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Abstract: Compared with static transmission network expansion planning (TNEP), multi-stage TNEP
is more in line with the actual situation, but the modeling is also more complicated. This paper
proposes a new multi-stage TNEP method based on the deep Q-network (DQN) algorithm, which
can solve the multi-stage TNEP problem based on a static TNEP model. The main purpose of this
research is to provide grid planners with a simple and effective multi-stage TNEP method, which
is able to flexibly adjust the network expansion scheme without replanning. The proposed method
takes into account the construction sequence of lines in the planning and completes the adaptive
planning of lines by utilizing the interactive learning characteristics of the DQN algorithm. In order
to speed up the learning efficiency of the algorithm and enable the agent to have a better judgment
on the reward of the line-building action, the prioritized experience replay (PER) strategy is added to
the DQN algorithm. In addition, the economy, reliability, and flexibility of the expansion scheme are
considered in order to evaluate the scheme more comprehensively. The fault severity of equipment is
considered on the basis of the Monte Carlo method to obtain a more comprehensive system state
simulation. Finally, extensive studies are conducted with IEEE 24-bus reliability test system, and
the computational results demonstrate the effectiveness and adaptability of the proposed flexible
TNEP method.

Keywords: flexible transmission network expansion planning; deep Q-network; prioritized experi-
ence replay strategy; construction sequence

1. Introduction

With the rapid development of human societies, the power demand of users is also
rising rapidly, and the demand for power quality is gradually rising. The continuous
increase of load will change the power flow pattern of the existing power grid, which may
cause potential reliability problems, such as overloads and stability issues [1]. Transmission
network expansion planning (TNEP) is an effective way to solve the above problems.
How to increase the transmission capacity of the transmission network, and improve the
reliability and flexibility of the transmission network (as much as possible at a lower cost)
is an urgent problem to be solved.

The main goal of TNEP is to expand the existing network by adding transmission lines
to meet future growth in energy demand. This allows the system to maintain reliability
and transmission efficiency [2]. TNEP is essentially a large-scale, non-linear, and non-
convex problem. Many factors, such as alternative lines, network constraints, N-1 security
constraints, need to be considered in the planning process. Its complexity has attracted
widespread attention from scholars [3]. In 1970, the linear programming method was
first introduced into the solution of TNEP [4]. Since then, a large number of scholars
have carried out continuous and in-depth research on TNEP, and made good progress in
planning model, planning algorithm, and other aspects.
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In reference [5], the N-1 security constraints of the power grid were first considered
in the planning process, and mixed integer linear programming was used to solve the
problem, to improve the reliability of the transmission network with as little cost as
possible. Subsequently, the uncertainties of the load and generator set are taken into
consideration in the planning process. In reference [6], robust linear optimization is
used to deal with uncertain factors, which further improve the reliability of the power
grid. Reference [7] considered the uncertainty of wind power, established a two-stage
robust planning model, and proposed a Benders’ decomposition algorithm to solve it. The
popularization of the Monte Carlo method opens a new chapter for the reliability analysis
of TNEP. When the Monte Carlo method is applied, more reliability and safety indicators
can be incorporated into the constraints and objective functions, such as expected energy
not supplied (EENS) [8], security constraint unit commitment (SCUC) [9], and hierarchical
reliability evaluation [10].

In essence, long-term TNEP is a type of multi-stage planning. In other words, a
complex problem should be decomposed into several interrelated sub-problems, which
should not only solve the problem of where to build transmission lines, but also consider
when to build. Each stage should meet the requirements of economic and other indicators.
The dynamic programming algorithm was proposed according to the characteristics of
the multi-stage planning problem, which can effectively solve nonlinear and non-convex
objective function, and deal with the change of complex constraints [11]. However, with
the increases of the dimension and scale of the optimization problem, the calculation
amount also increases, which is prone to the problems of curse of dimensionality and
combination explosion, and difficult to deal with practical engineering problems. Therefore,
scholars gradually applied the intelligent algorithms to multi-stage planning, such as
teaching learning based optimization algorithm [12], high-performance hybrid genetic
algorithm [13], and hybrid binary particle swarm optimization algorithm [14]. Nevertheless,
existing multi-stage TNEP researches usually only consider the economic and N-1 security
constraints in the evaluation of the expansion scheme. Therefore, this paper proposes a
new solution to the multi-stage TNEP problems, which can comprehensively evaluate the
economy, reliability, and flexibility of the expansion scheme, while ensuring convergence
and low computational complexity. In addition, the proposed TNEP method can flexibly
adjust the obtained scheme, which provides a lot of convenience for grid planners.

At present, a new generation of artificial intelligence technology, including machine
learning, robotics and other advanced technologies, has become a research hotspot, and is
profoundly affecting and changing the existing power and energy industries [15]. Accord-
ing to different input samples, machine learning can be divided into three categories [16]:
supervised learning, unsupervised learning, and reinforcement learning (RL). Deep learn-
ing is a typical supervised learning, which can solve complex power system problems
through a large amount of high-dimensional power data, such as power system transient
stability assessment [17], power equipment fault diagnosis [18], and load forecasting [19,20].
However, deep learning requires a large amount of labeled data to train the neural net-
work, which is difficult to achieve in many practical engineering problems, so it has great
limitations in application. Unsupervised learning does not require data to have labels, but
it is mainly used to deal with data clustering and feature learning problems [21], so it is
not suitable for TNEP problems. Compared with supervised learning and unsupervised
learning, RL is an active learning in essence [15]. It obtains rewards through continu-
ous interaction with the environment, so that the agent can learn strategies to maximize
rewards [22]. RL does not require labeled data. It is free to explore and develop in an
unknown environment [23], with a high degree of freedom, so it can solve a variety of
engineering problems. Therefore, it has become the most widely used machine learning
algorithm in intelligent power systems [15]. Reference [24] combined the Q-learning algo-
rithm with deep neural networks and proposed a deep reinforcement learning (DRL) deep
Q-network (DQN) algorithm, which solved the curse of dimensionality of traditional RL
algorithm in complex systems and greatly improved the learning efficiency of the agent.
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At present, RL has been applied to real-time energy management of microgrid [25], smart
generation control and automatic generation control [26,27], reactive power optimization
for transient voltage stability [28], and other power system optimization scenarios.

Because of its high degree of freedom and weak dependence on data, DRL is very suit-
able for analyzing the dynamic behavior of complex systems with uncertainties. However,
no scholars have applied DRL to TNEP. Compared with methods used in traditional TNEP
problems such as mathematical optimization algorithms [29–31] and meta-heuristic opti-
mization algorithms [32–34], DRL has some advantages. First, it can utilize the interactive
learning characteristics of DRL to consider the construction sequence of lines and complete
the adaptive planning of lines. Second, it can adjust the expansion scheme flexibly by
utilizing the trained neural network without replanning, which is of great help to the grid
planners and of certain guiding significance for the subsequent planning work. In addition,
due to the introduction of two deep neural networks, DRL will have good convergence on
the large-scale multi-stage problems.

The main contributions of this paper are listed as follows:

1. A TNEP model including the indexes of the economy, reliability, and flexibility is pro-
posed to ensure the comprehensiveness of the scheme. Moreover, the proposed model
considers N-1 security constraints, N-k faults, and the fault severity of the equipment.

2. We introduce a DQN algorithm for the first time in the solution of the TNEP problem
and add prioritized experience replay (PER) strategy [35] to the traditional DQN
algorithm to enhance the algorithm training effect.

3. By utilizing the interactive learning characteristics of the DQN algorithm, the con-
struction sequence of lines is considered on the basis of a static TNEP model. In
addition, it can realize the adaptive planning of the line, and flexibly adjust planned
scheme according to actual need.

The rest of this paper is organized as follows: Section 2 presents the principle of
the traditional DQN algorithm and introduces PER strategy. In Section 3, the objective
function, constraint conditions, and indexes of the proposed TNEP model are introduced.
The procedure of the proposed flexible TNEP method based on the DQN algorithm is
presented in Section 4. Section 5 demonstrates the proposed method in IEEE 24-bus
reliability test system and analyzes the solution process in detail. Finally, conclusions and
areas for future research are given in Section 6.

2. Deep Q-Network Algorithm Based on Prioritized Experience Replay Strategy
2.1. Reinforcement Learning

The RL problem is essentially a Markov decision process (MDP), which is an inter-
active process in which the agent adopts random action in a deterministic environment
to change its state and obtain reward. The purpose of RL is to maximize the reward
with a limited number of actions to find the optimal policy. Because the decision-making
process of power grid planners is similar to the MDP model, RL is suitable for solving the
TNEP problems.

2.1.1. The Calculation of Value Function

Under strategy π, the agent executes action aτ in state sτ , and receives feedback wτ

from the environment. The feedback wτ of the action aτ is calculated according to the new
state sτ + 1 after the action aτ is executed. In order to reduce the influence of future rewards
on the current value function, the decay factor of future rewards γ is introduced, and the
value Wτ of the τ-th action is

Wτ = ∑ D
d=τγd−τwd (1)

The action’s Q value can be calculated based on its Wτ . The state–action value function
Qπ(s,a) represents the expected return value generated by executing action a in the current
state s under the strategy π

Qπ(s, a) = Eπ [Wτ |Sτ = s, Aτ = a ] (2)
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It can be seen that the value function is calculated in a recursive manner, which also
shows that RL algorithm is suitable for multi-stage planning problems. If the expected
return value of a strategy in all states is not inferior to other strategies, it is called the
optimal strategy. There may be more than one optimal strategy. π* is used to represent the
set of optimal strategies. They share the same optimal state–state value function Q*(s,a),
which is the value function with the largest value among all strategies. The expression is
given as follows

Q∗(s, a) = maxπ∗Qπ∗(s, a) (3)

The Bellman equation (BE) of the optimal strategy can be obtained

Q∗(sτ , aτ) = Eπ [wτ+1 + γmaxπ∗Q∗(sτ+1, aτ+1)|sτ , aτ ] (4)

2.1.1.1. ε-Greedy Action Selection Strategy

In the iterative process of RL, the state–action value function Q(s,a) representing the
value of the action aτ selected under the state sτ will be updated in real time. In order to
enhance the global search ability of the algorithm, this paper adopts the ε-greedy action
selection strategy π(s)

π(s) =
{

argmaxaQ(s, a) 0 ≤ µ < ε
∀a ∈ A ε ≤ µ ≤ 1

(5)

When µ < ε, the action a with the largest Q value is selected, otherwise, it is a random
action. The update of Q-table based on temporal difference (TD) prediction (calculate the
Q values based on the current state sτ and the next state sτ + 1) is

Q(sτ , aτ)← Q(sτ , aτ) + α
[
w + γmaxaτ+1 Q(sτ+1, aτ+1)−Q(sτ , aτ)

]
(6)

where sτ+1 represents the new state after selecting action aτ in state sτ ; aτ+1 represents the
most valuable action in state sτ+1. w + γ maxaτ+1 Q(sτ+1,aτ+1) represents the actual value of
Q, and Q(sτ ,aτ) represents the estimated value of Q. The difference between the absolute
values of the actual value of Q and the estimated value of Q is called TD error ∆τ . The
smaller the ∆τ , the better the training effect of the agent.

2.2. Deep Q Network Algorithm

The Q-learning algorithm of traditional RL is difficult to solve the problems of large-
scale MDP or continuous space MDP due to Q-table’s curse of dimensionality of complex
networks. For this reason, the DeepMind proposed DQN algorithm to approximate the
Q-Table [24]. Moreover, the Q value of each action can be predicted by only inputting the
current state sτ and calling Q-table once. The DQN algorithm combines RL with neural
network to fit the value function Q(s,a) through the deep neural network Q(s,a;v), where v
is the weight of the neural network.

In the DQN algorithm, the agent is the part responsible for learning, and the environ-
ment is the part where the agent interacts with specific problems. The main function of
the DQN algorithm is to make the agent learn the best possible action and make the subse-
quent rewards as large as possible. The function of the agent is to complete the selection
of action aτ and the training of the neural network. The function of the environment is to
complete the update of state sτ and the calculation of reward wτ . The DQN algorithm will
generate two multilayer perceptron neural networks with the same structure, eval-net and
target-net, which are used to calculate the actual value of Q and the estimated value of Q
respectively. The agent selects the next action based on these two neural networks. The
agent’s experience (sτ ,aτ ,wτ ,sτ + 1) is stored in the experience pool and randomly sampled
for training eval-net. Furthermore, the eval-net’s parameters are continuously updated
based on the loss function, and the target-net’s parameters are copied from eval-net per κ
iterations (one iteration includes action selection, reward calculation, network structure
update, and eval-net update), thus guaranteeing the convergence of the DQN algorithm.
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The specific process is shown in Figure 1. The sequence of each step in an iteration has
been marked with red serial numbers.

Figure 1. Deep Q-network (DQN) algorithm flow chart.

In the DQN algorithm, the calculation of Q network label Qmax is

Qmax =

{
wτ , if episode terminates at next step
wτ+γmaxaτ+1 Qtarget(sτ+1, aτ+1), otherwise

(7)

the update formula of value function is

Qeval(sτ , aτ)← Qeval(sτ , aτ) + α[Qmax −Qeval(sτ , aτ)] (8)

and the update formula of the eval-net’s weight v is

vτ+1 = vτ + α[Qmax −Qeval(sτ , aτ ; v)]∇vQeval(sτ , aτ ; v) (9)

In the training process of the eval-net, the loss function uses the mean square er-
ror function

L(v) = E[Qmax −Qeval(sτ , aτ ; v)]2 (10)

In the traditional DQN algorithm, each experience replay is a random extraction action.
However, different experience has different training effect on the neural network, and the
training effect of experience with more extreme ∆τ will be better. Therefore, DeepMind
proposed PER strategy [35], which sorts the experience in the experience pool according
to the importance of ∆τ . The experience closer to the head and end is more important
and will have a higher priority in sampling. In this way, more learning-worthy experience
can be effectively extracted, to improve the learning efficiency of the agent. This paper
prioritizes experience based on ∆τ , and defines the priority of experience τ as

pτ = 1/rank(|∆τ |) (11)

Moreover, in order to avoid the loss of diversity and over-fitting due to frequently
repeated sampling of the experience with the front serial number, this paper combines PER
strategy with stochastic sampling to ensure that the experience with low priority can also
be selected. The probability of extracting experience τ is

p(τ) = pϕ
τ

/
∑ Γ

τ=1 pϕ
τ (12)

When ϕ = 0, it is random sampling; Γ represents the size of the playback experi-
ence pool.
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3. Transmission Network Expansion Planning Model

This section mainly introduces the calculation of the comprehensive equivalent cost
f (sτ) of the TNEP model. In the TNEP planning method based on the DQN algorithm, the
reward wτ of each line-building or line-deleting action aτ is calculated from the f (sτ + 1)
of the new network structure sτ + 1 after the action aτ is executed (the specific formula is
Equation (35) in Section 4), and then the Q value of the action aτ is calculated according
to Equations (7) and (8). The calculation of the scheme’s f (sτ) is part of the environment
in the DQN algorithm. In addition, the proposed TNEP model is a static planning model
rather than a multi-stage planning model. The consideration of the construction sequence
of lines is realized by utilizing the interactive learning characteristics of the DQN algorithm.
Since the DQN algorithm considers the influence of subsequent actions when calculating
the Q value, the influence of subsequent actions on the overall expansion scheme can
be considered in each action selection when utilizing the DQN algorithm to solve the
multi-stage TNEP problem. The effect of multi-stage planning will not be affected by the
simplicity of the planning model.

3.1. Objective Function

The evaluation of the TNEP scheme in this paper comprehensively considers the
economy, reliability, and flexibility of the system. The economic indexes mainly include the
annual equivalent line construction investment cost Cin, the operation and maintenance
cost Co, and the network loss cost Closs. The reliability index EENS is transformed into
the reliability cost CEENS, and the flexibility of the planning scheme is evaluated by the
flexibility index average normalized risk index of bus voltages (ANRIV) ζANRIV. The
comprehensive equivalent cost f (sτ) is obtained by combining the above indexes, and it is
used as the objective function for TNEP

min f (sτ) = (Cin + Co + Closs + CEENS)(1 + ζANRIV) (13)

Cin = λin∑ l∈SβlclLl (14)

λin =
ξ(1 + ξ)y0

(1 + ξ)y0 − 1
(1 + ξ)y1 (15)

Co = λo∑ l∈ΨLl + KGT∑ N
i=1PG,i (16)

Closs = KlossT∑ H
h ∑ N

i=1∑ j∈c(i) I2
ij,hrij,h (17)

CEENS = KEENSPEENS (18)

3.2. Constraints

When the system operates normally, its power flow constraints, generator output
constraints, line operating state constraints, and bus voltage constraints can be formulated
as follows:

PG,i − Pload,i −∑ H
h ∑ j∈c(i)bij,hθj = 0 (19)

Pmin
G,i ≤ PG,i ≤ Pmax

G,i (20)∣∣∣Pij,h

∣∣∣ ≤ Pmax
ij,h (21)

Umin
i ≤ Ui ≤ Umax

i (22)

3.3. N-k Fault Power Flow Calculation Model

The load shedding is taken as the objective function to obtain the optimal power
flow of the system under N-k fault. The N-k fault power flow calculation model consid-
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ering power flow constraints, generator active power output constraints, load shedding
constraints, and line power flow constraints can be formulated as follows:

min fz = ∑ i∈N Pi,z (23)

s.t.


PG,i,z − Pload,i + Pi,z −∑H

h ∑j∈c(i) bij,hθj,z = 0
0 ≤ PG,i,z ≤ Pmax

G,i
0 ≤ Pi,z ≤ Pload,i∣∣∣Pij,h,z

∣∣∣ ≤ Pmax
ij,h

(24)

3.4. EENS Cost Considering the Fault Severity

Based on the Monte Carlo method, this paper considers the fault severity of equip-
ment, and improves the average and scattered sampling method to obtain faster sampling
efficiency and more comprehensive system state simulation.

A uniformly distributed random number µ in the interval [0, 1] is generated to simulate
the operating state of a certain equipment e. If the equipment e is a transmission line, the
operating state δe of the equipment can be expressed as

δe =

{
0, 0 ≤ µ ≤ p f ,e
1, p f ,e < µ ≤ 1

(25)

If the equipment e is a generator set, in addition to the operation of the whole unit
and the shutdown of the whole unit, there may also be some states of shutdown of some
units. Divide the interval [0, 1] into y sub-intervals of equal length to simulate the different
operating states of the unit. The operating state δe and active power output of the unit can
be expressed as follows:

δe =



0, others
1, 0 ≤ µ ≤ Pf,e/y
2, 1/y ≤ µ ≤ (1 + Pf,e)/y
...
y, (y− 1)/y ≤ µ ≤ (y− 1 + Pf,e)/y

(26)

and the active power output of generator set e under state z is

PG,e,z = (1−δe/y)PG,e (27)

The operation state Mz of the transmission network can be obtained by sampling all
of the equipment above

Mz = {δ1, δ2, · · · , δF} (28)

After enough sampling, the occurrence frequency of state Mz can be taken as an
unbiased estimate of its occurrence probability p(z)

p(z) = n(Mz)/ntotal (29)

Therefore, the total load shedding PEENS of the transmission network is

PEENS = T∑ z∈Φ
(

p(z)∑ i∈N Pi,z
)

(30)

Combined with Equation (30), Equation (18) can be transformed into

CEENS = KEENST∑ z∈Φ
(

p(z)∑ i∈N Pi,z
)

(31)
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3.5. The Average Normalized Risk Index of Bus Voltages

When a fault occurs in the system, if the bus voltage is higher than the rated value
Urate

i , it is considered as risk-free, as shown in Figure 2. The difference from [36] is that
when the bus voltage is lower than Umin

i , the interval normalized risk index (NRI) value
increases exponentially, which can increase the influence of unstable voltage on the NRI.
The NRI ζ V,i of the voltage at bus i is

ζV,i =


0, Ui ≥ Urate

i
Urate

i −Ui
Urate

i −Umin
i

, Umin
i ≤ Ui ≤ Urate

i

exp
(

Umin
i −Ui

Urate
i −Umin

i

)
, Ui < Umin

i

(32)

When equipment e is outage, the NRI at bus i is

ζV,i,e = p f ,eζV,i (33)

To evaluate the overall flexibility of the TNEP scheme, the flexibility index ζANRIV is
obtained by calculating the system power flow under all N-1 faults

ζANRIV = ηANRIV
(
∑ e∈F∑ i∈NζV,i,e

)
/(F · N) (34)

The smaller the ζANRIV of the expansion scheme, the stronger the adaptability to
equipment outages, and the better its flexibility.

Figure 2. Normalized risk index (NRI) of bus voltage.

4. Flexible TNEP Based on DQN Algorithm
4.1. Algorithm Architecture Design

The TNEP framework based on the DQN algorithm is shown in Figure 3. In fact,
the two neural networks are also parts of the agent. However, in order to make readers
better understand the process of using the DQN algorithm in TNEP, we put the two
neural networks outside the agent. The network structure sτ consists of the construction
state βl of the buildable lines; the action set is the set S of the buildable lines. According
to Equations (5), (7) and (8), the agent selects the line-building or line-deleting action aτ

according to the existing network structure sτ and the Q values of actions, and then
the action aτ is fed back to the planning environment of the transmission network. The
environment performs N-1 analysis on the new network structure sτ+1, calculates various
costs and indexes, obtains comprehensive equivalent cost f (sτ), and calculates action
reward wτ . The environment feeds back the new network structure sτ+1 and action reward
wτ to the agent, who collects experience. The selection of the line-building or line-deleting
action aτ , the update of the network state sτ , and the calculation of action reward wτ ,



Energies 2021, 14, 1944 9 of 21

together form the MDP of TNEP. After collecting a certain amount of experience, it will
extract experience training eval-net according to PER strategy. The agent learns and gives
an optimal action plan, and copies the eval-net’s parameters to target-net per κ iterations.

Figure 3. Transmission network expansion planning (TNEP) framework based on the DQN algorithm.

The correct setting of the reward function is crucial for the DQN algorithm. The reward
wτ of line-building or line-deleting action aτ is calculated based on the environment’s
evaluation of the new structure sτ+1. This paper judges the quality of the network structure
according to the magnitude of f (sτ). Therefore, this paper first sets a larger benchmark
cost to perform iterative learning to obtain the comprehensive equivalent cost of a suitable
scheme. The final benchmark cost f base is appropriately increased on this basis, and the
N-1 security constraints is taken into account, so that the reward wτ of action aτ is

wτ =

{
fbase − f (sτ+1), satisfy N − 1 security constraints
−100, otherwise

(35)

Therefore, the expansion scheme that not satisfies N-1 security constraints will result
in a large negative reward for the last action. Moreover, the scheme whose comprehensive
equivalent cost is lower than the benchmark cost will make the last action get a positive
reward, otherwise the last action will get a negative reward. Therefore, the agent will
explore in the direction where the expansion scheme satisfies N-1 security constraints and
f (sτ) is smaller.

4.2. Planning Process

The interaction mechanism between the planning environment and the agent has been
introduced before. The main purpose of this paper is to study a flexible TNEP method, so
the treatment of multi-stage planning is relatively brief. Whenever an action is selected,
the network structure will be updated, f (sτ) and reward wτ will be calculated. However,
this paper only considers the sequence of line-building actions, not the precise time of each
line’s construction. In addition, each scheme is calculated as a static programming. The
detailed planning procedure of the proposed flexible TNEP method based on the DQN
algorithm is provided in Figure 4. In each iteration, only one line’s construction state
will be changed, which ensures the convergence of the DQN algorithm. Whenever an
expansion scheme wτ > 0, an episode (iteration round) ends. In addition, this paper creates
a database to save all the expansion schemes that satisfy N-1 security constraints and calls
them during the planning process. Therefore, repeated schemes will not be recalculated,
saving a lot of time.
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Figure 4. Planning procedure of the proposed flexible TNEP method.

5. Case Study

In this paper, the IEEE 24-bus reliability test system [37] is selected for calculation
and analysis. The system consists of 38 power transmission lines and 32 generator sets,
of which 17 buses carry loads, with a total load value of 2850 MW. The system can be
divided into 230 kV in the north area and 138 kV in the south area, connected by five
transformer branches. The to-be-selected set of buildable lines in this paper includes
38 original transmission lines of the system and 50 to-be-selected lines. The parameters
of the 38 original transmission lines of the system can be found in [37], and these lines
are numbered from 1 to 38. Some parameters of the 50 to-be-selected lines are shown in
Appendix A, where the investment cost has been converted to an equivalent annual cost.

In order to verify the applicability and advantages of the DQN algorithm in TNEP, this
paper designs three experiments. Experiment 1 is the TNEP on the original network, exper-
iment 2 is the modification of the expansion scheme, and experiment 3 is the subsequent
line planning. In the three experiments, the power generations and loads are increased by
1.5 times, so it is necessary to increase the transmission lines to ensure the safe and stable
operation of the transmission network.

5.1. Experiment 1

In order to verify the performance improvement of the algorithm brought by PER
strategy, the DQN algorithm based on random sampling and PER strategy are respectively
used to conduct experiment 1. The algorithm parameter settings are the same, the max-
imum iteration number of one episode is Itermax = 200, the maximum iteration round is
max_episode = 200, the annual maximum load utilization hours is T = 5000 h, the annual
value coefficient of line operation and maintenance cost is λo = 0.05, the power genera-
tion cost is KG = 20 $/MWh, the network power loss price is Kloss=40 $/MWh, the load
shedding cost is KEENS = 100 $/MWh, the number of equal scattered sampling sections is
y = 4, and the number of Monte Carlo sampling is 2000. Due to the long calculation time of
Monte Carlo sampling, in order to save program running time and ensure the quality of
the expansion scheme, for the scheme of ζANRIV > 1, directly set CEENS = 40 M$, and the
agent will get negative reward.

Figure 5 shows the comparison of the total number of iterations in the first 50 episodes
before and after the introduction of PER strategy. If no feasible scheme is found in the learn-
ing of one episode, the number of this episode’s iterations will be equal to Itermax. It can be
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seen from Figure 5 that after PER strategy is introduced, the number of iterations without
a feasible scheme is reduced, and the total number of iterations in the first 50 episodes is
reduced by 30%. All these verify the help of PER strategy to improve the learning efficiency
of the agent. Figure 6 shows the comparison of each line-building action’s Q value under
the two experience extraction strategies in the last episode.

Figure 5. Comparison of the number of iterations before and after the introduction of prioritized
experience replay (PER) strategy.

Figure 6. Comparison of the Q values under the two experience extraction strategies in the last episode.

The magnitude of the action’s Q value reflects its improvement to the transmission
network system. The calculation of the Q value in the eval-net of the DQN algorithm is
given in Equations (7) and (8). Since there is a certain error in predicting Qmax by the neural
network and the calculation of Qmax may base on the Qtarget with the largest error, the Q
value calculation of the DQN algorithm will have an overestimation problem. Figure 6
shows that after PER strategy is introduced, most of the Q values of the same line-building
actions on the initial network are decreasing, indicating that the situation of overestimation
has been improved. In addition, under the two experience extraction strategies, the agents
have basically the same judgments on the line construction, and the Q values have been
dropped by 30% on average after the introduction of PER strategy. By observing the
maximum Q values under the two experience extraction strategies in Figure 6, it can be
found that the two maximum Q values are both the 61st line-building action, so the first
line to be built on the initial network is the 61st line. According to Appendix A, it can
be seen that this line is the transmission line between bus 6 and 7 (line 6–7). Moreover,
bus 7 is connected to other buses with only one line, which cannot satisfy N-1 security
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constraints. Therefore, adding a transmission line connected to bus 7 can effectively reduce
the reliability cost and ζANRIV, and the Q value of such a line-building action will be
relatively larger. When PER strategy is introduced, each expansion scheme that satisfies
N-1 security constraints and its indexes values are recorded in sequence. The changes of
each index with iterations are presented in Figure 7. The darker the color, the more data
nearby. The subgraphs on the right are also used to reflect the distribution of data.

Figure 7. Changes of each index with iterations.

The first two pictures in Figure 7 show that in the first 3500 iterations of the algorithm,
many expansion schemes with high construction investment costs and operation and
maintenance costs were recorded. This is because at the beginning of the algorithm,
the agent cannot clearly determine which line-building actions can effectively reduce
reliability costs and ζANRIV, and will build more lines to meet the requirements of reliability
and flexibility. In addition, due to the construction of more lines, the power flow in the
transmission network will be more balanced, and the network loss cost will be lower. The
data distribution in the third subgraph in Figure 7 also verifies this result. High construction
investment cost leads to the high f (sτ) of the scheme, so no feasible solution can be found
in such episodes and the database will record a large number of infeasible schemes at
the beginning of the algorithm. As the training continues, the agent can gradually judge
the quality of each line-building action, so that it can find feasible schemes faster, and
the distribution of the index values has also stabilized, which also verifies the powerful
learning effect of agent in the DQN algorithm based on PER strategy.

Since the network cannot satisfies N-1 security constraints without expansion planning,
the reliability cost is 12.59 M$, and the flexibility index is ζANRIV = 1.57, its reliability and
flexibility are very poor. Therefore, the original network structure needs to be expanded to
enhance system reliability and flexibility. In order to compare with the traditional planning
algorithm, this paper carries out planning under two different planning scenarios. The
planning schemes in this paper are sorted according to the sequence of line construction
and compared with reference [38] in Table 1. The scheme in [38] is obtained by a mixed-
integer linear programming approach. The line investment cost and the operation cost of
generation units are taken as the objective function in the planning in [38], and only N-1
security constraints are taken into account.
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Table 1. IEEE 24-bus reliability test system planning scheme comparison.

Planning Scheme Cin/M$ Co/M$ Closs/M$ CEENS/M$ ζANRIV f (sτ)/M$

Scheme 1 6–7,19–21,19–22,7–8,
2–9,22–23,6–10 6.73 15.02 4.66 4.27 0.21 37.22

Scheme 2 6–7,19–21,19–22,18–21,
3–6,1–5,20–23 8.99 15.17 4.83 1.95 0.40 43.35

Reference [38] 3–24,7–8,14–16,15–21,
15–24,16–17,20–23 10.44 15.20 4.62 4.14 0.72 59.18

In Table 1, scheme 1 is the scheme with the least comprehensive equivalent cost.
Since the flexibility index ζANRIV is not much different among the schemes with lower
comprehensive equivalent costs, this paper chooses the scheme with the least reliability
cost as scheme 2. Both of these schemes are obtained by the DQN algorithm based on PER
strategy, and only the objective functions of the planning are different. The comparison
between the scheme in [38] and scheme 1 selected in this paper is shown in Figure 8.

Figure 8. Comparison of planning schemes.

It can be seen from Figure 8 that the two schemes have only one identical extension
line, which is line 7–8. The scheme in [38] mainly focuses on the power exchange within
the northern area and between the northern and southern areas. The south area only
adds line 7–8 to ensure that the system can satisfies N-1 security constraints. Scheme 1
is mainly to strengthen the power exchange within the northern and southern areas, and
does not enhance the power exchange between the northern and southern areas. Three
transmission lines have been added between the buses on the right side of the northern
area, and several transmission lines have been added on the right side of the southern
area and between buses 2–9. Since the network loss and N-1 security constraints are more
important in the planning in [38], the network loss cost and reliability cost of the scheme
in [38] are relatively lower. However, compared with the two planning schemes in this
paper, its low bus voltage after the fault occurs will be more serious, so there is still some
space for optimization.
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The first three line-building actions of scheme 1 and scheme 2 are the same, but due to
the different number of episodes, the maximum value judgment will be different. There are
differences in subsequent line construction, but the line-building strategies are the same.
From the line construction sequence of the two schemes, the agent chooses to add a line
connected to bus 7 first to solve the problem that N-1 security constraints are not satisfied
at bus 7, thereby greatly enhancing the system’s reliability and flexibility. Subsequently, the
agent chooses to add two transmission lines in the northern area to enhance the reliability
of the northern area. Compared with scheme 1, although scheme 2 has a 2.32 M$ lower
reliability cost, other indexes are larger. The ζANRIV of scheme 2 performs poorly, so the
overall system bus voltage will be lower when a fault occurs, and the overall economy will
be worse.

In order to verify the improvement of power flow distribution after faults in scheme 1,
in this paper we carried out multiple sets of N-1 security constraints. Figure 9 shows
the comparison of network loss after different lines are cutting. It can be seen that the
network loss of scheme 1 is generally smaller after the line faults. Therefore, the power
flow distribution of scheme 1’s structure is more reasonable and reliable, and the space for
power flow adjustment according to the demand is larger, which all prove that scheme 1
has better reliability and flexibility.

Figure 9. Comparison of network loss after cutting different lines.

Compared with mathematical optimization algorithms and meta-heuristic optimiza-
tion algorithms, the planning method proposed in this paper can visualize the data gener-
ated during the planning process. Due to the coordinated calculation of two deep neural
networks with the same structure, the DQN algorithm can also have strong convergence in
large-scale planning problems. In addition, the use of ε-greedy action selection strategy
makes the DQN algorithm have a large search space.

5.2. Experiment 2

In actual engineering, the expansion scheme may need to be adjusted during the
construction period due to various reasons. For example, during the implementation of
scheme 1, line 7–8 that should have been fourth added could not be built due to some
special reasons. At this time, the remaining expansion scheme needs to be re-planned.
Conventional planning methods need to make certain modifications to the model and then
plan again. The TNEP method based on DRL in this paper does not need to be re-planned.
It only needs to import the trained neural network parameters and input the extended
network structure to obtain the Q value of each subsequent line-building or line-deleting
action. So that planners can select one line-building action with high Q value combined
with a variety of factors, which has strong flexibility.

Inputting the network structure of the first three lines in the scheme 1 obtained in
experiment 1 (lines 6–7, 19–21 and 19–22) into the neural network trained by the DQN
algorithm, the Q value of each action is obtained as shown in Figure 10. It can be seen
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from Figure 10 that the most appropriate line to build is the 11th line (line 7–8), which
is consistent with the line selected in scheme 1. The Q value of the 61st line (line 6–7) is
very small, because this line is the first line built in scheme 1. Choosing this action means
deleting this line, which will make the network not satisfy N-1 security constraints and
get a negative reward. Therefore, the Q value of this action is very small. To verify the
correctness of the action selection, line 11–14 is selected from other actions with high Q
values, and line 17–18 is selected from actions with low Q values. The indexes and costs
after the construction of line 7–8, and these two lines, are shown in Table 2.

Figure 10. Q value of each action under the existing network structure.

Table 2. Comparison of indexes and costs under three line-building actions.

Constructed Line Q Value Cin/M$ CEENS/M$ ζANRIV f (sτ)/M$

7–8 148.48 3.55 5.51 0.39 39.86
11–14 139.27 4.65 4.63 0.45 42.16
17–18 73.00 3.51 7.72 0.49 46.25

The results in Table 2 show that although the DQN algorithm considers the influence
of subsequent actions when calculating Q values, the Q values of line-building actions can
also reflect the changes in f (sτ) after the construction of line to some extent. This also shows
that the agent has a relatively clear judgment on the benefits of the construction of various
lines, which can support grid planners to make flexible adjustment of the planning scheme.

The action values of some lines after constructing the three lines with the top three Q
values in Figure 10 are shown in Figure 11. Figure 11 shows that the Q value of each action
will vary to some extent after the construction of different lines, but they are generally
similar (the difference in the Q value of the same action is only 26 at most). The Q value of
each action after the construction of line 1–2 in Figure 11 also reflects a problem. After line
1–2 is constructed, the agent cannot adjust the Q value of line 1–2’s deleting action well. As
a result, line 1–2’s deleting action will still have a larger Q value after it is built, which is
easy to cause the line to be deleted in the next iteration and enter a loop. Since this paper
adds the ε-greedy action selection strategy, the algorithm will jump out of the loop after a
small number of iterations to find a feasible scheme. In addition, Figure 11 shows that the
Q value of line 1–2 after the construction of itself is the smallest compared with the Q value
of line 1–2 after the construction of the other two lines, which indicates that the agent can
perceive the change of the network structure to some extent.

Suppose that after taking the Q value of each action and realistic factors into account,
line 11–14, 19–20 and 6–10 are constructed in order. Calculate the Q value of each action
under the new network structure as before. Excluding the lines that have been built, line
3–24 is the most profitable line-building action. Line 2–8 is selected from other actions with
larger Q values, and line 19–20 is selected from actions with smaller Q values. The three
lines were constructed respectively and compared with the indexes and costs of scheme 1
as shown in Table 3.
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Figure 11. Q value of actions after construction of three different lines.

Table 3. Comparison of indexes and costs of four expansion schemes.

Expansion Scheme Cin/M$ CEENS/M$ ζANRIV f (sτ)/M$

6–7,19–21,19–22,11–14,
19–20,6–10,3–24 8.94 2.85 0.24 39.20

6–7,19–21,19–22,11–14,
19–20,6–10,2–8 8.22 2.60 0.25 38.22

6–7,19–21,19–22,11–14,
19–20,6–10,19–20 8.70 5.38 0.29 43.72

Scheme 1 6.73 4.27 0.21 37.22

The results in Table 3 show that the selection of line to be constructed according to
the magnitude of the action’s Q value can make the overall effect of the scheme better to
some extent, but it cannot guarantee that the scheme is optimal if the construction is based
on the Q value in every step. Therefore, ε-greedy action selection strategy is introduced to
make the agent choose other actions so that it can explore better schemes.

5.3. Experiment 3

After the completion of scheme 1, due to the increase in the users’ power quality
requirements and the increase in load, the current network still cannot meet the users’
needs. At this time, the transmission network still needs to be expanded. The proposed
method is still able to deal with such problem. For example, line expansion planning
should be carried out on the basis of scheme 1. The network structure of scheme 1 should
be input into the trained neural network, and the obtained Q value of each action is shown
in Figure 12. According to [38], the expansion scheme with the maximum benefit is to build
line 10–11. Similarly, line 9–11 is selected from actions with larger Q values, and line 13–23
is selected from actions with smaller Q values. After the construction of three lines, indexes
and costs are shown in Table 4.

Table 4. Comparison of indexes and costs under three line-building actions.

Constructed Line Q Value Cin/M$ CEENS/M$ ζANRIV f (sτ)/M$

10–11 28.57 8.73 4.90 0.19 39.71
9–11 26.64 8.73 5.67 0.18 40.25

13–23 24.31 10.33 5.57 0.21 41.95

Table 4 shows that although the increase of construction investment cost leads to the
increase of f (sτ), the two kinds of line-building actions with large Q values can improve
the system flexibility. Since the f (sτ) of scheme 1 is already relatively small, the reward and
Q value of each line-building action on this basis are not large. The Q value of each action
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in Figure 12 also verifies this conclusion. Therefore, in order to meet the higher demands
of the future power system, line 10–11 can be selected for construction.

Figure 12. Q value of each action after the completion of scheme 1.

6. Conclusions

In this paper, we proposed a TNEP model that comprehensively considers economy,
reliability and flexibility. Meanwhile, the possible N-k faults and the severity of the equip-
ment faults were taken into account in the Monte Carlo method to calculate the reliability
index expected energy not supplied, which was more in line with the actual operating
situation. For the implementation process of the expansion scheme, we considered the
construction sequence of lines. Compared with mathematical optimization algorithms
and meta-heuristic optimization algorithms, the proposed planning method was based on
the DQN algorithm, it could solve the multi-stage TNEP problem on the basis of a static
TNEP model, and it was able to converge in large-scale systems. In addition, through the
repeated use of the trained neural network in the DQN algorithm, the adaptive planning
of lines was realized. Moreover, prioritized experience replay strategy was introduced to
accelerate the learning efficiency of the agent. Compared with using random sampling
strategy, the total number of iterations in the first 50 episodes had been reduced by 30%.
Three experiments of the IEEE 24-bus reliability test system showed that the proposed
flexible TNEP method could not only complete the multi-stage planning well, but also
realize the flexible adjustment of expansion schemes. Selecting the line-building actions
based on the Q values calculated by the neural network could ensure the justifiability and
economy of the obtained scheme to a certain extent.

This study is a first attempt to apply the DQN algorithm to solve TNEP problem
considering the construction sequence of lines. Three experiments of the IEEE 24-bus
reliability test system verify the effectiveness of the proposed method and its flexibility
compared with traditional planning methods. However, this paper is still relatively simple
to deal with the multi-stage TNEP problem, and does not consider the specific construction
time of each line. In addition, there is an error in the calculation of line-deleting action’s Q
value. How to evaluate the pros and cons of the expansion scheme more comprehensively,
consider the multi-stage planning problem more deeply, make the agent have a clearer
judgment on the value of line-deleting action, and consider the renewable energy, energy
storage, and other equipment are further research directions.
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Nomenclature

Sets and Indices
π Set of strategies
S Set of states, for example S = {l1, l2, . . . , ln}
A Set of actions
w Set of feedbacks
W Set of rewards
Q Set of Q values
π* Set of optimal strategies
Ψ Set of lines that have been built
c(i) Set of all end buses with i as the head bus
Φ Set of transmission network operating states
τ Action index
h The h-th line
l Line index
i,j Bus index
e Equipment index
Variables
aτ Reinforcement learning agent actions
sτ Reinforcement learning states
Rτ Current action reward
µ Random number in the interval [0, 1]
d Current action number
Eπ Mathematical expectation under strategyπ

Qπ(s,a) State–action value function
Q*(s,a) Optimal state–action value function
π(s) ε-greedy action selection strategy
Qmax Optimal action’s Q value
Qeval Q value of eval-net
Qtarget Q value of target-net
v eval-net’s weight
L(v) eval-net’s loss
Pτ Priority of experience τ

∆τ TD error
rank(|∆τ|) Elements of |∆τ| sorted from the maximum to minimum
f(sτ) Comprehensive equivalent cost
Cin Construction investment cost
Co Operation and maintenance cost
Closs Network loss cost
CEENS Reliability cost
ζANRIV Flexibility index ANRIV
λin Annual coefficient of fixed investment cost of the line
βl Binary variable, βl = 1 means line l has been constructed, 0 otherwise
PG,i Total active power output of all generators at bus i
H Total number of lines between bus i and j
Iij,h Current of the h-th line between bus i and j
rij,h Resistance of the h-th line between bus i and j
Pload,i Active power consumed at bus i
bij,h Susceptance of the h-th line between bus i and j
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θi Voltage phase angle at bus i
Pmin

G,i , Pmax
G,i Lower and upper bound of active power output of all generators at bus i

Pij,h Active power flow of the h-th line between bus i and j
Pmax

ij,h Upper bound of active power flow allowable transmission capacity
Ui Voltage amplitude at bus i
Umin

i , Umax
i Lower and upper bound of voltage amplitude at bus i

fz Load shedding under fault state z
Pi,z Load shedding at bus i under fault state z
PG,i,z Sum of the active power output of all generators at bus i under fault state z
θ j,z Voltage phase angle at bus i under fault state z
Pij,h,z Active power flow of the h-th line between bus i and j under fault state z
δe Operation state of equipment e, δe=0 represents equipment e is out of service
pf,e Forced stop rate of equipment e
PG,e Active power output of generator set e under normal operation
Mz Operation state z of the transmission network
p(z) Occurrence probability of state z
n(Mz) Number of samplings of state z
PEENS Annual load shedding
Pi,z Power shortage of bus i under state z
ζ V,i NRI of the voltage at bus i
F Sum of the number of generators and lines
Constants
γ Decay factor of future rewards
D Upper bound of the action number
α Learning rate
Γ Size of the playback experience pool
ϕ Degree of priority usage
cl Investment cost of unit length construction
ξ expected return on investment
y0 Service life of the investment
y1 Construction life of the planning scheme
n Number of constructible lines
Ll Length of line l
λo Annual coefficient of operation and maintenance cost of the line
KG Unit power generation cost
T Annual maximum load utilization hours
N Number of buses
ntotal Total number of samplings
Kloss Unit network power loss price
KEENS Unit load shedding price
ηANRIV Coefficient that balances the influence of the ζANRIV on the objective function

Appendix A

The parameters of the 50 to-be-selected lines are given in Table A1, where the invest-
ment costs are converted to the equivalent annual costs and the lines are numbered from
39 to 88. They are used in Section 5, and provide the settings of the experiments. Based
on these parameters, the experimental results are analyzed and the planning methods are
evaluated.
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Table A1. The parameters of the 50 to-be-selected lines.

Number Line Cost/M$ Number Line Cost/M$

39 1–4 1.12 64 7–9 2.26
40 1–7 2.03 65 7–10 1.72
41 1–8 2.36 66 8–10 1.31
42 1–9 1.75 67 11–15 1.51
43 2–3 2.82 68 11–23 2.40
44 2–5 0.83 69 12–14 1.48
45 2–7 0.86 70 12–15 2.07
46 2–8 1.28 71 13–14 1.76
47 2–9 1.84 72 13–15 2.42
48 2–10 1.72 73 13–20 1.49
49 3–4 1.08 74 14–15 0.67
50 3–5 2.10 75 14–19 0.02
51 3–6 3.22 76 14–20 0.82
52 3–8 3.41 77 15–19 0.93
53 3–10 2.38 78 15–20 1.36
54 4–5 1.08 79 16–18 0.89
55 4–6 2.45 80 16–19 0.89
56 4–10 1.72 81 16–20 1.36
57 5–6 1.56 82 17–19 1.29
58 5–7 1.37 83 18–19 1.11
59 5–8 1.42 84 19–21 0.67
60 5–9 1.02 85 19–22 0.88
61 6–7 1.36 86 20–21 0.80
62 6–8 0.75 87 20–22 0.67
63 6–9 1.82 88 22–23 0.69
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