves collision avoidance, energy consumption, energy harvest-
ing, and missions of surveying multiple targets, it is more challenging than the problems
considered in existing relevant work.

3. System Model and Problem Statement

In this section, we first present the system model and then formulate the problem of
interest. The frequently used symbols are listed in Table 1. Most of the symbols are with the
time index t. For convenience of presentation, we may omit t if it does not cause confusion.

Table 1. Frequently used symbols and their meanings.

Symbol Meaning Symbol Meaning

p(t) UAV position V UAV speed
θ(t) Flight path angle ψ(t) Heading angle
µ(t) Flight path angle rate φ(t) Bank angle
T(t) Thrust force D(t) Drag force

S Mountain surface Vs(t) Sunlight vector
λ(t) Incidence angle E(t) UAV residual energy
Ps(t) Harvesting power P(t) Consuming power

si Site i Ni Neighbourhood of site i
l(t) LoS indicator σ Inspection tour

We consider a bounded 3D Euclidean space X ⊂ R3 consisting of mountain regions
Xm ⊂ X and the resulting free space X f ⊂ X\Xm.

3.1. UAV Model

Let p(t) = [x(t), y(t), z(t)] ∈ X f be the position of the UAV at time t in the Earth-fixed
reference frame. We consider the following model for the UAV’s motion:

ẋ = V cos θ cos ψ,
ẏ = V cos θ sin ψ,
ż = V sin θ,
θ̇ = µ,
ψ̇ = g tan φ

V ,

(1)

where V is the constant speed, θ is the flight path angle (the angle between the moving
direction and the xy-plane (see Figure 2), which describes whether the UAV is climbing
or descending), µ is the flight path angle rate, ψ is the heading angle (the angle between
the xy-component of the moving direction and the x-axis (see Figure 2), which describes
which direction the UAV is moving relative to cardinal directions), and φ is the bank angle.
In (1), the first three equations describe how the position of the UAV changes over time
with respect to the flight path angle θ and the heading angle ψ. The fourth equation of (1)
describes the change in the flight path angle impacted by the flight path angle rate, and
the fifth equation of (1) gives how the heading angle changes by the bank angle φ. Similar
models have been widely used in the literature, e.g., see [12,16]. The state of the model
(1) is x = {p, θ, ψ}, and the control input is u = {µ, φ}. µ and φ satisfy |µ| ≤ Umax and
|φ| ≤ Φmax, where Umax and Φmax are given constants depending on the maneuverability
of the UAV. Note that, in this paper, we focus on the trajectory planning. We assume that
we have a proper controller to control the dynamics of the UAV.
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Figure 2. Illustration of the flight path angle θ, the heading angle ψ, and the bank angle φ.

3.2. Mountain Site Surveillance

The UAV needs to visit a given set of sites in a mountain area. Let S ⊂ Xm denote
the surface of the mountain regions. Let {s1, . . . , sn} ⊂ S be n sites on the surface S to be
surveyed by the UAV. We say that the UAV surveys a site si at time t if the UAV enters a
certain neighbourhood of si at time t, i.e.,

p(t) ∈ Ni, (2)

where Ni denotes the neighbourhood of site i, which can be a sphere centred at si, a
cylinder with si as the center of the bottom base, or some other region near si. The shape
and size of Ni depend on the low-level sensing technique. Generally, Ni can be large when
a high-accurate sensing device is equipped to the UAV.

For safety, the UAV should avoid collision with mountains. Let q = [qx, qy, qz] ∈ S
denote a point on the surface. The following constraint should hold at any time t:

min
q∈S
‖p(t)− q‖ ≥ ds, (3)

where ‖ · ‖ gives the standard Euclidean norm of a vector and ds is the given safety distance.
Constraint (3) requires that, at any time, the distance between the UAV and the nearest point
on the surface S is no smaller than ds. The safety distance ds is selected based on the type
of UAV and should be sufficient to avoid possible collisions; see, e.g., [22]. An alternative
method to guarantee safety is to use the geofence [18,19]. It can be constructed with the
parameter ds. Then, restricting p(t) to the available space can replace constraint (3).

3.3. Energy Harvesting Model

The UAV can harvest solar energy via solar panels fixed on the UAV’s body, if the
UAV has LoS with the sun. The harvesting rate depends on several factors including the
pose of the UAV, the sunlight vector, and clouds. Following [23], the output power of the
solar panels, denoted by Ps, is modeled as follows:

Ps =


ηs AsGl cos λ, if z > Zup

ηs AsGl cos λe−βc(Zup−z), if Zlow ≤ z ≤ Zup

ηs AsGl cos λe−βc(Zup−Zlow), if z < Zlow

(4)

where ηs is the efficiency of the solar panels, As is the area of the solar panels, G is the
average solar radiation intensity on the earth on a particular day of a year, l is a binary
variable indicating whether the UAV has LoS with the sun, λ is the incidence angle, βc is
the absorption coefficient modeling the optical characteristics of the cloud, and [Zlow, Zup]
is the altitude range of clouds.

The incidence angle λ depends on the azimuth angle αz and the elevation angle αe
of the sun [15,16], both of which vary with time. In the Earth-fixed reference frame, the sun’s
position vector, denoted by Vs ∈ R3, is computed by Vs = [cos αe cos αz, cos αe sin αz, sin αe]T

(where the superscript T represents transpose); see Figure 3. The sun’s position vector can
be converted into the UAV body-fixed reference frame: Vb

s = Rx(φ)Ry(θ)Rz(ψ)Vs, where
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Rx, Ry, and Rz are the rotation matrices. Then, in the UAV body-fixed frame, we have
cos λ = zT

b ·V
b
s , where zb = [0, 0, 1]T is the unit vector along the z-axis of the body-fixed

frame; see Figure 3.

𝑥

𝑧

𝑦

𝛼𝑒
𝛼𝑧

𝑦𝑏 𝑥𝑏

𝑧𝑏
𝜆

𝑉𝑠
𝑉𝑠
𝑏

Figure 3. Illustration of the azimuth angle αz, the elevation angle αe, the incidence angle λ, and
vectors Vs and Vb

s .

The LoS indicator l depends on the sunlight vector, the UAV’s position, and the
mountain surface. To verify the LoS condition between the sun and the UAV, we imagine
that the sun is located at p+Vsκ, given the position of the UAV p, where κ is a large number
so that the sun is located far enough from the UAV. Then, we can compute a line segment
between the sun and the UAV. Following [16], if this line segment has any intersection
points with the surface S, l = 0 and, otherwise, l = 1.

From the model (4), we can see that the altitude of the UAV z and the incidence angle
λ play key roles in solar power harvesting. At a certain altitude, controlling the pose of the
UAV to make the solar panels perpendicular to the sunlight achieves the largest harvesting
power, as cos λ = 1 in this case.

3.4. Energy Consumption Model

When flying, the UAV also consumes energy. The energy consumption power by the
motor, denoted by Pm, is calculated as follows:

Pm =
TV
ηm

, (5)

where ηm is the corresponding efficiency and T is the thrust force.
Let W denote the gravity on the UAV, D denote the drag force (parallel to the UAV

moving direction; see Figure 4), and L denote the lift force (perpendicular to the UAV
moving direction; see Figure 4). These forces have the following relationships:

T − D−W sin θ = 0, (6)

L−W cos θ = 0, (7)

where D = 1
2 ρCD AwV2, ρ is the air density, Aw is the wing area, CD = CD0 +

C2
L

επRa
is the

coefficient of drag, CD0 is the parasitic drag coefficient, CL = 2W
ρAwV2 is the coefficient of lift,

Ra is the aspect ratio of the wing, and ε is the Oswald efficiency factor [7].
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Figure 4. The forces acting on the UAV.

With (6) and the model of the drag D, we have

Pm =
1

ηm
(

1
2

ρAwCD0V3 +
2W2 cos2 θ

επρAwRaV
+ WV sin θ). (8)

We can see that the flight path angle θ plays a key role in (8). The power when the
UAV ascends (i.e., θ > 0) is larger than that when the UAV descends (i.e, θ < 0).

Let E denote be the residual energy of the battery, for which the upper bound is
Emax. The residual energy of the battery is defined as the difference between the energy
harvesting power and the consumption power, i.e.,

Ė = Ps − Pm − P0, (9)

where P0 is the static power consumed to maintain operation of the UAV. Besides (9),
some other models can also be used to characterize the residual energy of the battery; see,
e.g., [13].

3.5. Problem Formulation

We are interested in planning an inspection tour for the solar-powered UAV so that
the UAV starts from an initial position (such as the UAV depot, which can be one of the
sites), visits each site once, and returns to the initial position while maintaining positive
residual energy and avoiding collision with mountains. The objective function can be set
as the minimization of the time to return to the initial position.

Let t0 denote the given starting time, p0 ∈ X f be the initial position, θ0 be the initial
flight path angle, ψ0 be the initial heading angle, E0 be the initial energy in the battery, t f
denote the final time when the UAV returns to p0, and σ be the inspection tour. Then, our
problem can be formulated as follows:

min
σ

t f (10)

subject to

σ(t0) = p0, θ(t0) = θ0, ψ(t0) = ψ0, E(t0) = E0, (10a)

σ(t f ) = p0, (10b)

σ(t) ∈ Ni, ∃t ∈ [t0, t f ], ∀i, (10c)

min
q∈S
‖σ(t)− q‖ ≥ ds, ∀t ∈ [t0, t f ], (10d)

E(t) > 0, ∀t ∈ [t0, t f ]. (10e)

In the above problem formulation, constraints (10a) and (10b) set the initial and final
conditions. Constraint (10c) requires that each site is visited. Constraint (10d) requires the
UAV to avoid collision with mountains. Since the initial position is in the free space, the
UAV will always be in the free space during flight with constraint (10d). Constraint (10e)
requires that the residual energy is maintained positive.
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With the presented models, some other problems can also be formulated. For example,
if we look for the minimum initial energy to complete the inspection mission within a
certain time, we can replace the objective function using minσ E(t0), removing the initial
energy condition in (10a), and adding an extra constraint: t f − t0 is no larger than a
given constant. Moreover, when we consider safe landing at the end or in any emergency
situation, the constraint (10e) can be replaced by E(t) being not smaller than a given
constant, which should be sufficient for landing.

4. Proposed Solution

As aforementioned, the considered problem (10) is more difficult than the conven-
tional TSP, since it couples low-level trajectory planning and high-level site visiting order
scheduling. Moreover, it involves energy management during flight. The residual energy
relies on the harvested and consumed amount, which further depend on the UAV trajectory.
Instead of completely solving the problem of interest, in this section, we present our method
to address the case where we have a visiting order of the sites. This order can be obtained
by solving a TSP instance, where the distance between two sites is approximated by the
Euclidean distance. With the visiting order, our tour planning method consists of two steps.
Firstly, we construct a feasible tour that passes the sites following the visiting order, stays
away from the mountains, and satisfies that the residual energy remains positive at any
time. Secondly, we improve the tour to shorten the completing time while satisfying the
residual energy constraint, staying away from the mountains and not missing any site.

4.1. Feasible Inspection Tour

The proposed feasible inspection tour planning method is based on RRT. Generally, RRT
is used to plan a feasible point-to-point path. The reason for using RRT is that it constructs
a tree incrementally from a root (1) by randomly generating samples and (2) by finding
the nearest vertices in the tree and applying appropriate control inputs to generate new
vertices. In the tree structure, each vertex, other than the root, has a unique parent vertex. A
path in the tree consists of a sequence of vertices. As a randomized method, in general, RRT
can find a path quickly in complex environments. Since any vertex on the path is generated
by appropriate control inputs, the constructed path is feasible to the UAV without any
further smoothing operation.

For the convenience of presenting the method, we introduce some new symbols.

• V : the set of vertices of the random tree. Each vertex τ ∈ V is annotated with {x, u, e,
or t}, which are the state, the control input, the residual energy, and the time instant,
respectively (e and t are defined below).

• E : the set of edges of the random tree.
• δ: a time interval, used in generating new vertices. Any vertex in the random tree can

be reached from its parent vertex in the time interval δ.
• t: the time instant annotated with a vertex. t increases incrementally from the initial

time t0 by δ, such as t0 + δ, t0 + 2δ, etc.
• e: the residual energy annotated with a vertex, upper bounded by Emax.
• U: the set of control inputs. Let nµ and nφ be two given positive integers. They

specify the number of feasible control inputs, respectively, and are dependent on
the maneuverability of the UAV. Then, u ∈ U = {(µ, φ)| jµUmax

nµ
, jµ = −nµ, nµ +

1, . . . , nµ, jφΦmax
nφ

, jφ = −nφ,−nφ + 1, . . . , nφ} [24].

• f (τ): gives the specified annotation of the vertex τ. For example, p(τ) gives the
position of τ and e(τ) gives the residual energy of τ.

The roles of the employed functions are explained below.

• τ1 = Nearest(τ,V): returns the “nearest” vertex τ1 ∈ V to τ in terms of a given
distance function such as the Euclidean distance.
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• u = SuitableInput(τ1, τ2): finds the appropriate control input u ∈ U so that, when the
UAV starts from the vertex τ1 and applies u, it will move towards τ2 for the interval δ
in the mostly energy-efficient way.

• τ2 = Steer(τ1, u): generates a new vertex τ2 from the parent vertex τ1 by applying the
control input u. In this function, the time instant of τ2 is incremented from that of
τ1 by δ; the state of τ2 is computed by the UAV model (1) with the input u; and the
residual energy is computed by (9).

• Gain(τ1, τ2): returns the net energy saving when the UAV moves from vertex τ1 to
τ2. Consider that the residual energy of the UAV at vertex τ1 is e(τ1) and the UAV
can further reach τ2 from τ1. Then, the residual energy at τ2 is given by e(τ2) =
min{e(τ1) + Gain(τ1, τ2), Emax}. This function can also take several vertices, i.e., a
path, as input. This will be used in Section 4.3.

• CollisionFree(τ1, τ2): returns true if the trajectory from τ1 to τ2 avoids collisions
with mountains.

Let s0 = sn+1 = p0 be the virtual starting and ending sites. Then, the visiting sequence
of the UAV becomes {s0, s1, . . . , sn, sn+1}. For every two consecutive sites in this visiting
sequence, we can construct a random tree by setting the former site as the starting position
and the latter as the goal position. The random tree can be constructed following the
framework of the conventional RRT.

With the above symbols and functions, a set of random trees are constructed by
Algorithm 1. Nn+1 is the neighbourhood of sn+1, K is the maximum number of generated
samples, and τinit = {(p0, θ0, ψ0), ∅, E0, t0}. In the first while-loop, the algorithm constructs
the random tree by taking p0 as the initial position and N1 as the destination set. A while-
loop terminates after K random samples have been generated. K should be sufficient so that
a path exists from the initial position to the destination set. Then, the algorithm constructs
the next random tree, where the vertex inside the neighbourhood of the last site becomes
the initial vertex, i.e., τinit. Algorithm 1 returns n + 1 trees, where the root of a latter tree
is a vertex of the former tree. In other words, the trees are connected by these vertices.
If the residual energy at the vertex that enters the neighbourhood Nn+1 is positive, then
a feasible tour exists. That vertex is the ending vertex of the tour. We can find this tour
by tracking the parent of the last vertex in the tour until the initial vertex is tracked. An
illustration is shown in Figure 5.

Algorithm 1: Random trees.
Input: τinit, Ni, i = 1, . . . , n + 1
Output: Vi, Ei, i = 1, . . . , n + 1
for i = 1 : n + 1 do
Vi ← {τinit}; Ei ← ∅; τnew ← τinit; k← 0
while k ≤ K do

k← k + 1
Generate a random sample τrand ∈ X
τnearest ← Nearest(τrand,Vi)
unew ← SuitableInput(τnearest, τnew)
τnew ← Steer(τnearest, unew)
if e(τnew) > 0 and CollisionFree(τnearest, τnew) then
Vi ← Vi ∪ {τnew}
e(τnew)← e(τnearest) + Gain(τnearest, τnew)
Ei ← Ei ∪ {(τnearest, τnew)}

end
end
τinit ← τnew

end
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Figure 5. A illustrative feasible inspection tour. The random trees are in different colors, and the red
dash curve is a feasible tour. The feasible tour is obtained by repeatedly backtracking the parent of
the vertex from the one falling into the neighbourhood of p0 in the last random tree.

In Algorithm 1, a set of n + 1 random trees are constructed in sequence. One may ask
why we do not construct these trees in parallel following the spirit of rapidly exploring
dense trees (RDTs) [25]. In RDTs, the cost from one vertex τ1 to another vertex τ2 is the
same as that from τ2 to τ1. Then, the constructed trees rooting at the starting position and
the destination can be merged. However, this does not apply to the considered problem.
In our problem, the energy gained when the UAV moves from τ1 to τ2 may not be the
same as the reverse. A simple example is that the UAV increases its altitude from τ1 to
τ2. In this movement, energy is spent for such an increase in the altitude. However, if the
UAV moves from τ2 to τ1, the altitude decreases, and it gains energy from the altitude
decrease. Another reason is that the energy harvesting power is time-varying, which
depends on the sunlight direction. Constructing the trees in parallel cannot characterize
well the energy harvesting power as the time to reach the vertices cannot be accurately set.
The presented Algorithm 1 can solve these issues. Specifically, the edges of the random
trees are directed and each vertex in a tree is annotated with a time, both of which facilitate
residual energy computation.

4.2. Energy-Efficient Feasible Inspection Tour

Algorithm 1 constructs a set of connected random trees and then finds the feasible
tour satisfying the energy requirement. Although each vertex is generated in a mostly
energy-efficient way (see the function SuitableInput()), the tour is not optimal in terms of
energy, and this is a common shortcoming of RRT-based planning methods.

In this section, we follow the idea of RRT* [26], especially the idea of rewiring, to
improve the energy efficiency of the vertices in the random trees. This is necessary when
Algorithm 1 fails to find a feasible tour. The body of Algorithm 2 is similar to that of
Algorithm 1. The used functions are explained below.

• τ1 = Parent(τ,V): returns the parent vertex τ1 ∈ V of τ. By convention, the parent
vertex of the root is itself.

• Vnear = Near(τ,V , r): returns the subset of vertices Vnear ⊂ V that are within the ball
centred at τ of radius r > 0. The radius r is used to determine the number of the
selected neighbour vertices. As opposed to a fixed value, r scales with the cardinality
of V to maintain a small number of rewiring candidates [26].

Compared to Algorithm 1, the additional operations of Algorithm 2 include the two
for-loops in lines 14–18 and lines 19–22, respectively. The first one (lines 14–18) is to find
the vertex in the neighbourhood Vnear that leads to the maximum residual energy at the
new vertex τnew. Such a vertex, denoted by τmax in line 16, may not necessarily be τnearest,
since τnearest is found according to a distance metric rather than the residual energy. Once
this vertex is found, an edge between this vertex and τnew is added to the edge set (see line
18). The second operation (lines 19–22) is the rewire for the vertices in Vnear. Specifically, if
a vertex τnear ∈ Vnear that can be reached via τnew has more residual energy, we remove the
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edge from the parent of τnear to τnear from the edge set and add the edge from τnew to τnear
to the edge set (see line 22). An illustrative example is shown in Figure 6.

𝑟

𝜏𝑛𝑒𝑤
𝜏𝑛𝑒𝑎𝑟1

𝜏𝑛𝑒𝑎𝑟2

𝜏𝑛𝑒𝑎𝑟3

Figure 6. Illustration of rewiring. On the left, three vertices are in the neighbourhood of τnew. τnear3

is rewired to τnew as the residual energy via the corresponding path is larger, and the odd edge is
removed. The new tree is shown on the right.

It is easy to understand that the inspection path obtained from the random trees
generated by Algorithm 2 achieves no smaller residual energy than that obtained by
Algorithm 1 for the same set of random samples.

Algorithm 2: Energy-efficient random trees.
Input: τinit, Ni, i = 1, . . . , n + 1
Output: Vi, Ei, i = 1, . . . , n + 1
for i = 1 : n + 1 do
Vi ← {τinit}; Ei ← ∅; τnew ← τinit; k← 0
while k ≤ K do

k← k + 1
Generate a random sample τrand ∈ X
τnearest ← Nearest(τrand,Vi)
unew ← SuitableInput(τnearest, τnew)
τnew ← Steer(τnearest, unew)
if CollisionFree(τnearest, τnew) then
Vi ← Vi ∪ {τnew} Vnear = Near(τnew,Vi, r) τmax ← τnearest
emax ← e(τnearest) + Gain(τnearest, τnew) for each τnear ∈ Vnear do

if CollisionFree(τnear, τnew) and e(τnear) + Gain(τnear, τnew) > emax
then

τmax ← τnear
emax ← e(τnear) + Gain(τnear, τnew)

end
end
Ei ← Ei ∪ {(τmin, τnew)}
for each τnear ∈ Vnear do

if CollisionFree(τnew, τnear) and
e(τnew) + Gain(τnew, τnear) > e(τnear) then

τparent ← Parent(τnear,Vi)
Ei ← Ei\{(τparent, τnear)} ∪ {(τnew, τnear)}

end
end

end
end
τinit ← τnew

end
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4.3. Optimized Inspection Tour

When the inspection tour obtained by Algorithm 1 or 2 has positive residual energy at
the end, there is room to shorten the completing time of the tour. The main reason is that, in
Algorithms 1 and 2, the vertices are linked to achieve larger residual energies. For example,
to increase the energy harvesting power, some long edges that are outside shadow regions
may be added to the tree; see Figure 7. Then, substituting this type of edge on the tour
with some shorter but less energy-efficient ones but less harvested energy can decrease the
completing time while satisfying the positive residual energy constraint. In this section, we
target improving the feasible tour to shorten the completing time, which is the objective of
our problem (10), by sacrificing the energy efficiency.

Mountain

Shadow

Figure 7. The red path, which is outside the shadow region, can harvest more energy but takes a
longer time than the blue path, which crosses the shadow region.

The feasible tour σ consists of a sequence of vertices, and these vertices belong to n + 1
random trees. Then, we can break the whole tour into n + 1 sub-tours. Let σi denote the
ith sub-tour, where i = 1, . . . , n + 1. We have σ = {σ1, . . . , σn+1}. The sub-tour σi consists
of a subset of vertices in Vi. The objective of shortening the inspection tour is to shorten
each sub-tour.

In the ith random tree, there is one vertex located inside the neighbourhood of si−1,
which is the root of the ith tree. If i = 1, this vertex is located at p0. Additionally, there
is one vertex falling into the neighbourhood of si, as once such vertex is added to the ith
tree, and we move onto the construction of the next random tree. Some new symbols and
functions used in the improvement method are explained below.

• σf ixed: the sub-tour that has been improved.
• FirstVertex(σ): returns the first vertex of the tour σ.
• LastVertex(σ): returns the last vertex of σ.
• FinalTime(σ): returns the completing time of σ.
• NumberO f Vertex(σ): returns the number of vertices in σ.
• Reachable(τ1, τ2): returns true if these exists a suitable control input u so that the

vertex τ1 can reach τ2 with u. It is easy to understand that, under the constraints of
the control inputs, the UAV may not reach some states from the current one.

• Update(σ): update the annotations of the vertices of σ.
• TimeUsed(τ1, τ2): returns the time the UAV needs from the vertex τ1 to the vertex τ2.

This function can also take several vertices, i.e., a path, as the input.
• σ = Path(τ1, τ2,Vi): returns the path from root vertex τ1 to another vertex τ2 in the

ith random tree, i.e., σ = {τ1, . . . , τ2}. Every vertex in a tree is reachable from the root,
and this function returns a unique path between the vertices τ1 and τ2.

• PositiveEnergy(σ): returns true if all the vertices of the tour σ have positive residual
energy, i.e., e(τ) > 0, ∀τ ∈ σ.

Our improvement method shortens the feasible tour in a backward way, as shown in
Algorithm 3. The inputs of this algorithm are the feasible tour σ and the set of the random
trees. The improved sub-tour is stored in σf ixed, which is initialized by the final vertex of
σ. We look at each sub-tour σi from the last one σn+1 until the first one σ1. Every time,
we examine the last vertex in the sub-tour σi and add it the final tour σf ixed (see line 7–8).
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Then, the vertices of the tour σf ixed are updated. Specifically, as the first vertex of σf ixed, i.e.,
the newly added one, may be reached in an earlier time, the annotations of other vertices
of σf ixed need to be updated, and such an update is executed in line 9. We look at the
neighbourhood of this vertex (see line 10) and find the vertex in its neighbourhood that
can shorten the completion time while satisfying the residual energy constraint. Note that
this neighbourhood is defined by a radius rδ and that such a neighbourhood is reachable
from the vertex in one time interval δ. Among those that satisfy the conditions listed
in line 12, the vertex that leads to the quickest completion time is assigned as τmin (see
line 14). Then, the left sub-tour is updated by the one from the root of this random tree
to the vertex τmin (see line 15). An illustrative example is shown in Figure 8. The vertex
τ is currently under evaluation. There are two vertices in its neighbourhood. Suppose
that the previous sub-tour is from τ1 to τ via τnear1. If following the path from τ1 to τ via
τnear2 leads to less time and satisfies the residual energy constraint, the current sub-tour
is updated by Path(τ1, τnear2,Vi). The next vertex to be examined becomes τnear2. This
operation terminates when only one vertex, i.e., the root, left in the current sub-tour or
the residual energy of any vertex of σf ixed cannot be positive any more (see line 5). The
improvement process repeats for each sub-tour, from σn+1 back to σ1. It may also terminate
if the residual energy of a vertex of σf ixed becomes negative (see line 3).

It is worth pointing out that Algorithm 3 is one way to shorten the inspection tour.
Other options include shortening the tour in a forward way and shortening the most
time-consuming sub-tour first. Although Algorithm 3 is not guaranteed to deliver the
optimal inspection tour, it can shorten the tour while maintaining positive residual energy,
not missing any site and avoiding collisions with mountains.

Algorithm 3: Tour improvement.
Input: σ, Vi, i = 1, . . . , n + 1
Output: σ
σf ixed ← {LastVertex(σ)}
i← n + 1
while i > 0 and PositiveEnergy(σf ixed)) do

tmin ← FinalTime(σf ixed)
i← i− 1
while NumberO f Vertex(σi) > 1 and PositiveEnergy(σf ixed)) do

τ ← LastVertex(σi)
σf ixed ← σf ixed ∪ {τ}
Update(σf ixed)
Vnear ← Near(τ,Vi, rδ)
for each τnear ∈ Vnear do

if Reachable(τnear, τ),
t(τnear) + TimeUsed(τnear, τ) + TimeUsed(σf ixed) < tmin,
e(τnew) + Gain(τnew, τ) + Gain(σf ixed) > 0 and CollisionFree(τnear, τ)

then
tmin ← t(τnear) + TimeUsed(τnear, τ) + TimeUsed(σf ixed)
τmin ← τnear
σi ← Path(FirstVertex(σi), τnear,Vi)

end
end

end
end
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𝜎𝑓𝑖𝑥𝑒𝑑

𝑟𝛿

𝜏

𝜏𝑛𝑒𝑎𝑟1

𝜏𝑛𝑒𝑎𝑟2

𝜏1

The 𝑖th random tree 
is in this region

Figure 8. An illustration of shortening the ith sub-tour. Suppose in the feasible tour that the vertex τ

connects to τ1 via τnear1. τnear1 and τnear2 are inside the rδ neighbourhood of τ. If replacing the path
from τ1 to τ via τnear1 using the path via τnear2 results in a shorter completion time of the whole tour
and the residual energy constraint is satisfied, we update the tour using the latter path via τnear2.

5. Simulation Results

In this section, we present computer simulation results conducted in MATLAB to con-
firm the performance of the proposed algorithms. The parameters used in our simulations
are listed in Table 2 [7,15]. The simulated mountain region is shown in Figure 9, with a UAV
depot and four sites (randomly selected). The shadow regions created by the mountains
are illustrated in Figure 9. The neighbourhood of a site is set as a cylinder with radius 2 km
and height 0.5 km. The iteration number K is first set as 5000. Initially, the UAV heads
towards site 1 and the residual energy in the battery is E0 = 10 Wh. The simulated location
is Sydney, where the latitude and longitude are 33.87◦ S and 115.21◦ E, and the starting
time is 13:00 on the first day of a year. These values are used to compute the azimuth angle
αz and the elevation angle αe of the sun. More details can be found in [15,16]. The below
results are all in this simulation setting. When we change the number of sites and their
locations, similar results can be obtained.

Table 2. Parameters used in simulations.

Symbol Value Symbol Value

ηm 0.65 ηs 0.17
Aw 0.787 m2 As 0.525 m2

W 25 N P0 3.9 W
V 15 m/s Emax 20 Wh

CD0 0.011 Ra 3.2
ε 0.8 ds 100 m
δ 2 min G 1.367 kW/m2

Zlow 3.5 km Zup 8 km
βc 0.01 ρ 1.29 kg/m3

Umax 1◦/min Φmax 5◦

nµ 2 nφ 2
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Figure 9. The simulated mountain region with a UAV depot and four sites.

We apply Algorithms 1 and 2 to construct random trees. The obtained trajectories
are shown in Figure 10, and the energy consumption power, the energy harvesting power,
and the residual energy of these trajectories are shown in Figure 11. We can see that it
takes 2.8 h to complete the surveillance mission following Trajectory 1 (which is obtained
from the random trees generated by Algorithm 1). Trajectory 2, obtained from the random
trees generated by Algorithm 2, achieves much better performance in terms of the residual
energy at the end of the mission. Moreover, Trajectory 2 takes less time than Trajectory 1.
From Figure 11b, we can see that a smaller part of Trajectory 2 than Trajectory 1 is in the
shadow. As seen from Figure 11a, the energy consumption power along Trajectory 1 is
generally larger than that along Trajectory 2, and the total consumption energies are 115
and 103.8 Wh, respectively. Trajectory 3, obtained by Algorithm 3, is the same as Trajectory
2 for 1.3 h (see the overlapped part of these two trajectories in Figures 10 and 11). Trajectory
3 takes about 2.39 h to complete the mission, which is 10 min less than that of Trajectory
2. The reason for this is that Trajectory 3 has a larger part inside the shadow regions than
Trajectory 2, which harvests less energy but takes less time; see Figures 10 and 11b. As can
seen from Figure 11c, the residual energy of the UAV moving along Trajectory 3 is close
to zero at the end of the mission. Table 3 summarizes the significant differences between
these trajectories.

Figure 10. The UAV trajectories by Algorithms 1, 2, and 3.



Energies 2021, 14, 1968 16 of 19

0 0.5 1 1.5 2 2.5 3

Time [hour]

35

40

45

50

C
o
n
s
u
m

p
ti
o
n
 p

o
w

e
r 

[W
] Trajectory 1

Trajectory 2

Trajectory 3

(a)

0 0.5 1 1.5 2 2.5 3

Time [hour]

0

41

42

43

44

H
a

rv
e

s
ti
n

g
 p

o
w

e
r 

[W
]

Trajectory 1

Trajectory 2

Trajectory 3

(b)

0 0.5 1 1.5 2 2.5 3

Time [hour]

0

2

4

6

8

10

12

R
e
s
id

u
a
l 
e
n
e
rg

y
 [
W

h
] Trajectory 1

Trajectory 2

Trajectory 3

(c)
Figure 11. Results about energy. (a) Energy consumption power. (b) Energy harvesting power (When the harvesting power
is zero, it means that the UAV is located in the shadow created by the mountains). (c) Residual energy in the battery.

Table 3. Comparison of the three trajectories.

Trajectory 1 2 3

Completing time 2.80 h 2.55 h 2.39 h
Residual energy 2.3 Wh 6.9 Wh 0.3 Wh

Energy consumption 115.0 Wh 103.8 Wh 97.4 Wh
Energy harvesting 107.3 Wh 100.7 Wh 87.6 Wh

In-shadow ratio 9.0% 6.6% 12.9%

We are also interested in the impacts of several key parameters on our algorithms. K
plays an important role in constructing the random trees. To have a look at K’s impact,
we keep the set of random samples the same for Algorithms 1 and 2. Moreover, when we
increase K, we reuse the existing samples. As seen from Figure 12a, the residual energy
of the trajectory obtained by Algorithm 2 increases with K but the increasing rate drops
slightly with K. Additionally, the computation time (measured in MATLAB on a computer
with Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz 3.20 GHz and 8 GB RAM) also increases
with K; see Figure 12b. The impact of K on the trajectory obtained by Algorithm 1 is
different. The reason is as follows. In Algorithm 2, whenever a new vertex is generated, a
rewiring operation is executed. Then, the neighbour vertices are reconnected to obtain a
lower cost. When K is extremely large, the most energy-efficient trajectory can be obtained,
but the cost is the computation time. Differently, Algorithm 1 does not rewire vertices.
A better trajectory will be obtained only if the suitable random samples are generated.
Moreover, the computational time of Algorithm 3 is independent on K. As it aims to
improve a given trajectory, the computational time of Algorithm 3 varies with different
given trajectories. For the current considered setting, Algorithm 3 is completed within 10 s.
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Figure 12. The impact of K on (a) residual energy and (b) computation time.

Figure 13 demonstrates the impact of the starting time t0. At the considered location
and on the considered day, the sunrise was at 5:47 and the sunset was at 20:09. We
conducted simulations with starting times from 6:00 to 20:00. We set K as 5000. As shown
in Figure 13, starting too early or too late does not result in feasible inspection paths. The
reason mainly lies in the harvesting energy. At the time near sunrise and sunset, the
harvesting power is very low. During the daytime, with an increase in starting time, the
residual energy and the completion time of the trajectory obtained by Algorithm 2 firstly
increase and then decrease. For the trajectory obtained by Algorithm 3, the residual energy
is near zero no matter when we start, but the completion time first decreases and then
increases with the starting time. The shortest completion time is observed when the UAV
starts at 12:00. Moreover, Algorithm 3 can shorten the inspection time by about 10 to 15 min
in the simulations.
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Figure 13. The impact of t0 on (a) residual energy and (b) path completing time.

6. Conclusions

In this paper, we considered the path planning problem for a solar-powered UAV
inspecting a set of sites for safety and rescue in a mountain area. The proposed path
planning method first finds out a feasible inspection path that enables the UAV to complete
the mission based on RRT. Moreover, following the idea of RRT*, the energy efficiency
of the feasible inspection path can be improved by rewiring the vertices in the random
trees. Then, the method targets shortening the path by sacrificing energy efficiency while
not violating the residual energy constraint. The effectiveness of the proposed method
was confirmed by computer simulations. As a first trail to address this complex problem,
the proposed method is based on a given visiting sequence. Developing methods to relax
this condition is one of our future research directions. Moreover, taking into account the
effects of real-world disturbances, such as wind gusts and the time-varying formation
and position of clouds, in the planning is also worth investigating. The current method
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is designed for a single UAV. To further improve the time locating a target, developing
methods for multiple UAVs is another research direction.
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