
energies

Article

Practically-Achievable Energy Savings with the Optimal
Control of Stratified Water Heaters with Predicted Usage

Michael J. Ritchie , Jacobus A. A. Engelbrecht and Marthinus J. Booysen *

����������
�������

Citation: Ritchie, M.J.; Engelbrecht,

J.A.A.; Booysen, M.J.

Practically-Achievable Energy

Savings with the Optimal Control of

Stratified Water Heaters with

Predicted Usage. Energies 2021, 14,

1963. https://doi.org/10.3390/

en14071963

Academic Editors: Klaus Rheinberger

and Peter Kepplinger

Received: 10 March 2021

Accepted: 29 March 2021

Published: 1 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa;
mjritchie95@gmail.com (M.J.R.); jengelbr@sun.ac.za (J.A.A.E.)
* Correspondence: mjbooysen@sun.ac.za

Abstract: Residential water heaters use a substantial amount of electrical energy and contribute to
25% of the energy usage in the residential sector. This raises concern for users in countries with
flat rate electricity fees and where fossil fuels are used for electricity generation. Demand side
management of tanked water heaters is well suited for energy-focused load reduction strategies.
We propose a strategy for providing an electric water heater (EWH) with the optimal temperature
planning to reduce the overall electrical energy usage while satisfying the comfort of the user. A
probabilistic hot water usage model is used to predict the hot water usage behaviour for the A*-
based optimisation algorithm, which accounts for water stratification in the tank. A temperature
feedback controller with novel temperature and energy-correcting capabilities provides robustness
to prediction errors. Three optimal control strategies are presented and compared to a baseline
strategy with the thermostat always on: The first ensures temperature-matched water usages, the
second ensures energy-matched water usages, and the third is a variation of the second that provides
Legionella prevention. Results were obtained for 77 water heaters, each one simulated for four weeks.
The median energy savings for predicted usage were 2.2 % for the temperature-matched strategy,
and 9.6 % for both of the energy-matched strategies. We also compare the practical energy savings to
the ideal scenario where the optimal scheduling has perfect foreknowledge of hot water usages, and
the temperature and energy-matched strategies had a 4.1 and 11.0 percentage point decrease from
the ideal energy savings.

Keywords: domestic energy saving; electric water heater; energy usage prediction; Legionella; optimal
control; scheduled control; water heater temperature control

1. Introduction

Energy usage by domestic water heaters can be reduced by optimal control strategies.
These take into account the pattern of actual hot water usage and the user’s convenience.
However, the savings have only been demonstrated and quantified using optimisation
for unstratified thermal models, and with perfect foreknowledge of the hot water usage
patterns. Stratification, i.e., layers of different temperatures in the tank because of the
different densities of cold and hot water, is known to occur in water heaters. A control
strategy that takes this into account could well improve the savings.

Much of the household electricity demand is as a result of water heating [1,2]. Water
heating accounts for 18% of the residential energy consumption in the USA and 25% in the
UK [3,4]. Furthermore, the residential energy used in the USA accounts for 20% of their
greenhouse gas emissions [5].

Water heaters supply water, and consequently energy, in a cyclical pattern. This pro-
vides the possibility of shifting peak loads for demand side management (DSM) strategies.
Those with storage tanks are particularly suitable because they can conserve thermal energy
for long times with relatively little heat loss [6].

The thermal energy they retain can be stored for delayed use in schemes that schedules
the supply of power for peak-shifting [7–9]. Such schemes must take into account the
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heater’s thermal behaviour, and the customer’s water draw behaviour and satisfaction [10,11].
Literature studies relating to smart grid applications have thoroughly covered the thermal
models and control algorithms for water heaters [7,9,10,12–27]. However, very few studies
have proposed models explicitly designed for water heating to achieve an overall reduction
of energy usage. Most have proposed models designed to manage peak load by optimising
the time-of-use pricing to provide benefits for the generator of the customer.

Users in some countries, typically paying a time-dependent flat fee for power rather
than tariffs that are based on congestion or time-of-use, decrease their costs per month by
turning to schedule control [1,28]. These users contribute to increasing energy usage as a
result of DSM strategies [11]. Demand response strategies that focus on reducing the total
energy consumption of a household can therefore reduce costs and minimise greenhouse
gas emissions.

In this paper, we focus on achieving general energy savings by optimal temperature
and schedule control instead of cost savings where congestion charges are avoided.

A fundamental driver of energy usage and available savings of a water heater is the
hot water draw profile [29].

In a recent study, Braas et al. [30] developed a method for generating heat profiles
for domestic water heaters to find the most cost-efficient heating solution. They note the
importance of draw-off profiles and appropriate time intervals. Ref. [31], reviewing the
current state of work on improving the energy performance of domestic water heaters,
highlights the importance of measured energy data and spatial distribution of water
usage for optimisation, and they note that advanced control strategies can cleverly adjust
heating systems to decrease energy loss, increase user comfort and minimise Legionella
risks. Legionella bacteria can flourish in water heaters at lower water temperatures. They
pose a health risk to humans, causing diseases collectively referred to as Legionellosis [32].

Roux et al. [11] found that schedule control had the largest effect when simulating a
variety of hot water draw patterns, where a one-node water heater model was used, and
achieving energy savings of 9 to 18%.

Whereas existing papers assess savings for perfect foreknowledge of the hot water
usage patterns, this paper uses predicted knowledge to assess the performance under
practical conditions of uncertain usage. The objective is to determine the practical electrical
energy savings by predicting the hot water usage profile. However, hot water usage
patterns are difficult to predict accurately as water draw behaviour is unique to each
household and varies over time. To tackle these issues, a probabilistic hot water usage
model produces predicted hot water usages that accounts for these factors and is solved
with the optimisation algorithm.

1.1. Challenges in Literature

This section summarises the challenges remaining in literature, highlighting the
research gaps remaining in this paper. We review the studies and describe their data,
methods and results (energy savings), and any limitations or shortcomings.

Fanney and Dougherty [33] evaluate electrical water heater thermal efficiency. They
perform six simulations of water usage profiles with varying heating schedules. However,
they use thermal efficiency as a standalone metric for assessing energy savings. This is not
ideal because the efficiency of the water heater varies for high and low volumes of usage,
and, if it is switched off, it has a thermal efficiency of 100%. They predict savings of 4%
and 6%, but their actual energy savings were not explicitly stated.

Goh and Apt [12], Gholizadeh and Aravinthan [10], Booysen et al. [16], Nel et al. [19],
Booysen and Cloete [34] and Cloete [35] use schedule control to evaluate the electrical
energy savings.

Using hourly water usage profiles, Goh and Apt [12] find 5 to 8% savings. Gholizadeh
and Aravinthan [10] yield 5.9 to 6.4% energy savings with additional control of the tem-
perature. They generate water usages based on the ASHRAE 90.2 water profile standard.
However, the water profile is too general and does not account for the variety in water
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demand from user to user. Both studies simulate water heaters without accounting for the
total energy used and outlet temperature.

Booysen et al. [16] find an energy saving of 14% to 17%. Their results are confirmed
by performing an experiment. Their results are obtained using a lumped-mass analytical
physics model and only one water usage profile is used. The consequences of reducing
the outlet temperature of the hot water drawn are not accounted for (i.e., the reduction in
energy used).

A model of water heaters with heating control based on a thermostat or scheduling
is developed by Nel et al. [19] and has improved accuracy. The same model is used by
Booysen and Cloete [34]. They carry out a controlled laboratory experiment using a single
water heater and a controlled filed trial using four heaters and find 29% savings. They
don’t determine the energy savings when the temperature and energy are matched to
that of the baseline method. Cloete [35] repeats the laboratory experiment with extended
heating periods. Additionally, the set-point is adjusted to match the outlet temperature to
ensure a fair comparison. This caused the savings of 16% to be reduced to 6%.

Refs. [36,37] use dynamic programming for optimal schedule control.
Ref. [36] uses hourly control to minimise cost and energy usage. They use synthesised

usage patterns from [38]. They find energy savings of 4.5 to 13.3%. Kepplinger et al. [18],
their subsequent study, uses an auto-scheduling method. Similarly to the model presented
in this paper, they perform simulations on a thermal model that accounts for stratification.
They find energy savings of 10.5 to 12.4%. Although the model ensures that the energy
delivered is matched, it does not ensure that the temperature at the beginning of each
water usage is matched to that achieved by a water heater controlled only by a thermostat
for the same usage. Kepplinger et al. [39] conduct field trials in a follow-up study. They
determine savings of 12.3%. These studies use a k-nearest neighbourhood algorithm to
estimate future water usage with hourly time steps.

Ref. [37] uses minutely control to minimise energy usage. They use real hot-water
usage patterns. They include strategies that achieve target delivery temperatures and
energy usages. They also include Legionella sterilisation. As the study is based on a one-
node electric water heater model, water stratification is ignored and not reflected in the
results. This study assumes perfect knowledge of future water usages.

Ref. [40] use a novel direct load control method for water heaters without the need for
temperature information. They do this by using a time-varied weight matrix, generated
from hourly hot water usage patterns. The matrix produces a user comfort index which
determines how the water heater can be controlled to shift peak loads.

It is clear from the preceding analysis that many challenges remain. None of the
existing work in literature accounted for stratification in the heater, which is expected
to have a substantial impact. None of the existing literature implemented a strategy to
reduce the growth of Legionella. Unless stated, the control strategies in the related work
do not plan for predicted water usages that are then assessed with actual water usages.
More importantly, they did not use water usage data sampled at high frequency, i.e., using
minutes rather than hours. High frequency water usage profiles are required to increase the
accuracy of water usage predictions and to increase the effectiveness of feedback control
mechanisms to correct potential prediction errors. Because of the randomness of water
draw behaviour, incorrect water usage predictions are a common occurrence. However,
none of the studies account for correcting the EWH temperature when prediction errors
occur. These studies also do not use a validated water usage model that accounts for factors
that influence a household’s water usage behaviour, such as the users unique behaviour
and temporal variations.

1.2. Contributions

The work presented in this paper uses components from our previous papers, [41,42],
and makes the following contributions:
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1. The residential electric water heater control problem was mathematically formulated
in a novel way as an optimal control problem with the objective to find the heating
element switching signal and the optimal temperature state trajectory to minimise the
energy used, while satisfying an anticipated hot water usage profile.

2. A novel A*-based technique was developed that solves the optimal control problem
using a two-node lumped parameter model of the electric water heater that takes
stratification into account.

3. A novel feedback control technique was developed that controls the temperature
inside the electric water heater to follow the planned optimal temperature trajec-
tory, rejecting disturbances such as unanticipated hot water usage and providing
robustness to model uncertainty.

4. A novel hot water usage model was developed that uses clustering and statistical
analysis to model the user’s temporal hot water usage behaviour based on historically
measured usage data. The hot water usage model is used to predict the anticipated
hot water usage profile for the optimal control algorithm.

5. A reactive hot water usage simulation model was developed that generates a synthetic
hot water usage profile with random variations based on the clustering and statistical
properties of the historical usage data. The model simulates the fact that the user will
adjust the ratio of cold water and hot water mixing based on the temperature of the
hot water.

6. A study was performed to determine how much energy can practically be saved with
optimal control for electric water heaters compared to the traditional thermostat control.

In our previous paper, Engelbrecht et al. [42], we investigated how much energy
can theoretically be saved with optimal control for electric water heaters compared to
traditional thermostat control, when perfect foreknowledge of the hot water usage profile
is available. The probabilistic hot water usage model and the hot water usage predictor
were therefore not used in the paper, but perfect foreknowledge of the hot water usage
profile was used instead. In this paper, we investigate the practical energy savings that are
achievable with usage-based optimal energy control, when a predicted hot water usage
profile based on historically measured data are used. This paper therefore includes the
probabilistic hot water usage model and the hot water usage predictor.

2. System
2.1. System Overview

The goal of the system described in this paper is to minimise the electrical energy used
by a storage-based electric water heater (EWH) while preventing the user from experiencing
cold water temperatures, for a given predicted hot water usage profile. An overview of
the system is shown in Figure 1. The system consists of an optimal temperature schedule
planner, a temperature feedback controller, a probabilistic hot water usage model and a
hot water usage predictor. The EWH is modelled using a two-node thermodynamic model
that accounts for stratification. The EWH is controlled by a heating element that can be
switched either on or off. The user is modelled using a reactive hot water usage model that
simulates the user experiencing the outlet temperature of the hot water and adjusting the
mixing ratio of hot and cold water to obtain the desired temperature.

The optimal control sequence for the heating element and the corresponding optimal
EWH temperature trajectory are determined by an optimal temperature schedule planner.
A two-node EWH model that accounts for water stratification is used, and the optimal
control problem is solved using an A* search algorithm, as described in this paper.

The temperature feedback controller is used to compensate for deviations between
the planned optimal temperature trajectory and the actual temperature trajectory, rejecting
disturbances such as unanticipated hot water usage and providing robustness to model
uncertainty. The temperature feedback controller controls the water temperature inside the
EWH to follow the temperature set point provided by the optimal temperature planner by
switching the heating element based on feedback from the EWH internal temperature sensor.
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Figure 1. Flow diagram of optimal electric water heater (EWH) control determined by an optimal
temperature planner. Components are indicated as physical or software.

The optimal schedule planner uses a predicted hot water usage profile to plan the
optimal EWH temperature trajectory. The predicted hot water usage profile is provided by
the hot water usage predictor, which in turn uses a probabilistic hot water usage model.
The probabilistic hot water usage model is obtained by fitting a probabilistic model to
historical measured hot water usage data obtained from the EWH temperature and flow
rate sensors [41]. The probabilistic hot water usage model and the hot water usage predictor
will generate predicted hot water usage profiles for which the optimal heating schedule
will be planned.

2.2. Heating Control Strategies

We use the following four heating control strategies in this paper. The first strategy is
traditional thermostat control that serves as the baseline against which we will evaluate
the energy savings achieved by the three variations of our optimal control strategy.

0. Thermostat control (TC): This strategy is typically used by most people and is the
operation for the intended design. The thermostat with a set-point temperature, usually
around 70 °C (with small hysteresis), maintains the target water temperature. The strategy
is inefficient and wasteful since the water is maintained at the set-point temperature when
hot water is not drawn for long time periods. This results in substantially more energy
lost to the environment compared to the other strategies. Furthermore, the user normally
requires a temperature of about 40 °C and will therefore adjust the mixing of hot and cold
water to obtain the desired water temperature [26,43,44].

1. Temperature-matched scheduled control (TM): The energy losses and costs have
been reduced by some users by switching off the water heater during long periods when
they are not needed, and ideally switching it on shortly before hot water is needed
again [16,28]. The operation of this strategy provides optimal control of the heating element
switching sequence to minimise thermal losses and ensuring that water is drawn at the
same volume and temperature (and delivering an equivalent amount of output energy) as
that of thermostat control. Similarly to thermostat control, the strategy assumes that the
user will adjust the water mixer to reach their desired temperature.

2. Energy-matched scheduled control (EM): This strategy reduces the need for the user
to add cold water to obtain their desired water temperature (assuming 40 °C) by lowering
the target temperature during water usages. However, a delivery of the same amount of
energy to that of thermostat control is ensured by increasing the volume of water drawn
from the tank [11,43,44].

3. Energy-matched scheduled control with Legionella prevention (EML): While the
previous strategy saves energy, maintaining low water temperatures for long periods
of time can introduce health risks. Legionella pneumophila can be found in water heaters
and thrives at water temperatures between 32 °C and 42 °C [32,43]. The bacteria can be
sterilised if the water heater maintains a temperature of 60 °C for 11 min [45]. This strategy
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is a modification of the previous one that implements an additional optimisation constraint
that ensures the sterilisation of this bacteria.

2.3. Electric Water Heater Thermodynamics

The EWH thermodynamics can be modelled using a one-node or two-node lumped-
mass model. The latter models stratification. In this paper, we consider only a vertically
oriented tank. A horizontally oriented tank can also be considered but requires substantially
more computational power to implement the model that is used for the optimal temperature
planning Nel [46]. The EWH is modelled according to an energy balance equation to track
the energy flow in the tank. In the one-node model, the body of water inside the tank is
assumed to be at a uniform temperature, as shown in Figure 2a. Energy flows into the
tank from an electrical heating element situated near the base of the tank. If warm water
leaves the tank at a higher temperature than the water in the inlet pipe, the thermal energy
of the tank decreases due to the volumetric flow rate. When the temperature of the tank
water is different to the ambient temperature, thermal energy is lost from the tank at a rate
determined by the tank’s thermal resistance.

The two-node EWH in Figure 2b models stratification by introducing a thermocline
that divides the tank into an upper and a lower node which represent the hot and cold
water, respectively. Water leaving the outlet pipe is at the temperature of the upper node
and water entering the inlet pipe is at the ambient temperature. Inter-node energy transfer
occurs due to the temperature difference at the thermocline between the two bodies of
water at a rate determined by the thermal resistance of the thermocline. The full description
of the EWH dynamics used in this paper can be found in Ritchie [47].

(a) One-node EWH. (b) Two-node EWH with stratification.

Figure 2. Energy flow, thermal resistance, flow rate, temperature and volume in (a) one-node and (b)
two-node EWH.

2.3.1. One-Node EWH Dynamics

We express the thermal dynamics of the one-node EWH model as follows:

Ėtank(t) = Pelec(t)− Pdraw(t)− Ploss(t) (1)

where Etank is the thermal energy in the tank, Pelec is the electrical power supplied by the
heating element, Pdraw is the power of hot water leaving the tank during usage, and Ploss is
the power leaving the tank due to losses to the environment. The equation shows that the
rate of change of thermal energy is directly influenced by Pelec , Pdraw and Ploss .

2.3.2. Two-Node EWH Dynamics

When the tank is in a one-node state and water is drawn at a temperature higher than
that at the inlet pipe, the tank transitions to a two-node state. When all the hot water is
drawn from the tank, the EWH reverts to a one-node state and the temperature of the whole
tank is that of the lower node. The EWH also transitions to a one-node state when the
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lower node temperature reaches the temperature of the upper node. The nodes are referred
to as the upper and the lower node and are designated by subscripts U and L, respectively.

The energy and volumes of the upper and lower nodes are related to the total energy
and total volume of the tank by the following equations:

Etank(t) = Etank,U(t) + Etank,L(t) (2)

Vtank,U(t) + Vtank,L(t) = Vtank (3)

The total energy Etank in the tank is the sum of the energy Etank,U in the upper node
and the energy Etank,L in the lower node. The sum of the upper node volume Vtank,U and
the lower node volume Vtank,L are constrained to equal the total volume of the tank Vtank,
which remains constant.

The thermal dynamics of the two-node EWH model is described by a set of four
differential equations in terms of the upper node energy, the lower node energy, the upper
node volume, and the lower node volume, respectively.

The first differential equation describes the dynamics of the upper node’s thermal
energy, as follows:

Ėtank,U(t) = −Pdraw,U(t)− Ploss,U(t)− Ptrans,U(t) (4)

The rate of change of the upper node’s thermal energy Ėtank,U is the sum of the power
Pdraw,U leaving the upper node when hot water is drawn, the power Ploss,U leaving the
upper node due to losses to the environment, and the power Ptrans,U leaving the upper
node due to power transfer to the lower node across the thermocline.

The second differential equation describes the dynamics of the lower node’s ther-
mal energy:

Ėtank,L(t) = Pelec(t) + Pinlet,L(t)− Ploss,L(t)− Ptrans,L(t) (5)

The rate of change of the lower node’s thermal energy Ėtank,L is the sum of the electrical
power Pelec delivered to the lower node by the heating element, the power Pinlet,L entering
the lower node due to the thermal energy in the cold water flowing into the inlet, the power
Ploss,L leaving the lower node due to losses to the environment, and the power Ptrans,L
leaving the lower node due to power transfer to the upper node across the thermocline.

The third and fourth differential equations describe the dynamics of the upper node
volume and the lower node volume, as follows:

V̇tank,U(t) = −Qdraw(t) (6)

V̇tank,L(t) = Qdraw(t) (7)

The rate at which the upper node volume Vtank,U decreases and the rate at which the
lower node volume Vtank,L increases both equal the flow rate Qdraw of the hot water leaving
the tank, which also equals the flow rate of the cold water into the tank.

2.4. Temperature Feedback Control

The optimal temperature plan is passed to the temperature feedback controller before
determining the input of the EWH at any given time. The controller compares the measured
temperature of the EWH with the desired time-varying temperature set-point of the optimal
plan. The controller will override the optimal input for the EWH so that the temperature
of the EWH follows the optimal temperature (with hysteresis). The temperature feedback
control corrects the EWH temperature when it deviates from the optimal plan. Temperature
deviations are caused by unexpected water usages and model inaccuracies.

2.5. User and Water Mixer

The user experiences the hot water temperature of the EWH when a usage event is
intended. If the initial temperature experienced by user is not the desired temperature,
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the user will adjust the ratio of hot and cold water using a water mixer to reach such
a desired temperature. The water mixer is a model of reality and is used to perform
and evaluate simulation tests. The model is also used by the energy matching heating
control strategies to adjust the predicted hot water flow rate that is used to calculate the
optimal temperature plan. If the predicted temperature inside the EWH differs from the
user’s desired temperature during a predicted usage event, then the hot water flow rate is
adjusted to reflect the user’s anticipated water mixing action.

3. Optimal Temperature Planning for an EWH with Stratification

This section presents the algorithm that performs the optimal planning for a two-node
EWH model with stratification. A full description of the optimal control problem and A*
algorithm that is used to solve can be found in Ritchie [47].

3.1. Formulation of the Optimal Control Problem

Given a hot water profile that represents flow rate Qusage(t) as a function of time t
and time-varying disturbance signals for the ambient and cold inlet temperature Tamb(t)
and Tin(t), the EWH control problem is to find the optimal control signal P∗elec(t) that
minimises the overall energy usage and also satisfying the hot water usage profile. We use
the following cost function to represent the objective of minimising the total energy usage:

J =
∫ t f

ti

Pelec(t)dt (8)

We define constraints for the water temperature profile to satisfy the hot water profile.
We set the upper node profile temperature Ttank,U(t) to the required water usage tempera-
ture Tusage during any time that water is drawn, the lower node profile water temperature
Ttank,L(t) to the Legionella sterilisation temperature TLegionella once a day, and both profiles
to the minimum water temperature of the EWH Tmin during any other time:

Ttank,U(t) ≥
{

Tusage when intentional draw causes Qdraw(t) > 0
Tmin otherwise

}
(9)

Ttank,L(t) ≥
{

TLegionella once per day to prevent Legionella growth
Tmin otherwise

}
(10)

“Unreasonable” hot water usage profiles: We account for hot water usage profiles
with “unreasonable” water usages where hot water cannot be delivered at the required
water usage temperature, even when the heating element is always on. As an example, this
can happen when all of the hot water is drawn from the tank during a water usage and then
the availability of hot water is immediately expected. Before applying the optimisation
algorithm, these profiles are accounted for by performing a forward simulation of the water
profile with the heating element permanently switched on. If any temperatures in the
simulation fall below the desired usage temperature during water usages, the temperature
profile constraints are then modified to these achievable temperatures.

The temperature profile constraints are constructed differently for each of the optimal
control strategies:

Temperature-matched constraints: The constraints of the temperature profile are
constructed to ensure that the outlet water temperature during the beginning of each usage
matches that of thermostat control applied to the same hot water usage profile.

Energy-matched constraints: The constraints of the temperature profile are constructed
to ensure that the outlet water temperature remains above 40 °C during each water usage.
By doing this, the outlet flow rate is increased to match the energy delivered by that of
thermostat control (at a higher water temperature) applied to the same hot water usage
profile. However, when water usages are predicted, there is always an uncertainty that the
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actual water usage will start earlier than what was predicted, or use a larger volume of
water. This would certainly result in a cold event. A 10 ◦C buffer is added to the usage
constraint Tusage to provide a safety margin and greatly reduce the risk of cold events.

Energy-matched with Legionella prevention constraints: The constraints of the tem-
perature profile are constructed for both energy matching and for preventing Legionella.
The temperature of the entire tank is increased to 60 °C for 11 min once a day. The EWH is
scheduled to be heated to this temperature as soon as the biggest water usage for that day
is about to occur to reduce the necessity of additional water heating.

3.2. The A* Solution

The A* algorithm is a well-known and widely-used shortest path search algorithm
that can be used to model a given optimal control problem as a node-based data structure
navigation process to find the optimal state trajectory and control inputs to minimise the
cost function from an initial state to a destination. The algorithm optimises its search time
by introducing a heuristic function that estimates the path to a terminal state. However, the
efficiency of the algorithm depends on the quality of the chosen heuristic function. The A*
algorithm builds a binary search tree that has two possible actions at each node: element
on and element off.

Discretisation

If we desire to apply A* to a given optimal control problem, we have to break the
problem into discrete time instants that represent the different decision stages, and into
discrete states that represent the allowable decisions to be determined at any decision
stage. The A* algorithm finds the optimal path by starting at the initial stage and working
through intermediate stages until it finds the first admissible path from the initial state to a
terminal state. The first admissible path is also the optimal path due to the way that the
paths are sorted in a priority queue.

The continuous-time differential equations describing the system dynamics are discre-
tised to produce discrete-time difference equations that describe the state transition from
one discrete time instant to the next.

For the one-node case, the state transition is described as

E(k + 1) = E(k) + [Pelec(k)− Pusage(k)− Plosses(k)]∆t (11)

where ∆t is the sampling period of the discrete time instant.
For the two-node case, the state transition is described by the following set of differ-
ence equations:

EU(k + 1) = EU(k) + ĖU(k)∆t (12)

EL(k + 1) = EL(k) + ĖL(k)∆t (13)

Vtank,U(k + 1) = Vtank,U(k)−Qdraw(k)∆t (14)

where ĖU(k) and ĖL(k) are respectively given as

ĖU(k) = −Pdraw,U(k)− Ploss,U(k)− Ptrans,U(k) (15)

ĖL(k) = Pelec(k) + Pinlet,L(k)− Ploss,L(k)− Ptrans,L(k) (16)

The lower node volume is calculated by subtracting the upper node volume from the
constant total volume of the tank, as follows:

Vtank,L(k + 1) = Vtank −Vtank,U(k + 1) (17)

The A* algorithm starts at an initial node, and will navigate through a binary search
tree by producing paths of interconnected nodes until the desired goal node is reached.
At each iteration, the action space for the considered node at a path ending is used to
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generate child nodes from the given parent node. There are two possible actions that
produce two possible child nodes: when the heating element is on and off for that time
sample. The algorithm repeatedly switches between calculating different search paths,
and a priority queue is initialised to give priority to the path ending that is considered for
the next iteration. The queue determines the priority for the paths based on a cost that is
assigned to every existing node.

Total path cost: The total cost J is calculated by the cost-to-come and cost-to-go, and is
calculated as follows:

J(k + 1) = g(k + 1) + h(k + 1) (18)

Cost-to-come: The cost-to-come is calculated incrementally as nodes are created and
added to the search tree. The cost to come is the total energy use so far and is calculated with

g(k + 1) = g(k) + Pelec(k)∆t (19)

where g(k + 1) is the total cost-to-come of the child node, g(k) is the total cost to come of the
parent node, and Pelec(k)∆t is the incremental energy used.

Heuristic search: A heuristic cost function is introduced to accelerate the search
algorithm by prioritising the optimal path as the next iteration of the algorithm execution.
This is accomplished by heuristics: estimating the path cost from the next state xj(k + 1) to
the terminal state.

Cost-to-go: At any time instant, the EWH must reach the terminal state after the result
of thermal energy that is anticipated to still leave the tank. The cost-to-go estimates both the
minimum amount of energy that must still be supplied to the tank to reach the terminal
energy state as well as how much thermal energy will leave the tank during the remaining
water usages from the considered time instant. The cost-to-go is calculated with

h(k + 1) = E(k + 1) + E(N) +
N

∑
n=k+1

Pusage(n)∆t (20)

where E(k + 1) is the energy at the child node, E(N) is the energy at the final node, and
Pusage(n)∆t is the predicted thermal energy that will leave the tank due to hot water usage.
Because standing losses contribute a relatively small portion of the thermal energy that
leaves the tank, the thermal energy loss to the environment is not included in the cost-to-go.
The heuristic is still valid, however, since, by ignoring the standing losses, the heuristic
underestimates the actual cost-to-go.

Pusage(n)∆t is the estimated thermal energy that is drawn from the tank at a specific
time instant. It is pre-calculated by performing a forward simulation of the water profile
which acts as a disturbance to the EWH. The simulation is performed such that each water
event ends with the outlet temperature remaining above Tusage.

4. Probabilistic Hot Water Usage Model and Predictor

A novel probabilistic hot water usage model was developed in Ritchie et al. [41] and
a summary is presented in this section. The model uses historical data measurements to
statistically model the hot water usage behaviour from day to day for an individual EWH.
A hot water usage predictor is developed that implements the model to produce hot water
profiles with predicted water usages for the optimisation algorithm. The A* optimisation
process must prevent the user from experiencing cold water temperatures when they start
using hot water. Therefore, it requires a hot water profile that predicts water usages that
have the earliest expected start time and largest expected total volume to ensure a that the
tank is sufficiently heated to accommodate the worst case of a water usage. The predictor
is designed to generate such a water profile and is referred to as a conservative water profile.
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4.1. Probabilistic Hot Water Usage Model

The development of the probabilistic hot water usage model is described in this section
and the steps are shown in Figure 3. The model statistically models an individual EWH’s
water draw behaviour by first grouping flow rate measurements into clusters of time, flow
rate and volume, and then fitting statistical distributions to the starting time, average flow
rate and total volume used for each water usage.

(a) (b)

(c) (d)

Figure 3. (a) The flow rate data measurements are clustered with respect to time of day and CT,1 and
CT,2 represent a morning and evening time cluster. (b) The usage start times for a time cluster are
distributed around the time of day (green data points) and a Gaussian distribution is fitted. The mean
middle time is shown by t̄. The conservative start time t′ picked by the predictor is indicated in red.
(c) The volume and flow rate water usage parameters for a time cluster are recorded and distributed
with respect to flow rate and volume. (d) A 2D Gaussian distribution is fitted to the data points (blue
oval) and a blue arrow represents the correlation between the two parameters. The conservative
volume V′ and average flow rate f̄ ′ picked by the predictor is indicated in red.

The model assumes that the usage behaviours differ between seasons and day of the
week and separates the data into different data sets accordingly. Repeating usage events
are identified by superimposing the measured flow rate data on a single day cycle, as
shown in Figure 3a. Clustering is used to determine the optimal number of time clusters
that represents time slots with repeating water usages.

Next, a probabilistic distribution is determined for the start times of each water usage
belonging to the time cluster. Figure 3b shows how the time-of-day component for all the
flow rate measurements belonging to the time cluster are fitted with a Gaussian probability
density function. The “middle time” is the time halfway through the usage event. The mean
middle time is shown by t̄ and the conservative middle time is shown by t′.
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For each time cluster, the average flow rate and total volume of each water usage is
calculated to determine a distribution of data points that are made up of these components.
Figure 3c shows a scatter plot of the data points.

Finally, a probabilistic distribution is determined for the total volume and average
flow rates of each water usage. It was determined that these components are statistically
dependent and the data points are fitted with a Gaussian joint probability density function
to characterise the usages for the time cluster. Figure 3d shows the fitted distribution and
the conservative average flow rate and volume is shown by f ′ and V′.

The expected number of water usages that occur for each day and the probabilistic
distribution of time-of-day, average flow rate and volume for each water usage is suffi-
cient information to model the unique hot water usage behaviour of an individual EWH.
The model can be obtained for any of the seven days of the week.

4.2. Hot Water Usage Predictor

The hot water usage predictor generates conservative profiles from an EWH’s prob-
abilistic hot water usage model. The profile is generated for a specified number of days
and season by iterating through all the days of the week and generating a conservative
hot water usage for each time cluster. The water usage is determined for a time cluster by
drawing a sample that represents the conservative middle time t′, total usage volume V′

and average flow rate f̄ ′ from the respective Gaussian distributions. The duration for the
water usage is calculated using

Tdur =
V′

f̄ ′
(21)

where Tdur is the duration of the water usage. The start time of the water usage can
be determined by subtracting half of the event duration from the middle time, and is
calculated using

t′start = t′ − Tdur
2

(22)

where t′start is the conservative start time of the water usage. We use conservative start times
to allow for the hot water to be ready early on because the long thermal time constants
ensure that the water will also be hot enough if the event starts later. However, if the event
starts early and the hot water is not ready, then there will be a cold event. The flow rate
profile as a function of the time-of-day for the predicted water usage is constructed using
the average flow rate, start time and duration, and is expressed as

f (t) =
{ f̄ ′, t′start ≤ t ≤ t′start + Tdur

0, otherwise
(23)

where f (t) is the instantaneous flow rate at time t. The predicted water usage is therefore
described as having a constant, positive flow rate during the water usage and zero flow
rate for the rest of the day.

Once the flow rate profile is obtained for all the water usages, the predicted profile for
the whole day is constructed by superimposing all the water usages. A water profile for
an entire week is constructed by generating a one-day profile from each of the seven hot
water usage models that represents a unique day of the week.

Figure 4 shows the conservative profiles generated for each day of a full week and
is plotted on a 24-h cycle. This figure shows how the hot water usage behaviour varies
depending on the day of the week.
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Figure 4. Conservative hot water profiles generated for a full week on a 24-h cycle. Water usages for
each day of the week are differentiated by colour.

5. Results and Discussion

Simulations are performed for four weeks (one week for each of the four seasons) for
77 water heaters. For each water heater, a training set of historically measured data is used
produce a hot water usage model that statistically describes the water draw behaviour.
The hot water usage predictor generates a profile with a duration of one week per season,
where the water usages are determined by the conservative parameters. The EWH optimal
control is determined for the predicted profiles and used for the simulation of each water
heater using a validation set of measured data. Simulations are aided with the tempera-
ture feedback controller and water mixer. This section evaluates the results acquired by
simulations where the heating schedule was planned for predicted water usages.

First, the results of the various EWH optimal heating control strategies are compared
to that of simulations that use traditional thermostat control. The simulation results for
a single EWH are plotted and discussed for each strategy to show how the behaviour
of each optimal temperature and heating schedule profiles operate (i.e., temperature-
matched, energy-matched, and energy-matched with Legionella prevention) and differ
from thermostat control. Following this, we evaluate the performance of each considered
EWH control strategy and compare those that are optimal with thermostat control by
statistically analysing the distribution of results that correspond to the performance metrics
for all 77 EWHs. These metrics are defined in the corresponding section.

Second, the results of the optimal heating control strategies that were previously
obtained are directly compared to simulations where the optimal plan has perfect fore-
knowledge of water usages to show how predicted water usages affect the performance
of optimal EWH control. The simulation results for a single EWH for the temperature
and energy matching control strategies are compared for simulations with predicted and
perfect foreknowledge of the water usages. The difference in operation between the two
cases are then explained by evaluating the change in the distribution of results for the
considered performance metrics from predicted to perfect foreknowledge profiles for all
77 EWHs.

5.1. Simulation Setup

Table 1 summarises the constants and parameters used for the optimisation, simulation
and hot water profile generation, and the properties that describe the dataset. The water
draw data, software implementation (using Jupyter Notebook), and the output of the
simulations can be accessed at http://bit.ly/optimal_stratified_prediction, accessed on
31 March 2021.

http://bit.ly/optimal_stratified_prediction
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Table 1. Constants and parameters used for a system.

Symbol Description Value Unit

EWH parameters

RTH tank thermal resistance 0.4807 K·day
kWh

c Specific heat capacity of water 4184 J
kg·K

ρ Water density 1000 kg
m3

Tset set-point temperature 68.5 °C
Thyst Hysteresis (deadband) ±1.5 °C
Tamb Ambient temperature 20 °C
Tinlet Inlet water temperature 20 °C
Vtank EWH tank volume 150 L
Prated Heating element power rating 3 kW

Optimisation parameters

Ttank(max) Maximum EWH temperature 70 °C
Ttank(min) Minimum EWH temperature 20 °C
Ttank(use) Minimum EWH usage temperature 40 °C
Tstart Starting boundary condition 68.5 °C
Tend Terminal boundary condition 68.5 °C
ns Node state of EWH model 1 or 2

Hot water usage predictor parameters

DT Training set duration 3 weeks
DV Validation set duration 1 weeks
t′ Conservative start time percentile 5
V′ Conservative usage volume percentile 50
f ′ Conservative flow rate percentile 95

Water usage dataset

D Profile duration 7 days
∆t Sampling period 1 min
Flow rate resolution 0.5 L
No. of water heaters 77
No. of seasons 4
Average event occurrence per day per EWH 7.5

5.2. Simulation Results for an Individual EWH Using Predicted Hot Water Profiles

Figure 5 shows simulation results for an identical EWH for the TC, TM and EM
control strategies for an arbitrary day in Summer. Each figure plots the upper and lower
node temperature (represented by solid lines), outlet pipe flow rate Qdraw and the power
supplied by the heating element Pelec (any non-zero value represents the element power
rating) over duration of 12 h. Although all the simulations start at the same initial EWH
temperature of 68.5 °C, the figures may not as they are captured at a later stage of the
simulation. The optimal planning is first produced for predicted water usages and the
EWH simulates it on the actual hot water usages. Figures 5a,c show the optimal heating
schedule and temperature trajectory for a predicted water usage profile for TM and EM,
respectively. Figure 5b,d show the corresponding simulated EWH temperatures for the
actual water usages (solid line temperatures and water events) as a result of the tempera-
ture feedback controller which try to guide the simulation along the optimal plan for the
predicted water usages and the water mixer (dashed line temperatures and water events).
All the figures show the upper node temperature for TC (dashed black line), which is sim-
ulated for the predicted water profile in (a) and (c) and the actual water profile in (b) and (d).
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(a) Temperature matching optimal planning (b) Temperature matching simulation

(c) Energy matching optimal planning (d) Energy matching simulation

Figure 5. Simulation results for TC, TM and EM, respectively. The plots show the EWH upper and
lower node temperature and the outlet flow rate. (a,c) show the optimal planning for predicted water
usages for TM and EM, respectively. (b,d) show the simulated temperatures and actual water usages
(solid lines) and the optimal temperature trajectory and predicted water usage repeated from the
previous plot (dashed lines) for TM and EM, respectively. The temperature trajectory for TC is also
plotted on each figure. A horizontally dashed black line indicates the 40 °C temperature threshold for
cold events.

Thermostat control (TC): Looking at the dashed temperature trajectory in Figure 5a,
this strategy keeps the temperature at the 68.5°C set point temperature and fluctuates
with 1.5 °C hysteresis. When the first water usage occurs, the upper node temperature is
observed to drop to 66 °C due to water stratification that occurs between the hot upper
node body of water and the cold inlet water entering the tank and forming the lower
node. At this point, the heating element is switched on to raise the temperature back to the
set-point temperature.

Optimal temperature matching (TM): In Figure 5a, it can be seen that the temperature
of the optimal plan is equivalent to that of TC at the start of each water usage. Before the
first usage at t = 3, the EWH is in a one-node state because there is only an upper node
temperature shown. When the water flow rate transitions to a non-zero value, the water in
the tank splits into two nodes and the lower node temperature is at the temperature of the
cold water entering through the inlet pipe. At this point, water stratification between the
two nodes causes the lower node temperature to increase and the upper node temperature
to decrease until they reach a common temperature and transition back to a one-node state.
In Figure 5b, a comparison can be seen between the temperatures of the optimal plan for
the predicted water usages (dashes lines) and those of the actual water profile used for
the EWH simulation (solid lines). Since the predicted water usages are conservative, they
ensure that a sufficient amount of energy is in the tank in preparation for the actual water
usage event (even if it does not occur).

Optimal energy matching (EM): Figure 5c,d show similar behaviour to the previous
strategy with the exception that the initial temperature of the water usage does not need
to be equal to that of TC. Instead, the flow rate will adjust to ensure that an equivalent
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amount of thermal energy is delivered. If the optimal plan had perfect foreknowledge of
the water usages, it would only need to prevent the temperature from dropping below
40 °C during the usage. Since they are predicted, Figure 5c shows that the optimal plan
ensures that the upper node temperature does not fall below 50 °C during water usages,
as a result of implementing the 10 °C safety margin.

Optimal energy matching with Legionella prevention (EML): Although EML control
is not shown in the plots, it produces similar results to EM except for the tank heating to
60 °C at the largest predicted water usage of each day.

5.3. Metrics for Evaluating the Results of the EWH Model

The term event refers to a single water usage where a sequence of positive water
flow samples are encapsulated by ones that are zero. This provides the convenience of
identifying water draw patterns in the profile and for keeping a tally of the number of
times that water is drawn from the EWH. A cold event refers to a water usage where the
initial temperature is below the desired usage temperature of 40 °C. This provides a metric
that counts the occurrence of water usages that inconveniences the user’s comfort.

A distinction is made between water usages that are intended and those that are
unintentional. This is explained by water that leaves the tank and remains in the piping
that connects the EWH to the end-use device without being effectively used. The reason
for this can relate to the user accidentally opening the hot water tap when cold water was
intended or opening a mixer tap somewhere between hot and cold. A water event that
uses less than 2 L is considered unintentional (assuming that the diameter and length of a
standard pipe is respectively 22 mm and 5 m) and is excluded from events. The optimisation
algorithm will ignore imposing constraints that ensure the tank is heated sufficiently for
unintentional water usages.

The performance of the EWH simulations for each strategy are firstly measured by
the electrical energy supplied by the heating element Eelec, the thermal energy of the water
that is drawn from the tank, intentionally and unintentionally, Edraw, and the energy lost
from the tank to the environment, Eloss. These quantities are calculated as daily averages
and are respectively calculated using

Pelec|i =
∑Nh

k=1 Pelec|i(k)∆t
D

kWh/day (24)

Pdraw|i =
∑Nh

k=1 Pdraw|i(k)∆t
D

kWh/day (25)

Ploss|i =
∑Nh

k=1 Ploss|i(k)∆t
D

kWh/day (26)

where i refers to an individual water heater, ∆t is the sampling period, Nh and D are the
total number of samples and days in the data set, and Pelec|i(k), Pelec|i(k) and Pelec|i(k) is
the electrical power used, thermal energy used and thermal energy lost for heater i at time
instant k. Another metric is defined that calculates the average water temperature during
water usages and is represented as Tusage. The distributions for these results for TC, TM,
EM and EML are shown in Figure 6a–d. Two metrics are calculated that evaluate the energy
savings of the optimal control strategies relative to the baseline TC strategy. The reduction
in electrical energy used per day by the optimal control strategies is expressed as kWh and
as a percentage. For the TM strategy, they are calculated using

∆Pelec|i,TM(kWh/d) = Pelec|i,TC − Pelec|i,TM kWh/day (27)

∆Pelec|i,TM(%) =
Pelec|i,TC − Pelec|i,TM

Pelec|i,TC
× 100% (28)
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Figure 6e,f show the distribution of electrical energy savings for TM, EM and EML.
Lastly, a metric is defined that counts the occurrence of cold events for an EWH simulation.
Table 2 statistically summarises the results for these metrics over all the EWH simulations.

(a) (b)
(c)

(d) (e) (f)

Figure 6. Distributions of the results for energy and water temperature for TC, TM, EM and EML
for all 77 EWHs. (a) shows the daily electrical energy used per EWH, (b) shows the daily thermal
energy drawn per EWH, (c) shows the outlet water usage temperatures during events, (d) shows the
daily thermal losses per EWH, (e) shows the daily savings achieved in electrical energy per EWH as
a reduction in kWh, and (f) shows the savings achieved in electrical energy per EWH as a percentage
of the total energy used.

Table 2. Volume, energy, temperature and cold event results for two-node water heaters with
planning based on predicted water usages.

TC TM EM EML

Vhot (L/day) 119 123 150 142
Eelec (kWh/day) 7.3 7.0 6.7 6.7
Edraw (kWh/day) 4.7 4.7 4.7 4.7
Eloss (kWh/day) 2.6 2.4 1.8 2.0
Tusage (°C) 69.3 68.4 55.3 58.9
∆Eelec(kWh) (kWh/day) – 0.1, 0.2, 0.3 0.7, 0.8, 0.9 0.6, 0.7, 0.8
∆Eelec(%) % – 1.3, 2.2, 4.3 5.9, 9.6, 17.9 5.9, 9.6, 15.2
Cold events∗ 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0

Note: The distributions are represented as 25th percentile, median, 75th percentile. ∗ Cold events are taken as the
total cold events for the EWH that uses the 25th percentile, median, and 75th percentile of the total volume of
water used.

5.4. Distribution of Results over All EWHs Using Two-Node Planning

The statistical results from all of the simulations performed for all 77 EWHs are
discussed in this section. The results of each control strategy on temperature and energy
for water heaters using a two-node model for optimal planning of predicted water usages
are summarised in Table 2 and shown in Figure 6. Figure 6b shows that all the control
strategies delivered the same amount of thermal energy as TC. This confirms that the water
mixer was successful in adjusting the outlet flow rate for perfect energy matching for all
the strategies. This reflects the fact that no matter which strategy is used, the user will
adjust the hot water flow rate to receive the same energy for the same usage event.
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5.4.1. Temperature-Matched Optimisation

Figure 6a shows that the median electrical energy used was 7.0 kWh/day for TM,
which is 0.3 kWh/day (4.1 %) less than the 7.3 kWh/day median for TC. The median outlet
temperature during events for TM dropped from 69.3 °C for TC to 68.4 °C, as shown in
Figure 6c. The difference is not significant, but it is caused by the lack of perfect temperature
matching as a result of water usage predictions in the optimal planning. The temperature
mismatching is also evident in the table, where the average volume of water drawn with
TM increased to 123 L from the 119 L used with TC as a result of the mixer. Figure 6d
indicates that the median thermal losses for TM was 2.4 kWh/day (0.2 kWh/day less than
TC). Unlike the previous sections, the occurrence of cold events increased from that of TC.
Although the increase was not serious, the number of cold events increased from 115 for TC
to 141 for TM out of the 15 581 events. However, the additional cold events only occurred
for EWHs that already had cold events: only five of the 77 EWHs had a cold event increase.
The EWH with the biggest increase in cold events grew from 19 to 26 cold events of the 284
events (a 2.46% increase of the total events for the EWH). Looking at the distribution of
savings in Figure 6e,f, the electrical energy reduction for TM was [0.1, 0.2, 0.3] kWh/day,
or [1.3, 2.2, 4.3] %.

5.4.2. Energy-Matched Optimisation

The average outlet temperature gap between TC and EM is significantly smaller
because of the 10 °C safety margin imposed on the constraints. This explains why the
outlet temperature does not drop below 50 °C and the median outlet temperature for EM
is 55.3 °C. These increased outlet temperatures also cause the water mixer to adjust the
outlet flow rate less to obtain the correct delivery of thermal energy. The average volume
draw for EM is 150 L, a substantial increase from 123 L of the previous section for EM when
water usages were provided with perfect foreknowledge. The median electrical energy
used was 6.7 kWh/day for EM and, even though the electrical energy savings are reduced
by the safety margins, a promising reduction in energy relative to TC is [0.69, 0.81, 0.88]
kWh/day and [5.9, 9.6, 17.9] % and the best savings is as much as 34.0%. These savings
are attributed to the reduced median standing losses of 1.8 kWh/day for EM which is
0.8 kWh/day less than that of TC. The number of cold events increased from 115 of TC to
145, showing similar outcomes to TM with only four additional cold events.

5.4.3. Legionella Control

The results of EML show small differences from that of EM. This can be explained by
the safety margin of 50 °C which largely reduces the significance of the additional electrical
energy required for the tank to reach 60 °C each day. The median outlet temperature during
usage increased to 58.9 °C for EML (a 3.6 °C increase from EM). The electrical energy used
for EML is approximately equal to that for EM. The electrical energy reduction was [5.9,
9.6, 15.2]% and [0.6, 0.7, 0.8] kWh/day relative to TC, where only the 75th percentile was
different from EM. The occurrence of cold events for EML was equal to that of EM.

5.5. Metrics for Comparing Results of Optimal Planning without Accounting for Stratification

The effect of predicting water usages is determined by comparing the results that used
the A* optimal planning which used perfect foreknowledge with the optimal planning that
used predicted hot water usage profiles. The statistical results from all of the simulations
performed for all 77 EWHs are discussed in this section. A metric is defined to assess the
performance of the relative EWH-specific changes during the simulation. The average
change in electrical energy used per day is calculated using

P
∆Np
elec|h = PP

elec|h − PA
elec|h kWh/day (29)

where the superscript ∆Np refers to the difference between the types of planning and
superscripts P and A refer to the simulation results that plan for predicted and actual
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water usage profiles, respectively. Similar modifications are applied to the formulas that
calculate difference in thermal energy drawn per day, thermal energy losses per day,
average outlet usage temperature during events and energy savings per day (kWh and
percentage reduction). These results indicate the effect of predicting hot water usages
when determining the optimal plan for an EWH. The simulation results for TM, EM and
EML obtained in [42] for the optimal planning produced for a two-node EWH model with
perfect foreknowledge of the water usages are compared with those obtained in Figure 6
for the optimal planning of predicted water usages.

5.6. Effects of Predicting Water Usages for Optimisation

Figure 7b shows that the median EWH delivered the same amount of thermal energy
as TC for all the control strategies, with small deviations between the two types of planning,
and shows that the mixer simulates the user drawing the same amount of thermal energy
for each event, no matter the heating strategy used. Figure 7c shows that most of the outlet
temperatures for TM with predicted water usage planning were perfectly matched to that
of the results for simulations that had perfect water usage knowledge, which can also
assume to be matched to TC. The small changes of the 25th and 75th percentiles of 2.0 °C
and 0.8 °C respectively show the extent of the temperature mismatching to that of TC. For
EM and EML, the median outlet temperature increases of 10.2 °C and 4.1 °C, respectively,
when water usages were predicted in the planning, show the impact of the safety margin
is much harsher on EM. This is shown in Figure 7d where the median standing losses
increase for EM and EML were 0.72 kWh/day and 0.33 kWh/day, respectively.

Figure 7a shows the median increase in electrical energy usage for TM, EM and EML
were 0.35 kWh/day (4.5%), 0.74 kWh/day (19.6%) and 0.4 kWh/day (11.6%), respectively,
when planning is based on predicted water usages instead of perfect foreknowledge. This
results in the final electrical energy saving decreases relative to TC which are shown in
Figure 7e,f. The decreases in electrical energy savings due to the optimal planning using
predicted water usages instead of perfect foreknowledge is [0.22, 0.31, 0.72] kWh/day,
or [2.30, 4.11, 10.31] percentage points for TM; [0.57, 0.72, 0.90] kWh/day, or [7.1, 11.0,
14.0] percentage points for EM; and lastly, [0.09, 0.37, 0.65] kWh/day, or [2.33, 5.11, 6.31]
percentage points for EML.

5.7. Discussion of the Effects of Predicting Hot Water Usages in the Planning

An evaluation of the results showed that the electrical energy usage increased for all
the control strategies when the optimal planning is based on predicted water usages as
opposed to perfect foreknowledge of the hot water profile. For TM, the median electrical
energy savings decreased from 0.6 kWh/day (6.3 percentage points) when perfect fore-
knowledge was used to 0.2 kWh/day (2.2 percentage points) when predictions were used
relative to the baseline TC strategy. This shows that TM does not save a lot when the water
usage profile is predicted, as a result of safety measures which are implemented to min-
imise the risk of cold events. For EM and EML, the median electrical energy usage savings
decreased from 1.6 kWh/day (21.9 percentage points) and 1.2 kWh/day (16.2 percentage
points) when perfect foreknowledge was used to 0.8 kWh/day (9.6 percentage points) and
0.7 kWh/day (9.6 percentage points) when predictions were used. This ultimately shows
that, even though there were huge energy saving reductions when the safety measures were
imposed on the system, the energy matching strategies can still save close to 10 percentage
points of electrical energy each day as well as preventing the growth of Legionella.
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(a) (b)
(c)

(d) (e) (f)

Figure 7. The change in energy and water temperature results for TM, EM and EML are expressed
as distributions for all 77 EWHs, where the results from the perfectly known water usage planning
are subtracted from that of the corresponding predicted results using Equation (29). (a) shows the
difference in daily electrical energy used per EWH, (b) shows the difference in daily thermal energy
drawn per EWH, (c) shows the difference in outlet water temperatures during events, (d) shows
the difference in daily thermal losses per EWH, (e) shows the difference in daily savings achieved
in electrical energy per EWH as a reduction in kWh per day, and (f) shows the difference in sav-
ings achieved in electrical energy per EWH as a reduction in kWh percentage points of the total
energy used.

The number of cold events that occurred did increase for the three control strategies,
however, of the total 15,581 events, the increase was 26 for TM and 30 for EM and EML.
This result is not significant as they only occurred for five of the 77 EWHs and those EWHs
already showed evidence of cold events occurring due to their heavy usages in TC. Because
the outlet temperatures for TM did not deviate far from that of TC, it shows that these heavy
water usage profiles were on the verge of having more cold events than what was counted.
The results represent the practical savings that could be achieved. However, it should
be noted that appropriate data acquisition and state estimation components would be
required to estimate the internal states of the EWH for a real-world implementation.

6. Conclusions

The operation of a residential water heater requires a significant amount of electrical
energy and raises concern for users in countries where electricity is purchased at a flat
rate. Furthermore, the growing demand for electricity in these countries contributes to
increased fossil fuels and the release of greenhouse gases. We determined how much
energy can be saved practically by the optimal temperature planning of an EWH with
stratification for 77 household’s water draw behaviour. The A* algorithm was implemented
to produce the optimal heating schedule for three control strategies that were compared
to a baseline strategy with the thermostat always on. The first ensured that water usages
were temperature-matched to thermostat control, the second ensured that water usages
were energy-matched to thermostat control at a lower temperature and larger volume,
and the third was similar to the second but additionally ensured Legionella prevention.
A probabilistic hot water usage model was used to predict water usages for the optimal
heat scheduling which were simulated on actual water usage data. The outcome of the



Energies 2021, 14, 1963 21 of 23

simulations showed that the median energy savings were 2.2% for TM and 9.6% for both
EM and EML. Neither of the control strategies adversely increased the occurrence of cold
events. Furthermore, optimal planning based on predicted water usages instead of perfect
foreknowledge showed a median decrease in energy savings of 4.1 percentage points for
TM, 11 percentage points for EM and 5.1 percentage points for EML. These results reflect
the best energy savings that can be achieved with the optimal scheduling of an EWH
without inconveniencing the user.

These practical energy savings could be be verified in further work by implementing
the system in a real-world scenario and developing a means of communication between
the physical EWH and the system’s software components. Furthermore, the system can be
improved by providing varying ambient and inlet water temperature measurements based
on real data.

Author Contributions: Conceptualization, J.A.A.E. and M.J.B.; methodology, M.J.R., J.A.A.E. and
M.J.B.; software, M.J.R.; validation, M.J.R., J.A.A.E. and M.J.B.; formal analysis, M.J.R., J.A.A.E.
and M.J.B.; writing—original draft preparation: M.J.R.; writing—review and editing, J.A.A.E. and
M.J.B.; visualization, M.J.R.; supervision, J.A.A.E. and M.J.B.; project administration, M.J.B.; funding
acquisition, M.J.B. All authors have read and agreed to the published version of the manuscript.

Funding: We thank the following organisations for funding: MTN South Africa Grant No. 003061
and the Water Research Commission Grant number K1-7163, and Eskom under the Tertiary Education
Support Programme.

Data Availability Statement: The data and source code are available at https://bit.ly/optimal_
stratified_prediction, accessed on 30 March 2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hohne, P.; Kusakana, K.; Numbi, B. A review of water heating technologies: An application to the South African context.

Energy Rep. 2019, 5, 1–19. [CrossRef]
2. Amirirad, A.; Kumar, R.; Fung, A.S. Performance characterization of an indoor air source heat pump water heater for residential

applications in Canada. Int. J. Energy Res. 2018, 42, 1316–1327. [CrossRef]
3. Liu, X.; Lau, S.K.; Li, H.; Shen, H. Optimization and analysis of a multi-functional heat pump system with air source and gray

water source in cooling mode. Energy Build. 2017, 149, 339–353. [CrossRef]
4. Singh, H.; Mütze, A.; Eames, P.C. Factors influencing the uptake of heat pump technology by the UK domestic sector. Renew. En-

ergy 2010, 35, 873–878. [CrossRef]
5. Goldstein, B.; Gounaridis, D.; Newell, J.P. The carbon footprint of household energy use in the United States. Proc. Natl. Acad.

Sci. USA 2020, 117, 19122–19130. [CrossRef]
6. Ericson, T. Direct load control of residential water heaters. Energy Policy 2009, 27, 3502–3512. [CrossRef]
7. Du, P.; Lu, N. Appliance commitment for household load scheduling. Smart Grid IEEE Trans. 2011, 2, 411–419. [CrossRef]
8. Shaad, M.; Momeni, A.; Diduch, C.P.; Kaye, M.; Chang, L. Parameter identification of thermal models for domestic electric water

heaters in a direct load control program. In Proceedings of the Electrical & Computer Engineering (CCECE), 2012 25th IEEE
Canadian Conference, Montreal, QC, Canada, 29 April–2 May 2012; pp. 1–5. [CrossRef]

9. Diduch, C.; Shaad, M.; Errouissi, R.; Kaye, M.; Meng, J.; Chang, L. Aggregated domestic electric water heater control—Building on
smart grid infrastructure. In Proceedings of the 2012 IEEE 7th International Power Electronics and Motion Control Conference—
ECCE Asia Conference Proceedings, Harbin, China, 2–5 June 2012.

10. Gholizadeh, A.; Aravinthan, V. Benefit assessment of water-heater management on residential demand response: An event
driven approach. In Proceedings of the 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18–20 September
2016; pp. 1–6. [CrossRef]

11. Roux, M.; Apperley, M.; Booysen, M. Comfort, peak load and energy: Centralised control of water heaters for demand-driven
prioritisation. Energy Sustain. Dev. 2018, 44, 78–86. [CrossRef]

12. Goh, C.H.K.; Apt, J. Consumer Strategies for Controlling Electric Water Heaters under Dynamic Pricing; Working Paper CEIC-04-02;
Carnegie Mellon Electricity Industry Center: Pitsburgh, PA, USA, 2004; pp. 1–8.

13. Nehrir, M.H.; Jia, R.; Pierre, D.A.; Hammerstrom, D.J. Power management of aggregate electric water heater loads by voltage
control. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–8.
[CrossRef]

https://bit.ly/optimal_stratified_prediction
https://bit.ly/optimal_stratified_prediction
http://doi.org/10.1016/j.egyr.2018.10.013
http://dx.doi.org/10.1002/er.3932
http://dx.doi.org/10.1016/j.enbuild.2017.05.056
http://dx.doi.org/10.1016/j.renene.2009.10.001
http://dx.doi.org/10.1073/pnas.1922205117
http://dx.doi.org/10.1016/j.enpol.2009.03.063
http://dx.doi.org/10.1109/TSG.2011.2140344
http://dx.doi.org/10.1109/CCECE.2012.6334885
http://dx.doi.org/10.1109/NAPS.2016.7747831
http://dx.doi.org/10.1016/j.esd.2018.03.006
http://dx.doi.org/10.1109/PES.2007.386024


Energies 2021, 14, 1963 22 of 23

14. Lu, S.; Samaan, N.; Diao, R.; Elizondo, M.; Jin, C.; Mayhorn, E.; Zhang, Y.; Kirkham, H. Centralized and decentralized control
for demand response. In Proceedings of the 2011 IEEE Innovative Smart Grid Technologies (ISGT), Perth, WA, Australia ,
13–16 November 2011; pp. 1–8.

15. Diao, R.; Lu, S.; Elizondo, M.; Mayhorn, E.; Zhang, Y.; Samaan, N. Electric water heater modeling and control strategies
for demand response. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA,
22–26 July 2012; pp. 1–8.

16. Booysen, M.J.; Engelbrecht, J.A.A.; Molinaro, A. Proof of concept: Large-scale monitor and control of household water heating in
near real-time. In Proceedings of the International Conference on Applied Energy (ICAE). Pretoria, South Africa, 1–4 July 2013;
pp. 1–8. Available online: http://hdl.handle.net/10019.1/95703 (accessed on 31 March 2021).

17. Boudreaux, P.; Jackson, R.; Munk, J.; Gehl, A.; Dinse, D.; Lune, C. Effect of Setup Thermostat Schedule on Heat Pump Water
Heater Energy Consumption, Coefficient of Performance and Peak Load. In Proceedings of the 2014 ACEEE Summer Study on
Energy Efficiency in Buildings, Pacific Grove, CA , USA, 17–22 August 2014; pp. 1-1–1-13.

18. Kepplinger, P.; Huber, G.; Petrasch, J. Autonomous optimal control for demand side management with resistive domestic hot
water heaters using linear optimization. Energy Build. 2015, 100, 50–55. [CrossRef]

19. Nel, P.J.C.; Booysen, M.J.; van der Merwe, A.B. A computationally inexpensive energy model for horizontal electric water heaters
with scheduling. IEEE Trans. Smart Grid 2016. [CrossRef]

20. Zuniga, M.; Agbossou, K.; Cardenas, A.; Boulon, L. Parameter estimation of electric water heater models using extended Kalman
filter. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China,
29 October–1 November 2017; pp. 386–391. [CrossRef]

21. Ahmed, M.T.; Faria, P.; Vale, Z. Financial Benefit Analysis of an Electric Water Heater with Direct Load Control in Demand
Response. In Proceedings of the IEEE International Conference on Communications, Control, and Computing Technologies for
Smart Grids (SmartGridComm), Aalborg, Denmark, 29–31 October 2018; p. 1–6.

22. Hohne, P.; Kusakana, K.; Numbi, B. Scheduling and economic analysis of hybrid solar water heating system based on timer and
optimal control. J. Energy Storage 2018, 20, 16–29. [CrossRef]

23. Jack, M.; Suomalainen, K.; Dew, J.; Eyers, D. A minimal simulation of the electricity demand of a domestic hot water cylinder for
smart control. Appl. Energy 2018, 211, 104–112. [CrossRef]

24. Kapsalis, V.; Safouri, G.; Hadellis, L. Cost/comfort-oriented optimization algorithm for operation scheduling of electric water
heaters under dynamic pricing. J. Clean. Prod. 2018, 198, 1053–1065. [CrossRef]

25. Lunacek, M.; Ruth, M.; Jones, W.; Ding, F. Understanding the Impact of Electric Water Heater Control on the Grid. In Proceedings
of the 2018 IEEE Power Energy Society General Meeting (PESGM), Portland, Oregon, USA, 5–10 August 2018; pp. 1–4. [CrossRef]

26. Kepplinger, P.; Huber, G.; Preißinger, M.; Petrasch, J. State estimation of resistive domestic hot water heaters in arbitrary operation
modes for demand side management. Therm. Sci. Eng. Prog. 2019, 9, 94–109. [CrossRef]

27. Gerber, S.; Rix, A.J.; Booysen, M.J. Combining grid-tied PV and intelligent water heater control to reduce the energy costs at
schools in South Africa. Energy Sustain. Dev. 2019, 50, 117–125. [CrossRef]

28. Nel, P.J.C.; Booysen, M.J.; van der Merwe, A.B. Energy perceptions in South Africa: An analysis of behaviour and understanding
of electric water heaters. Energy Sustain. Dev. 2016, 32, 62–70. [CrossRef]

29. Nel, P.; Booysen, M.J.; Van der Merwe, B. Saving on household electric water heating: What works best and by how much? In Pro-
ceedings of the 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New Zealand, 4–7 December 2017;
pp. 1–6. [CrossRef]

30. Braas, H.; Jordan, U.; Best, I.; Orozaliev, J.; Vajen, K. District heating load profiles for domestic hot water preparation with realistic
simultaneity using DHWcalc and TRNSYS. Energy 2020, 201, 117552. [CrossRef]

31. Pomianowski, M.Z.; Johra, H.; Marszal-Pomianowska, A.; Zhang, C. Sustainable and energy-efficient domestic hot water systems:
A review. Renew. Sustain. Energy Rev. 2020, 128, 109900. [CrossRef]

32. Stone, W.; Louw, T.M.; Gakingo, G.K.; Nieuwoudt, M.J.; Booysen, M.J. A potential source of undiagnosed Legionellosis: Legionella
growth in domestic water heating systems in South Africa. Energy Sustain. Dev. 2019, 48, 130–138. [CrossRef]

33. Fanney, A.; Dougherty, B. The Thermal Performance of Residential Electric Water Heaters Subjected to Various Off-Peak Schedules.
ASME J. Sol. Energy Eng. 1996, 118, 73–80. [CrossRef]

34. Booysen, M.J.; Cloete, A.H. Sustainability through Intelligent Scheduling of Electric Water Heaters in a Smart Grid. In Proceedings
of the 2016 IEEE 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, Auckland,
New Zealand, 8–12 August 2016; pp. 848–855. [CrossRef]

35. Cloete, A. A Domestic Electric Water Heater Application for Smart Grid. Master’s Thesis, University of Stellenbosch, Stellenbosch,
South Africa, 2016.

36. Kepplinger, P.; Huber, G.; Petrasch, J. Demand Side Management via Autonomous Control-Optimization and Unidirectional
Communication with Application to Resistive Hot Water Heaters. In Proceedings of the e-nova 2014 Nachhaltige Gebaeude
Versorgung—Nutzung—Integration, Pinkafeld, Austria, 13–14 November 2014; Volume 18, pp. 1–8. [CrossRef]

37. Booysen, M.J.; Engelbrecht, J.A.A.; Ritchie, M.J.; Apperley, M.; Cloete, A.H. How much energy can optimal control of domestic
water heating save? Energy Sustain. Dev. 2019, 51, 73–85. [CrossRef]

38. Jordan, U.; Vajen, K.; Physik, F.; Solar, F. Realistic Domestic Hot-Water Profiles IN Different Time Scales; Technical Report; Marburg
University: Marburg, Germany, 2001.

 http://hdl.handle.net/10019.1/95703
http://dx.doi.org/10.1016/j.enbuild.2014.12.016
http://dx.doi.org/10.1109/TSG.2016.2544882
http://dx.doi.org/10.1109/IECON.2017.8216069
http://dx.doi.org/10.1016/j.est.2018.08.019
http://dx.doi.org/10.1016/j.apenergy.2017.11.044
http://dx.doi.org/10.1016/j.jclepro.2018.07.024
http://dx.doi.org/10.1109/PESGM.2018.8586582
http://dx.doi.org/10.1016/j.tsep.2018.11.003
http://dx.doi.org/10.1016/j.esd.2019.03.004
http://dx.doi.org/10.1016/j.esd.2016.03.006
http://dx.doi.org/10.1109/ISGT-Asia.2017.8378439
http://dx.doi.org/10.1016/j.energy.2020.117552
http://dx.doi.org/10.1016/j.rser.2020.109900
http://dx.doi.org/10.1016/j.esd.2018.12.001
http://dx.doi.org/10.1115/1.2848010
http://dx.doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.145
http://dx.doi.org/10.23919/DUE.2017.7931855
http://dx.doi.org/10.1016/j.esd.2019.05.004


Energies 2021, 14, 1963 23 of 23

39. Kepplinger, P.; Huber, G.; Petrasch, J. Field testing of demand side management via autonomous optimal control of a domestic
hot water heater. Energy Build. 2016, 127, 730–735. [CrossRef]

40. Xiang, S.; Chang, L.; Cao, B.; He, Y.; Zhang, C. A Novel Domestic Electric Water Heater Control Method. IEEE Trans. Smart Grid
2019, 11, 3246–3256. [CrossRef]

41. Ritchie, M.; Engelbrecht, J.; Booysen, M. A probabilistic hot water usage model and simulator for use in residential energy
management. Energy Build. 2021, 235, 110727. [CrossRef]

42. Engelbrecht, J.A.A.; J., M.; Ritchie, M.J.; Booysen, M.J. Optimal schedule and temperature control of stratified water heaters.
Energy Sustain. Dev. 2021, [CrossRef]

43. Armstrong, P.M.; Uapipatanakul, M.; Thompson, I.; Ager, D.; McCulloch, M. Thermal and sanitary performance of domestic hot
water cylinders: Conflicting requirements. Appl. Energy 2014, 131, 171–179. [CrossRef]

44. Jacobs, H.; Botha, B.; Blokker, M. Household Hot Water Temperature—An Analysis at End-Use Level. In Proceedings of the
International WDSA/CCWI 2018 Joint Conference, Kingston, ON, Canada, 23–25 July 2018; pp. 1–14.

45. Stout, J.E.; Best, M.G.; Yu, V.L. Susceptibility of members of the family Legionellaceae to thermal stress: implications for heat
eradication methods in water distribution systems. Appl. Environ. Microbiol. 1986, 52, 396–399. [CrossRef] [PubMed]

46. Nel, P.J.C. Rethinking Electrical Water Heaters. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 2015.
47. Ritchie, M.J. Usage-Based Optimal Energy Control of Residential Water Heaters. Ph.D. Thesis, Stellenbosch University,

Stellenbosch, South Africa, 2021.

http://dx.doi.org/10.1016/j.enbuild.2016.06.021
http://dx.doi.org/10.1109/TSG.2019.2961214
http://dx.doi.org/10.1016/j.enbuild.2021.110727
http://dx.doi.org/10.1016/j.esd.2021.03.009
http://dx.doi.org/10.1016/j.apenergy.2014.06.021
http://dx.doi.org/10.1128/AEM.52.2.396-399.1986
http://www.ncbi.nlm.nih.gov/pubmed/3752999

	Introduction
	Challenges in Literature
	Contributions

	System
	System Overview
	Heating Control Strategies
	Electric Water Heater Thermodynamics
	One-Node EWH Dynamics
	Two-Node EWH Dynamics

	Temperature Feedback Control
	User and Water Mixer

	Optimal Temperature Planning for an EWH with Stratification
	Formulation of the Optimal Control Problem
	The A* Solution

	Probabilistic Hot Water Usage Model and Predictor
	Probabilistic Hot Water Usage Model
	Hot Water Usage Predictor

	Results and Discussion
	Simulation Setup
	Simulation Results for an Individual EWH Using Predicted Hot Water Profiles
	Metrics for Evaluating the Results of the EWH Model
	Distribution of Results over All EWHs Using Two-Node Planning
	Temperature-Matched Optimisation
	Energy-Matched Optimisation
	Legionella Control

	Metrics for Comparing Results of Optimal Planning without Accounting for Stratification
	Effects of Predicting Water Usages for Optimisation
	Discussion of the Effects of Predicting Hot Water Usages in the Planning

	Conclusions
	References

