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Abstract: Fault detection and diagnosis (FDD) systems enable high cost savings and energy savings
that could have economic and environmental impact. This study aims to develop and validate a data-
driven FDD system for a chiller. The system uses historical operation data to capture quantitative
correlations among system variables. This study evaluated the effectiveness and robustness of eight
FDD classification methods based on the experimental data of the chiller (the ASHRAE 1043-RP
project). The training data used for the FDD system is classified into four cases. Moreover, true and
false positive rates are used to characterize the performance of the classification methods. The results
show that local fault is not significantly sensitive to training data, and shows high classification
accuracy for all cases. The system fault has a significant effect on the amount of data and the severity
levels on the classification accuracy.

Keywords: chiller; fault detection and diagnosis (FDD); machine learning; data-driven

1. Introduction

Heating, ventilation, air conditioning, and refrigeration (HVAC&R) systems are widely
used in commercial buildings. They consume a large amount of energy, which forms a
major part of the total energy used in commercial buildings. However, poorly maintained,
degraded, and improperly controlled equipment wastes 15–30% of the overall energy used
in commercial buildings [1]. A chiller is the most important component in the HVAC&R
system, which includes condensers, evaporators, refrigeration subsystems, and other
parts [2]. Moreover, chillers operating under faulty conditions consume extra energy (up
to 30% for commercial buildings) and incur a high cost, provide less comfort control,
and generate bad indoor/outdoor air quality [3]. This can be solved by applying fault
detection and diagnosis (FDD) systems, so that important faults can be detected and
addressed promptly. The FDD method provides an effective means for ensuring efficient
and reliable operation of HVAC&R systems [4].

Many researchers have applied FDD methods to detect and diagnose faults in chiller
systems. In the ASHRAE project, Comstock and Braun [5] identified common chiller faults
and built a database of chiller performance considering normal operations, severity levels,
and operating conditions. The ASHRAE project became an active part of the FDD research,
sponsoring several research projects. Wang and Cui [6] presented a combined qualitative
model with a statistical approach and a principal component analysis (PCA) for a centrifu-
gal chiller. The PCA-based method used sensor faults data for FDD to capture correlations
among the measured variables. Han et al. [3,7] developed a statistical FDD method for the
centrifugal chiller with a fixed-speed compressor and a thermal expansive valve (TXV).
A hybrid support vector machine (SVM) was also developed based on the genetic algo-
rithm (GA). It uses a GA until the accuracy reaches the desired limit or the best results
can be found. Zhao [8] introduced the support vector data description (SVDD) algorithm,
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which finds the smallest volume of hypersphere in a high-dimensional feature space and
classifies faults based on the boundary for classification. Hu [9] compared the conventional
PCA with self-adaptive principal component analysis (APCA), which removes outliers for
temperature sensor faults with an absolute value of less than 1 degree. Yan [10] combined
an extended Kalman filter with a recursive SVM for the problem of the traditional FDD
method, which requires a large amount of fault data. Fan et al. [11] introduced the three
different SVM methods, and derived the accuracy rate of chiller FDD according to the
number of features. Han et al. [12] developed least square (LS) SVM method, and compared
LS-SVM to the accuracy of SVM and probabilistic neural networks (PNN) methods.

The data-driven FDD method uses historical operation data to capture quantitative
correlations among system variables. With the development of sensor and computer
technologies, real-time measurements provide space for data-driven FDD methods. Previ-
ous studies [3–12] have focused on the development of the FDD method, which exhibits
high accuracy and performance. However, the methods have limitations, and the limita-
tions are given below:

• Complex process: Many researchers combine FDD methods and use data collected by
the system and specific components. Analyzing and building such models consumes
a lot of time and incurs high costs. For example, the residual method through PCA
is suitable for chiller sensors but unsuitable for each component. The FDD model
through PCA should determine the appropriate mathematical model for the data to
distinguish normal data from fault data.

• Excessive data usage: A large data set exhibits efficient performance in FDD, but the
data are difficult to obtain because the data can only be obtained when an actual fault
occurs. The performance is sensitive not only to the amount of data, but also the
composition of the data. Therefore, it is better to carefully select the necessary severity
and type of data. However, several methods overuse fault data without determining
the exact severity level and type required.

This study finds the accuracy of detecting all kinds of faults and severity levels, which
are the results of machine learning using limited data. Six well-known classification meth-
ods which were generated in the ASHRAE Project 1043-RP are applied to our FDD strategy:
(1) refrigerant overcharge (RO), (2) refrigerant leakage (RL), (3) reduced evaporator water
flow (FWE), (4) reduced condenser water flow (FWC), (5) non-condensable in refrigerant
(NC), and (6) condenser fouling (CF) [5]. The proposed strategy uses the classification
methods that use default hyperparameters to recognize the characteristics of training data
and each classification method. We used the following models in this study: (1) logis-
tic regression (LR), (2) SVM with three kernels, (3) random forest (RF), and (4) extreme
gradient boosting (XGB). The classification methods used functions in the sklearn and
XGB library [13,14]. Then, we have applied the grid search technique to our FDD strategy
and found the hyperparameters. After that, we analyzed the cross-validation accuracy,
and constructed a confusion matrix with test data and fault prediction data. We derived
the true positive rate (TPR) value and false positive rate (FPR) from confusion matrix to
verify the prediction accuracy for each method. Previous studies did not make a difference
between training data and test data for severity levels, and used models that were trained
with sufficient training data. However, in industrial sites and experiments, the majority
of fault data have low severity levels, and it is difficult to obtain high severity fault data.
This is also a limitation because faulty equipment is required to obtain fault data. Therefore,
the proposed strategy in this study finds an optimal model by classifying the case into four
categories for severity level and amount of data. This strategy has the advantage of easily
verifying the performance of each classification method against a limited amount of data
and severity levels.

2. Methodology

This study presents a data-driven FDD approach that uses machine learning classifica-
tion methods to detect and diagnose depending on the amount of data and severity levels.
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Different fault types are discriminated based on normal and fault data. The structure of the
proposed FDD method is illustrated in Figure 1. There are two processes which includes
model training and test.

Figure 1. Schematic of proposed FDD strategy.

In the model training process, the training data set was classified into four cases.
The classification criteria are the size of the training data set and the severity level of fault
data. For Cases 1 and 2, the training data set is 30% of the total data set, and it represents a
simulation with the “insufficient data set”. Among the insufficient data sets, Case 1 used
two severity levels (LV1 and LV2), indicating that the amount of data and the severity levels
of fault data were insufficient. For Case 2, four severity levels (LV1, LV2, LV3, and LV4)
were used to train data, which indicates an insufficient amount of data. For Cases 3 and
4, 70% of the total data were used for the training data set, and it represents “sufficient
data set”. For Case 3, the two severity levels were used in the training data set, and Case 3
indicates that the severity level of fault was insufficient. Case 4 is the situation when the
amount of data and severity levels are sufficient.

After the classification of the cases, the training data go through a preprocessing
process. The data preprocessing improves the quality of the input database. The data
preprocessing process is divided into sub-processes: (1) data normalization and (2) feature
selection. Data normalization includes feature transformations in a common range so that
larger numeric feature values do not dominate the smaller numeric feature values. The Stan-
dardScaler of the sklearn library was used for data normalization. The standardScaler
standardizes a feature by subtracting the mean and scaling to unit variance.

Feature selection helps improve model performance and predict all fault types be-
cause the feature characteristics are different for each fault. We select eight features,
namely temperature of evaporator outlet (TEO), temperature of condenser outlet (TCO),
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flow water rate of cold (FWC), temperature of refrigerant condenser (TRC), temperature
of refrigerant discharge (TR_dis), pressure of oil feed (PO_feed), valve position of evapo-
rator (VE), and temperature of water in (TWI), which have been handled in the previous
studies [15,16]. Figure 2 shows the example of the trends of the PO_feed for each fault and
normal data. For CF and NC faults, the pressure values are higher than normal pressure,
and the difference between CF and NC is clearly distinguished.

Figure 2. Trends of the PO_feed dataset.

After data preprocessing, the training data pass through tuning hyperparameters to
fit into each model. Each classification method has several tuning parameters. Choosing an
appropriate tuning parameter is an important step to ensure good predictive performance.
Tuning parameters are selected with the k-fold cross-validation (CV) technique [17,18].
It divides the training data set into approximately same-size k-folds. The first fold is used
as a validation set, and the remaining folds are used to fit the model. The fitted model is
predicted based on the validation set, and the accuracy of the model is measured using
the validation set. This process is repeated for all the k-folds, and the CV accuracy score is
obtained from the average accuracy of all k-folds. The k-fold CV accuracy can estimate the
test accuracy before test data.

We used a grid search technique to find the optimal hyperparameter variable for each
classification method and calculated the 10-fold CV accuracy for each grid hyperparameter
variable. The grid search technique can find optimal hyperparameters by trying all the
possible combinations of user-specified hyperparameters. Then, we performed a 10-fold
CV technique for all the combinations to select optimal hyperparameters, for which the
10-fold CV accuracy was the highest. After the optimal hyperparameters were found,
the model was refitted to generate the final classification method.

In the model test process, the test data set for all cases is the same. The test data set
used 30% of the preprocessed data in the training data set and was classified into three
methods. First, the classification method used the default hyperparameters specified by
sklearn. The test results can be defined as a two-dimensional confusion matrix to evaluate
the performance of the classification method in detecting and diagnosing normal and faulty
operations [19]. The two-dimensional confusion matrix compares the actual and predicted
classifications. Each element of the matrix represents the number of test observations and is
used as TPR or FPR to evaluate the overall test accuracy rate. The confusion matrix consists
of four components, and Table 1 lists the composition of the confusion matrix used in this
study (for example, FWC), where TP (true positive) denotes the number of the cases for
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which the predicted class FWC fault and actual class coincided, TN (true negative) denotes
the number of the cases for which the predicted class did not predict an FWC fault and
the actual class was not an FWC fault, FP (false positive) denotes the number of the cases
for which predicted class predicted an FWC fault and the actual class was not an FWC
fault, and FN (false negative) denotes the number of the cases for which predicted class
did not predict an FWC fault and the actual class happened to be an FWC fault. These four
components help calculate TPR and FPR as follows:

Table 1. Confusion matrix for FWC.

Predicted Class

CF NC FWE FWC RO RL NORMAL

Actual Class

CF TN TN TN FP TN TN TN
NC TN TN TN FP TN TN TN

FWE TN TN TN FP TN TN TN
FWC FN FN FN TP FN FN FN
RO TN TN TN FP TN TN TN
RL TN TN TN FP TN TN TN

NORMAL TN TN TN FP TN TN TN

2.1. Support Vector Machine

SVM has become an area of intense interest and research owing to its advantages
in solving complex problems, which are characterized by nonlinear, high-dimensional,
local minima, and small samples [3]. SVM is a classification method that aims to separate
two data sets at maximum distance and is defined as (1) [20]:

f(X) = sgn
(

wTK
(
x, x′

)
+ b
)

(1)

where sgn
(
wTK(x, x′) + b

)
is the sign function, w and b represent the weight and the bias

of the hyperplane, respectively, X is the training data, and x and x′ are input vector for SVM.
Moreover, SVM classification method is trying to maximize a margin by minimizing weight.
The minimize function is using a control tradeoff as shown in (2) [21]:

min
1
2

wTw + C
n

∑
i

ζi (2)

where C is the control tradeoff between smooth decision boundary and classifying training
points correctly, and ζi is a distance from decision boundary. SVM is a kernel-based classifi-
cation method, and frequently used kernels include Linear, RBF, and Poly. The kernel-based
classification method helps classify data easily by making higher-dimensional using kernels;
each kernel is shown in the following Equation (3) [20]:

K
(
x, x′

)
=


x′x, kernel = Linear

exp(−γ|x− x′|)2, kernel = RBF
(γxx′ + θ)d, kernel = Poly

(3)

where γ is specified by hyperparameter gamma in RBF and Poly, d denotes the degree of
polynomial function, and θ is the parameter to ensure high performance for nonlinear data
in Poly. For the RBF and Poly classification methods, the hyperparameters are C and γ,
but the default value for γ is 1/{nfeature × var(X) in default methods, where nfeature is the
number of features and var(X) is the variance of training data X. In this study, we uses
three classification methods (Linear, RBF, and Poly) for SVM.
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2.2. Logistic Regression

LR can be performed when dependent variables are bifurcated for predictive evalua-
tion. LR is used to quantitatively describe the relationship between one dependent binary
variable and one or more numeric nominal variables. LR estimates the data classification
probability along the direction that minimizes the difference between the predicted and
actual values. Probability analysis based on Equation (4) determines whether the data are
normal or faulty [22–25].

p̂ = σ(X) =
1

1 + exp(−X)
(4)

where σ(X) is the sigmoid logistic function whose output is in the range of zero to one, X is
the training data, and p̂ is the output data; if p̂ > 0.5, the data are detected as faulty, and if
p̂ ≤ 0.5, the data are detected as normal data.

2.3. Random Forest

RF integrates a large number of classification and regression trees (CART) [26]. RF has
a better learning capacity than conventional machine learning techniques, such as SVM,
RBF, and LR [27]. RF helps alleviate the overfitting problem owing to the sparseness of
data in the sample space [28]. Compared to the multivariate linear regression method,
higher accuracy was observed for models developed using the RF model when experimen-
tal data of a chiller were measured at short intervals [29]. The schematic of RF is shown in
Figure 3. During the data training process, trees are randomly created, and the tree with
the highest accuracy for sample data input is selected. The biggest feature of RF is that the
trees have slightly different characteristics owing to their randomness, which improves the
generalization performance.

Figure 3. Schematic of the random forest model.

2.4. Extreme Gradient Boosting

Gradient boosting algorithm (GBM) reduces loss with object function by combining
sequential weak learners in a way that reduces residual of training data. XGB adds a
regularization term to the GBM method and is a scalable machine learning system for
CART [30]. The XGB method is as follows (5) [14]:

Ŷ =
m

∑
k=1

fk(X), fk ∈ F (5)

where Ŷ is the prediction value, X is the training data, and fk is a regularization function in
the functional space F. The XGB method generates a loss function through the difference
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between the predicted and actual values and the regularization function. The loss function
is as follows Equation (6) [14]:

loss function =
n

∑
i

l
(
Ŷ, Y

)
+

m

∑
k=1

fk(X) (6)

where l
(
Ŷ, Y

)
is the differentiable convex loss function, and Y is the target value. ∑m

k fk(X)
is a regularization term. The regularization term prevents overfitting by giving penalizing
loss as tree complexity increases.

3. System Description

The chiller data were generated in the ASHRAE Project 1043-RP [5]. The ASHRAE
chiller fault data were used to train and test ensemble members and the integrated model
where the experimental data represented a fault simulation for a 90 ton (approximately
316 kW) centrifugal chiller. The experiments simulated six typical faults and normal
operation under 27 operation states; 64 parameters were obtained, including temperature,
pressure, flow rate, valve position, electricity power, and cooling capacity. Among these,
40 were directly obtained from sensors, and 16 were calculated timely. The faults chosen
for experimental simulation could be detected and diagnosed by monitoring the chiller.
Based on the results of the chiller fault survey of ASHRAE 1043-RP, six typical faults were
investigated in this study, which account for a major portion of the service calls, and each
typical fault was monitored based on four severity levels (Table 2) [31]. RO, RL, FWE,
and FCW faults have the same severity levels (10%, 20%, 30%, and 40%, respectively).
The severity levels of NC are 1%, 2%, 3%, and 5%, and CF are 12%, 20%, 30%, and 45%,
respectively. RO and RL faults were emulated by reducing or increasing the refrigerant
charge depending on the severity levels. NC fault was emulated by adding 1% to 5%
nitrogen to the refrigerant. FWE and FWC faults were emulated directly by reducing
water flow rate in the condenser and evaporator by 10% to 40%. CF fault was emulated by
plugging tubes into condenser [32].

Table 2. Fault types and severity levels.

Fault Types LV 1 LV 2 LV 3 LV 4 Methods

RO 10% 20% 30% 40% Increasing the refrigerant charge by weight
RL 10% 20% 30% 40% Reducing the refrigerant charge by weight
NC 1% 2% 3% 5% Adding nitrogen by volume

FWE 10% 20% 30% 40% Reducing water flow by percentage
FWC 10% 20% 30% 40% Reducing water flow by percentage

CF 12% 20% 30% 45% Plugging tubes by percentage

The input and output of the datasets are shown in Table 3 below. The input data and
output data are defined by the x value and y value of each classification model. The input
data used the above-mentioned features, and the output data was classified as the fault
types (RO, RL, NC, FWE, FWC, CF, and NORMAL) rather than the Boolean data type to
detect and diagnostic the chiller faults.

Table 3. Input and output features of the dataset.

Dataset Features

Input (x value) TEO, TCO, FWC, TRC, TR_dis, PO_feed, VE, and TWI
Output (y value) Fault types (RO, RL, NC, FWE, FWC, CF, and NORMAL)

As mentioned in Section 2, the proposed strategy is classified into four cases. Table 4
shows the number of training and test data set. We assume that the test data for all cases
are the same. We randomly divided the total 11,691 fault data into two parts, a training
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data set containing 70% of the data (8183 fault data), and a test data set containing the
remaining 3508 fault data. The randomly divided test data is used in all cases. The training
data sets in Case 1 and 2 are 1948 and 3507 respectively. For Case 1 and Case 2, the number
of training data set is lower than the number of test data set. In contrast, the training data
sets in Case 3 and 4 are 4546 and 8183 respectively, and is over than the number of test
data set.

Table 4. Case scenarios of the dataset.

Dataset Case 1 Case 2 Case 3 Case 4

Training data 1948 3507 4546 8183
Test Data 3508 3508 3508 3508
Total Data 5456 7015 8054 1,1691

4. Results

To explore the performance under various conditions of data and severity levels,
we applied each classification method to four simulation cases. We implemented the
following FDD strategies and compared their results:

• Approach 1. First, we apply each classification method, which uses default parameters
for the chiller data of the ASHRAE 1043-RP Project, compare the 10-fold CV accuracy
for each default classification method.

• Approach 2. Second, we apply each classification method, which uses the tuning
parameters for the chiller data and compare the 10-fold CV accuracy of each classi-
fication method. The test results are discussed based on the confusion matrix, TPR,
and FPR.

• Approach 3. Finally, we determine the best classification method for each case based
on the results generated by approach 1 and 2.

The proposed FDD strategy is tested with the data collected from the ASHRAE 1043-
RP Project. All the classification methods were implemented using Python, especially
sklearn and XGB library.

4.1. Case 1

The training data set in Case 1 includes insufficient data with severity levels 1 and 2,
and the test data are based on all the severity levels (1, 2, 3 and 4). The point of Case 1 is to
find the optimal model to determine all the severity levels with the insufficient data and
severity levels 1 and 2. As mentioned above, we derive a 10-fold CV accuracy value for each
classification method. The 10-fold CV accuracy provides the reliability of the training data
set and test results. Figure 4 shows the 10-fold CV accuracy for six classification methods.
Each bar graph represents the average of 10-fold CV accuracy, and the black line represents
the accuracy range. RF and XGB are the best classification methods, with average accuracy
rates of 95.02% and 94.92%, respectively, and Poly is the weakest classification method,
with an average accuracy rate of 73.97%. For Linear, RBF, and LR, the average accuracy
rates are 87.99%, 81.06%, and 81.31%, respectively. A general XGB parameter uses “gbtree”
as booster. RF and XGB, which involve using “tree” techniques, exhibited the highest
training performance.
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Figure 4. 10-fold CV accuracy for default classification methods (Case 1).

As mentioned in approach 2, hyperparameter tuning was performed for each classifica-
tion method. Figure 5 shows the 10-fold CV accuracy of the parameter-tuned classification
methods pertaining to Case 1. For RBF, Poly, RF, and XGB methods, the 10-fold CV ac-
curacy is >90%, and for Linear and LR, the accuracy is <90%. RBF and RF are the best
classification methods, with average accuracy rates of 95.43% and 95.64%, respectively,
and Linear and LR are the weakest classification methods, with average accuracy rates of
89.01% and 81.36%, respectively. Poly and XGB have accuracy rates of 93.74% and 94.97%,
respectively. Compared to the default classification methods, the parameter-tuned classifi-
cation methods significantly improved the training accuracy. For RBF and Poly, the γ value
is relatively higher than the default methods. The decision boundary is conservatively
established because only the points close to the decision boundary affect it. For Linear
and LR methods, the chiller fault data overlap at the decision boundary, which results in
relatively lower performance compared to other classification methods. Table 5 lists the
optimal hyperparameter values for each classification method.

Figure 5. 10-fold CV accuracy for parameter-tuned classification methods (Case 1).
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Table 5. Hyperparameter tuning for each classification method (Case 1).

Models Hyperparameters Range of Values Optimal Values

Linear Regularization parameter, C [0.001, 0.01, . . . , 1000, 10,000] 100

RBF
Regularization parameter, C [1, 10, 100, 1000, 10,000] 100

Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 1

Poly Regularization parameter, C [0.001, 0.01, . . . , 1000, 10,000] 1000
Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 0.1

LR Inverse of regularization strength, C [0.001, 0.01, . . . , 1000, 10,000] 10

RF
Maximum depth of the tree, max_depth [10, 20, . . . , 80, 90, 100] 80

Number of trees, n_estimators [100, 200, . . . , 800, 900, 1000] 1000

XGB
Boosting learning rate, learning_rate [0.001, 0.005, . . . , 0.1, 0.5, 1] 1

Maximum depth of the tree, max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 7
Minimum sum of instance weight, min_child_weight [1, 10, 100, 1000] 1

Figure 6 shows the confusion matrices for parameter-tuned classification methods
based on the test data. For Linear, one CF, 16 NC, 15 FWE, 19 RO, and 33 RL samples are
misclassified as NORMAL. In the system fault, 143 RO samples are misclassified as RL,
and 34 RL samples are misclassified as RO. The Linear method does not distinguish the
boundaries between RO fault and RL fault well. For the RBF method, six CF, 83 NC,
nine FWE, nine FWC, 66 RO, and 57 RL samples are misclassified as NORMAL. With re-
gard to the system fault, 93 RO samples are misclassified as RL, and 62 RL samples are
misclassified as RO. The NORMAL samples are well classified themselves, but the bound-
aries of NORMAL samples overlap with the RO and RL samples. Therefore, the RBF
method does not classify RO, RL, and NORMAL well. For the Poly method, two CF,
32 NC, two FWE, two FWC, 69 RO, and 58 RL samples are misclassified as NORMAL.
The Poly method, like the RBF method, does not distinguish between system faults and
NORMAL well, and several NC samples are misclassified as NORMAL. For the LR method,
eight CF, five NC, five FWC, 107 RO, and 86 RL samples are misclassified as NORMAL.
With regard to the system fault, 126 RO samples are misclassified as RL, 65 RO samples are
misclassified as NC, and 25 RL samples are misclassified as RO. In the NORMAL samples,
one, three, 14, and 78 NORMAL samples are misclassified as NC, FWE, RO, and RL, re-
spectively. Similar to the SVM classifier, the performance of the LR method is not effective,
especially owing to the misclassification of RO samples as NC. However, the performance
of classifying NC samples is better than that of SVM (RBF, Poly). This suggests that the LR
method exhibits high performance in classifying the NC faults, but the decision boundaries
between NC and RO are overlapped. For the RF method, three CF, 53 NC, one FWE,
three FWC, 90 RO, and 35 RL samples are misclassified as NORMAL. With regard to the
system fault, 78 RO samples are misclassified as RL, and 152 RL samples are misclassified
as RO. Similar to the RBF and Poly methods, the RF method exhibits low performance for
NC samples. For the XGB method, eight CF, 42 NC, two FWE, three FWC, 41 RO, and 36
RL samples are misclassified as NORMAL. With regard to the system fault, 113 RO samples
are misclassified as RL, and 116 RL samples are misclassified as RO.
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Figure 6. Confusion matrices for parameter-tuned classification methods (Case 1).

Figure 7a shows the TPR for all the classification methods. The more accurately the
model predicts test data, the closer the TPR is to 100%. For CF, FWE, and FWC faults,
the TPR values are more than 95% for all the classification methods. For NC, Linear and
LR faults are 94.89% and 94.5%, respectively, and are higher than the other classification
methods. The reason for the low TPR value is that the NC fault (severity levels 1 and 2) is
similar to normal data and is incorrectly determined. RO and RL have relatively low TPR
values compared with other faults. The reason for the low TPR value is that RO and RL
have little difference between severity levels 1 and 2. For fault detection, TPR has values of
90% or more with Poly, RF, RBF, and XGB. Figure 7b shows the FPR for all the classification
methods. The FPR is the ratio of the predicted failed observations. Therefore, the lower the
FPR value, the higher the predictive performance.



Energies 2021, 14, 1945 12 of 24

Figure 7. TPR and FPR values for each classification method (Case 1): (a) TPR; (b) FPR.

4.2. Case 2

Case 2 shows the result of the insufficient data, although the data are based on all
severity levels. Figure 8 shows 10-fold CV accuracy for Case 2. Compared with Case 1,
the average accuracy rates of all the classification methods increased. RB and XGB are the
best classification methods, with average accuracy rates of 96.15% and 96.35%, respectively,
and Linear, RBF, Poly, and LR exhibited average accuracy rates of 92.07%, 90.82%, 85.43%,
and 88.14%, respectively. Although the Case 2 training data set is insufficient, the CV
accuracy is higher than in Case 1 because it contains all the severity levels.

Figure 8. 10-fold CV accuracy for default classification methods (Case 2).

Figure 9 shows the 10-fold CV accuracy of the parameter-tuned classification methods
pertaining to Case 2. The 10-fold CV accuracy of the Poly method exhibited the highest
increase 9.98% to 95.41%. The accuracy of the RF method reduced by 0.2% to 95.95%. For the
RF model, the grid search technique may be less accurate than default methods because it
determines optimal parameter values within a specified range. The hyperparameters used
in Case 2 are listed in Table 6.
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Figure 9. 10-fold CV accuracy for parameter-tuned classification methods (Case 2).

Table 6. Hyperparameter tuning for each classification method (Case 2).

Models Hyperparameters Range of Values Optimal Values

Linear Regularization parameter, C [0.001, 0.01, . . ., 1000, 10,000] 10

RBF
Regularization parameter, C [1, 10, 100, 1000, 10,000] 1000

Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 1

Poly Regularization parameter, C [0.001, 0.01, . . ., 1000, 10,000] 1000
Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 0.1

LR Inverse of regularization strength, C [0.001, 0.01, . . ., 1000, 10,000] 1

RF
Maximum depth of the tree, max_depth [10, 20, . . ., 80, 90, 100] 20

Number of trees, n_estimators [100, 200, . . ., 800, 900, 1000] 200

XGB
Boosting learning rate, learning_rate [0.001, 0.005, . . ., 0.1, 0.5, 1] 0.5

Maximum depth of the tree, max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 7
Minimum sum of instance weight, min_child_weight [1, 10, 100, 1000] 1

Figure 10 shows the confusion matrices of the parameter-tuned classification methods
for Case 2. The test data for Cases 1 and 2 are the same, and the overall performance is
better than Case 1. For Linear, 76 RO samples are misclassified as RL, 75 RL samples are
misclassified as RO, and 31 RL samples are misclassified as NORMAL. The number of RO
and RL classified samples is 451 and 447. Compared with Case 1, RO increased and RL
decreased. The number of misclassified samples with regard to the local fault was less than
that of Case 1 because NORMAL has decreased. For the RBF method, the TP values of the
confusion matrix increased; especially, the TP value of NC samples was 501. NC samples
of test data can be better classified as the severity levels (3, 4) are included in the training
data set. In the system fault, 19 RO samples are misclassified as RL, and 26 RL samples are
misclassified as RO. For the Poly method, the performance is lower than the RBF method,
but the TP values of CF, FWE, and FWC have increased. In the system fault, 46 RO samples
are misclassified as RL, and 41 RL samples are misclassified as RO. For the LR method,
the RO method increased the number of classified samples compared with that of Case 1,
but it has a lower TP value than that of the SVM method. For RF and XGB, the TP values
for each fault and NORMAL are increased than that for Case 1. With regard to the system
fault, the number of samples misclassified as NORMAL, RO, or RL has decreased. Overall,
all the methods classify most samples for the local fault, and the RBF method classifies
most samples for the system fault.
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Figure 10. Confusion matrices for parameter-tuned classification methods (Case 2).

Figure 11a shows TPR values for all the classification methods. The Linear and LR
methods exhibit lower TPR values of RO, RL, and NORMAL than the other classification
methods. For Linear, the TPR values of CF, NC, FWE, FWC, RO, RL, and NORMAL are
98.39%, 96.07%, 99.61%, 99.25%, 83.52%, 80.69%, and 89.07%, respectively. For LR, the TPR
values of CF, NC, FWE, FWC, RO, RL, and NORMAL are 98.39%, 96.66%, 99.61%, 98.87%,
79.63%, 75.99%, and 71.58%, respectively. The TPR values of CF, NC, FWE, and FWC
are greater than 98%. Figure 11b shows the FPR values for all the classification methods.
The FPR values of RBF, Poly, RF, and XGB are less than 2.5%. The FPR values of the
Linear and LR methods are greater than those of the other methods. For Linear, the FPR
values of CF, NC, FWE, FWC, RO, RL, and NORMAL are 0.17%, 0.1%, 0.0%, 0.47%, 3.27%,
3.59%, and 1.43%, respectively. For LR, the FPR values of CF, NC, FWE, FWC, RO, RL,
and NORMAL are 0.2%, 0.37%, 0.0%, 0.47%, 3.23%, 5.08%, and 3.28%, respectively.
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Figure 11. TPR and FPR values for each classification method (Case 2): (a) TPR; (b) FPR.

4.3. Case 3

The training data set in Case 3 has sufficient data with severity levels 1 and 2. Figure 12
shows 10-fold CV accuracy for default methods in Case 3. Based on the training accuracy,
RF and XGB are the best classification methods, with average accuracy rates of 96.46%
and 96.5%, respectively, and Poly is the weakest classification method, with an average
accuracy rate of 78.09%. The average accuracy rates of Linear, RBF, and LR are 88.45%,
89.18%, and 81.74%, respectively. The 10-fold CV accuracy of Case 3 increased for all the
classification methods compared with that of Case 1, and the accuracy of RF and XGB
increased compared with that of Case 2.

Figure 12. 10-fold CV accuracy for default classification methods (Case 3).

Figure 13 shows the 10-fold CV accuracy of the parameter-tuned classification methods
pertaining to Case 3. The RF method is the best classification method, with a 0.25% increase
to 96.7%, and the LR method is the weakest classification method, with an average accuracy
rate of 81.74%. The average accuracy rates of Linear, RBF, Poly, and XGB are 88.76%, 96.1%,
94.54%, and 96.52%, respectively. The hyperparameters used in Case 3 are listed in Table 7.
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Figure 13. 10-fold CV accuracy for parameter-tuned classification methods (Case 3).

Table 7. Hyperparameter tuning for each classification method (Case 3).

Models Hyperparameters Range of Values Optimal Values

Linear Regularization parameter, C [0.001, 0.01, . . ., 1000, 10,000] 100

RBF
Regularization parameter, C [1, 10, 100, 1000, 10,000] 100

Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 1

Poly Regularization parameter, C [0.001, 0.01, . . ., 1000, 10,000] 100
Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 1

LR Inverse of regularization strength, C [0.001, 0.01, . . ., 1000, 10,000] 1

RF
Maximum depth of the tree, max_depth [10, 20, . . ., 80, 90, 100] 50

Number of trees, n_estimators [100, 200, . . ., 800, 900, 1000] 600

XGB
Boosting learning rate, learning_rate [0.001, 0.005, . . ., 0.1, 0.5, 1] 0.5

Maximum depth of the tree, max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 9
Minimum sum of instance weight, min_child_weight [1, 10, 100, 1000] 1

Figure 14 shows the confusion matrices of the parameter-tuned classification methods
for Case 3. For Linear, 108 RO samples are misclassified as RL, and 46 RL samples are
misclassified as RO. With regard to the system fault, the TP value of RO is 391, which is
larger than Case 1. For the RBF method, 62 NC, 77 RO, and 37 RL samples are misclassified
as NORMAL. The number of NC and RL misclassified samples decreased compared with
that of Case 1. The performance of the Linear method is better than the Poly method,
and the number of RO and RL samples, which is misclassified as NORMAL, decreased.
For the LR method, the TP value of RO is 304, which increased compared to that of Case 1,
and the TP value of RL is 407, which decreased compared to that of Case 1. For RF and
XGB, the TP values of the local fault and NORMAL increased, and the number of samples
misclassified to NORMAL has decreased.
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Figure 14. Confusion matrices for parameter-tuned classification methods (Case 3).

Figure 15a shows the TPR values for all the classification methods. The Linear and
LR methods generate lower TPR values of NORMAL than with the other classification
methods. For Linear, the TPR values of CF, NC, FWE, FWC, RO, RL, and NORMAL are
96.59%, 95.09%, 94.51%, 99.62%, 72.41%, 86.28%, and 88.25%, respectively. For LR, the TPR
values of CF, NC, FWE, FWC, RO, RL, and NORMAL are 97.99%, 96.27%, 99.8%, 98.49%,
56.3%, 73.47%, and 79.78%, respectively. The TPR values of CF, NC, FWE, and FWC are
greater than 80%, and the TPR values of other methods are less than 80%. Figure 15b shows
the FPR values for all the classification methods. The FPR values of CF, NC, FWE, and FWC
are less than 2.5%. The FPR values of RO, RL, and NORMAL are greater than 2.5%,
except RBF and Poly of the RO fault. The FPR values of RO are 0.47% for Poly and 1.38%
for RBF.
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Figure 15. TPR and FPR values for each classification method (Case 3): (a) TPR; (b) FPR.

4.4. Case 4

The training data set in Case 4 includes sufficient data with all the severity levels.
Figure 16 shows 10-fold CV accuracy for default methods in Case 4. Based on the training
accuracy, RF and XGB are the best classification methods, with average accuracy rates
of 97.6% and 98%, respectively, and Poly and LR are the weakest classification methods,
with average accuracy rates of 88.19% and 88.83%, respectively. For Linear and RBF,
the average accuracy rates are 91.4% and 94.18%, respectively.

Figure 16. 10-fold CV accuracy for default classification methods (Case 4).

Figure 17 shows the 10-fold CV accuracy of the parameter-tuned classification methods
for Case 4. The XGB method is the best classification method, with a 0.07% increase to
98.08%, and the LR method is the weakest classification method, with an average accuracy
rate of 88.83%. For Linear, RBF, Poly, and RF, the average accuracy rates are 91.87%, 97.7%,
96.43%, and 97.62%, respectively. The hyperparameters used in Case 4 are listed in Table 8.
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Figure 17. 10-fold CV accuracy for parameter-tuned classification methods (Case 4).

Table 8. Hyperparameter tuning for each classification method (Case 4).

Models Hyperparameters Range of Values Optimal Values

Linear Regularization parameter, C [0.001, 0.01, . . ., 1000, 10,000] 10,000

RBF
Regularization parameter, C [1, 10, 100, 1000, 10,000] 1000

Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 1

Poly Regularization parameter, C [0.001, 0.01, . . ., 1000, 10,000] 10
Kernel coefficient, γ [0.0001, 0.001, 0.01, 0.1, 1] 1

LR Inverse of regularization strength, C [0.001, 0.01, . . ., 1000, 10,000] 1

RF
Maximum depth of the tree, max_depth [10, 20, . . ., 80, 90, 100] 40

Number of trees, n_estimators [100, 200, . . ., 800, 900, 1000] 100

XGB
Boosting learning rate, learning_rate [0.001, 0.005, . . ., 0.1, 0.5, 1] 0.5

Maximum depth of the tree, max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 8
Minimum sum of instance weight, min_child_weight [1, 10, 100, 1000] 1

Figure 18 shows the confusion matrices of the parameter-tuned classification methods
for Case 4. For Linear, 71 RO samples are misclassified as RL, 72 RL samples are misclassi-
fied as RO, and the TP value is not significantly different from that of Case 2. For the RBF
method, 21 RO samples are misclassified as RL, and 15 RL samples are misclassified as RO.
The TP values of all samples are greater than those of Case 3. For the Poly method, 36 RO
samples are misclassified as RL, and 24 RL samples are misclassified as RO. The TP values
of RO and RL are larger than that of other cases. For the LR method, the TP values for all
the samples are similar to Case 2 and are larger than those for Case 3. For the RF and XGB
methods, the TP values pertaining to the system fault have slightly increased.
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Figure 18. Confusion matrices for parameter-tuned classification methods (Case 4).

Figure 19a shows the TPR values for all the classification methods. The Linear and
LR methods generate lower TPR values of RO, RL, and NORMAL compared to the other
classification methods. For Linear, the TPR values of CF, NC, FWE, FWC, RO, RL, and NOR-
MAL are 98.39%, 96.46%, 99.61%, 99.44%, 84.44%, 79.42%, and 84.7%, respectively. For LR,
the TPR values of CF, NC, FWE, FWC, RO, RL, and NORMAL are 98.89%, 97.05%, 99.61%,
98.68%, 80.37%, 75.81%, and 70.49%, respectively. For other methods, all the TPR values
are greater than 95%. Figure 19b shows the FPR values of all the classification methods.
The Linear and LR methods generate larger FPR values of RO, RL, and NORMAL than
other classification methods. For Linear, the FPR values of CF, NC, FWE, FWC, RO, RL,
and NORMAL are 0.2%, 0.1%, 0.0%, 0.4%, 3.54%, 3.52%, and 1.75%, respectively. For LR,
the FPR values of CF, NC, FWE, FWC, RO, RL, and NORMAL are 0.17%, 0.2%, 0.5%, 3.4%,
5.04%, and 3.28%, respectively. For other methods, all the FPR values are less than 2.5%.
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Figure 19. TPR and FPR values for each classification method (Case 1): (a) TPR; (b) FPR.

5. Conclusions

A data-driven FDD method was presented in this study. The proposed strategy
was validated using the ASHRAE 1043-RP data and considered the FDD task as a multi-
case classification problem. Six machine learning classification methods were applied to
FDD in a chiller. For the multi-case, we created four groups: Case 1 (training data: 30%,
severity levels: 1 and 2), Case 2 (training data: 30%, severity levels: 1, 2, 3, and 4), Case 3
(training data: 70%, severity levels: 1 and 2), Case 4 (training data: 70%, severity levels: 1,
2, 3, and 4). Cases 1 and 2 defined a situation where the training data were insufficient,
and cases 3 and 4 defined a situation where the training data were sufficient. In addition,
situations with different severity levels are classified based on each case. The simulation
approach was validated using default and parameter-tuned classification methods. The
results showed that the classification methods can detect faults and diagnose chiller systems.
Based on each case, the results are as follows:

(1) Case 1: RBF and RF are the best classification methods, with average accuracy rates
of 95.43% and 95.64%. For the local fault, the TPR values of Linear and LR are
greater than 95%, and the FPR values of RBF, Poly, RF, and XGB are less than 2.0%.
For fault detection, the RBF, Poly, RF, and XGB methods predicted correctly, and for
fault diagnostics, Linear and LR predicted correctly. Pertaining to the system fault,
TPR and FPR values are poor for all the classification methods. For fault detection
and diagnostics, all the classification methods predicted incorrectly.

(2) Case 2: XGB is the best classification method, with an average accuracy rate of
96.55%. For the local fault, the TPR values of all the classification methods are greater
than 95%, and the FPR values of all the classification methods are lower than 2.0%.
For fault detection and diagnostics, all the classification methods predicted correctly.
Pertaining to the system fault, the TPR values of RBF, Poly, RF, and XGB are greater
than 90%, and the FPR values of RBF, Poly, RF, and XGB are less than 2.5%. For fault
detection and diagnostics, RBF, Poly, RF, and XGB predicted correctly.

(3) Case 3: RF is the best classification method, with an average accuracy rate of 96.7%.
For the local fault, the TPR values of Linear and LR are greater than 94%, and the
FPR values of all the classification methods are lower than 2.5%. In fault detection,
all the classification methods predicted correctly, and in fault diagnostics, Linear and
LR predicted correctly. For the system fault, the TPR and FPR values of all the
classification methods are poor.

(4) Case 4: XGB is the best classification method, with an average accuracy rate of 98.08%.
For the local fault, the TPR values of all the classification methods are greater than
95%, and in Case 2, the FPR values of all the classification methods are ~0%, which is
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lower than that of Case 2. In fault detection and diagnostics, all the classification
methods predicted correctly. With regard to the system fault, the TPR values of
RBF, Poly, RF, and XGB are greater than 94%, and the FPR values of RBF, Poly, RF,
and XGB are less than 1.6%. In fault detection and diagnostics, RBF, Poly, RF, and XGB
predicted correctly.

For the local faults, the results show high accuracy in all cases, and they can be
accurately classified with insufficient data and limited severity levels. Especially, when the
severity levels are limited, the Linear and LR methods have high accuracy compared to
other methods. For the system faults, it is difficult for all methods to classify the system
faults in Case 1, 2, and 3. These results indicate that determining the system fault requires
a larger amount of training data than the test data and also requires information about all
severity levels. These results show that the RF and XGB methods have high accuracy for all
the cases. In the previous studies, since there is no difference between the severity levels or
the amount of data for training data and test data, it is difficult to apply when the amount
of fault data is insufficient or biased, such as in the industrial field. Our FDD strategy
derives an optimal model for limited fault data or severity levels. When constructing the
data-driven methods, it will be a good feed for determining the constituent model for
each fault type or severity level. Also, it is simple and scalable using the Python library,
and we plan to incorporate this FDD strategy into a test bed. The results of the proposed
FDD strategy enable us to effective perform fault diagnosis on insufficient data set in the
industrial field, In the future, a virtual chiller simulator will be built to obtain fault data
according to fault scenarios, and we will verify the performance of the proposed FDD
strategy using the fault data.
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Nomenclature

TP true positive
TN true negative
FP false positive
FN false negative
TPR true positive rate
FPR false positive rate
LV level for severity
sgn sign function
w, wT weight vector for SVM method
X training data
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x, x′ input vector for training data
b bias of hyperplane in SVM method
C control tradeoff in SVM method
ζi distance from decision boundary
γ hyperparameter gamma in RBF and Polynomial methods
d degree of polynomial method
θ parameter for polynomial method
K(x, x′) kernel function for input vector in SVM method
σ(X) sigmoid logistic function for logistic regression method
p̂ output data for logistic regression method
Ŷ prediction value for XGB method
fk regularization function for XGB method
F functional space for XGB method
l
(
Ŷ, Y

)
loss function for XGB method

TEO Temperature of evaporator water out
TCO Temperature of condenser water out
FWC Flow rate of condenser water
TRC Saturated Refrigerant temperature in condenser
TR_dis Refrigerant discharge temperature
PO_feed Pressure of oil feed
VE Evaporator valve position
TWI Temperature of city water in
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