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Abstract: For an electric vehicle (EV) with a continuously variable transmission (CVT), a novel convex
programming (CP)-based co-design method is proposed to minimize the total-cost-of-ownership
(TCO). The integration of the electric machine (EM) and the CVT is the primary focus. The optimized
system with co-design reduces the TCO by around 5.9% compared to a non-optimized CVT-based EV
(based on off-the-shelf components) and by around 2% compared to the EV equipped with a single-
speed transmission (SST). By taking advantage of the control and design freedom provided by the
CVT, the optimal CVT, EM and battery sizes are found to reduce the system cost. It simultaneously
finds the optimal CVT speed ratio and air-flow rate of the cooling system reducing the energy
consumption. The strength of co-design is highlighted by comparing to a sequential design, and
insights into the design of a low-power EV that is energy-efficient and cost-effective for urban driving
are provided. A highly integrated EM-CVT system, which is efficient, low-cost and lightweight, can
be expected for future EV applications.

Keywords: electric vehicle; co-design; continuously variable transmission; component sizing; optimal
control; convex programming; energy efficiency

1. Introduction

Growing concerns of environmental contamination and depletion of natural resources
have led to the resurgence of electric vehicles (EVs). Admittedly, the emerging EV market
is mainly dominated by single-speed transmissions (SSTs). Nevertheless, to optimize
key performance indicators (KPIs), for example, energy consumption, system cost and
performance, research on multi-speed transmissions is gaining popularity, such as two-
speed transmissions and continuously variable transmissions (CVTs) [1–4].

To date, design of EVs (including CVT-based) is largely based on off-the-shelf compo-
nents due to cost, and powertrain components are typically not optimized [5]. The compo-
nent size, for example, the electric machine (EM) size in kW and battery size in kWh, is
associated with the component cost. Finding optimal component sizes would contribute
to cost reduction. The component size also influences the vehicle performance, such as
top speed and acceleration time. Moreover, EV energy consumption is largely influenced
by the driveline efficiency. In this respect, the integration of the EM and the CVT plays
a key role [6]. The CVT could provide opportunities of optimizing the EM, thanks to
the continuous ratio adjustment functionality. The wider power availability of the EM,
in turn, could offer opportunities of optimizing the CVT. In literature, however, the EM
and the CVT are often treated independently. Standard CVT controllers developed for
conventional vehicles are used, where the speed ratio of the CVT (control) is selected to
reduce the EM power losses. The influence of the CVT efficiency, CVT and EM size (design)
are not always considered simultaneously [4]. In order to maximize system efficiency and
minimize system cost, the coupling between the EM and the CVT from design and control
perspectives has yet to be investigated. In order to address these issues, design and control
frameworks are required.
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This type of design problem can be tackled by different approaches. An overview
of design and control optimization methodologies is given in [7,8]. As presented in [7],
there are generally four approaches to solve the design (plant) and control (controller) prob-
lem. With respect to solution optimality, simultaneous and nested coordination schemes
outperform iterative and sequential ones, although depending on the coupling and how
sensitive the solution is to uncertainties in the design parameters. For instance, the opti-
mal component sizes can be found iteratively, by using rule-based control [9]. However,
these methods do not guarantee a globally optimal solution. To overcome this limitation,
dynamic programming (DP), as an optimization-based strategy, can be used to find the
optimal control inputs [10]. DP can also be utilized in combination with an evolutionary
algorithm to find component sizes, such as particle swarm optimization (PSO). In the search
space, PSO improves a candidate solution iteratively by moving particles towards the best
known positions [11,12]. It can solve complex objective functions and problems with large
design space. PSO is used in [13] to find optimal component sizes of an electrified pow-
ertrain. However, it requires tuning effort and has long computation time. Furthermore,
an optimal solution is not guaranteed. An alternative is to use convex programming (CP) as
a simultaneous approach, which is also a co-design optimization method. It finds optimal
design parameters and control trajectories simultaneously without the need of checking
optimality [14,15]. It ensures a unique optimum with a convex objective function and a
convex feasible region. It is also computationally efficient. Due to the low computation
time, CP enables optimization of problems with many dynamic states, such as thermal
states, which may not be tractable by using DP for example [16].

Moreover, employing a CVT for an EV is a novel concept. Applying advanced
optimization methods to optimize KPIs of CVT-based EVs have hardly been found [6].
Additionally, current research mainly concentrates on the energy domain to increase the
energy efficiency, taking into account the mechanical and electrical energy flows [17].
The thermal domain, however, for instance, evaluation of cooling power consumption and
temperature profile, has yet to be explored. It is also an integral part of an EV, which would
affect the total energy consumption [18].

Considering the integration of the EM and CVT, as shown in Figure 1, the CVT speed
ratio over time (γv) for a use case changes the EM and CVT operating points. Therefore, it
influences the EM (Pm,loss) and CVT (Pc,loss) power losses. Furthermore, the desired CVT
speed ratio affects the CVT size (sγ), for example, the ratio coverage of the CVT, and the EM
size (sτ) to meet the power demand for example. The CVT and EM sizes are related to their
costs. The CVT size that determines the ratio range, in turn, affects the CVT speed ratio and
the EM size. The EM size also has an effect on the CVT size and its speed ratio. In addition,
the component size affects its own efficiency. Moreover, the battery size and losses are
affected indirectly. Hence, the hypothesis is that there exists an optimal combination of the
CVT speed ratio over time, battery size, EM size and the CVT size for an application, which
results in the lowest total-cost-of-ownership (TCO). TCO consists of energy consumption
and system cost. The system cost comprises the CVT, EM (including inverter) and battery
prices. Given the interactions between these variables, this optimal solution for a use case
can best be found by means of a simultaneous approach in an efficient manner.

CVT

Pc,loss(γv, sγ)

EM

     (sτ)Pm,lossPm,loss

Figure 1. Schematic representation of the coupling between the continuously variable transmission
(CVT) and electric machine (EM), where γv represents the CVT speed ratio, sγ the CVT size, sτ the
EM size, Pc,loss the CVT power losses, and Pm,loss the EM power losses.
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Motivated by the above discussion, this study originally proposes a CP-based co-
design optimization strategy for a CVT-based EV to reduce the TCO. It identifies the
optimal CVT speed ratio over time and the desired air-flow rate of a thermal management
system (TMS) to maintain the EM temperature below its thermal limit. Furthermore, it
finds the optimal sizes of the CVT, EM and battery. The approach is as follows:

S1: An SST-based EV model including energy dynamics and thermodynamics with refer-
ence to a series production vehicle is firstly created. It is developed based on static
efficiency maps represented by lookup tables, which is validated against measure-
ment data from real-world driving. It replicates the physical behavior of the vehicle in
reality.

S2: A CVT-based EV model is then developed based on S1, where only the SST is replaced
by a CVT (an off-the-shelf component, which is not optimized). Other components,
for example, the battery and EM, are the same. The CVT model is created based on
experimental data from a test rig.

S3: Component models from S2 are convexified to fit the measurement data from real-
world driving and experimental data from the test rig. S2 is subsequently optimized
with the co-design optimization strategy.

All the systems (S1, S2 and S3) have the same maximum EM power and similar vehicle
performance (i.e., 0–100 km/h acceleration time below 11 s, top speed above 165 km/h,
gradability above 30%). Therefore, the goal of this study is to show the advantages of the co-
design approach in optimizing a CVT-based EV (e.g., sizing) and to compare TCO between
S1, S2 and S3. System cost comprising the expenses of the battery, EM and CVT are solely
given for the implementation of the co-design approach. Moreover, the strengths of the
co-design method are highlighted, by comparing with a sequential approach, where the EM
size is fixed to meet performance requirements. Additionally, for urban driving that does
not require high performance, insights into the design of a low-power EV are provided.

2. Problem Definition

The configuration of the considered EV is demonstrated in Figure 2. The integration
of the EM and the CVT is the primary focus, which are highlighted in bold. The major
components of the EV are the battery, DC (direct current)-DC converter, DC-AC (alternating
current) inverter, EM, CVT, electric oil pump (ELOP), and vehicle. If not specified, the DC-
AC inverter and EM are combined together in this study. The final drive (FD) that takes
a constant value and a fixed efficiency is lumped into the variator (VA), which together
is regarded as CVT. In order to change the CVT speed ratio, hydraulic actuation power is
required from the ELOP. The ELOP power is supplied by the DC-DC converter onboard,
which is assumed to be always charged. The EM is directly connected to the input shaft of
the CVT without a pre-reduction gear. The battery provides the power requested by the
EM. The EV model describes the longitudinal dynamics. It is backward-facing, that is, the
drive cycle is given, with a discrete time-step of one second using time index k. The vehicle
inertia is considered. The main model parameters are listed in Table A1 (Appendix D),
including vehicle parameters and validated thermal parameters.

The main design criterion to find the optimal control and design variables is the
minimization of the TCO, which consists of the consumed electricity cost Je and system
cost Js, given by

min
s,x(k),u(k)

Je(s, x(k), u(k) | w(k)) + Js(s | w(k)), (1)

s.t. x(k + 1) = x(k) + f (s, x(k), u(k), w(k)) ∆t, (2)

h(s, x(k), u(k)) = 0, (3)

g(s, x(k), u(k)) ≤ 0, (4)
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where ∆t is the time step. The design variables s consist of the ratio coverage of the CVT
sγ, the scaling factor sτ for scaling the maximum EM torque and the scaling factor sb for
scaling the battery cells, that is,

s = [sγ, sτ , sb]
T . (5)

The state variables x(k) are the state-of-energy of the battery and temperature states
of the TMS, which are described in Section 3.7, given by

x(k) = [Eb(k), θm(k), θc(k), θo(k), θi(k)]T . (6)

The control variables u(k) are the speed ratio of the CVT (γv) and the air-flow rate of
the TMS (φa) to keep the EM temperature below its prescribed thermal limit, that is,

u(k) = [γv(k), φa(k)]T . (7)

The power balance of the vehicle is represented by (3), and (4) represents the feasible
design space, where the design, state and control variables are bounded. Equation (4) also
represents the component limits. The disturbance vector w(k) contains vehicle speed (vv)
and acceleration (av), which are prescribed by the drive cycle, given by

w(k) = [vv(k), av(k)]T . (8)

The consumed electricity cost Je over the drive cycle represented by w(k) starting at
k = 1 and ending at k = N is obtained by

Je(s, x(k), u(k)) =
N

∑
k=1

ρe Pb(s, x(k), u(k)) ∆t, (9)

where ρe is the price of electricity (e/kWh). The term Pb(s, x, u) represents the battery
output power. The system cost Js over the drive cycle is calculated by

Js(s) =
Sd
Sv

(Cc(sγ) + Cm(sτ) + Cb(sb)), (10)

where Sd is the length of the drive cycle (km) and Sv the traveled distance of the vehicle in
its lifetime. The variable Cc(sγ) represents the CVT cost, Cm(sτ) the EM cost (including
inverter) and Cb(sb) the battery cost.

Pel

{vv,av}Pm Pd

Pc,loss(Pd,ωw,γv,sγ,sτ )
CVTEM

Mechanical

Electrical

Thermal

Hydraulic

VA

(sγ,γv)

FD WHEM

(sτ )

DC-AC

BA

(sb,Eb) DC-DC ELOP

TMS
θm θc

Pe

ωw

Pm,loss(Pm,γv,sγ,sτ )

Pb

Pb,loss(Pb,sb,Eb )

Figure 2. A CVT-based electric vehicle, where BA represents the battery, DC-AC the DC (direct current) to AC (alternating
current) inverter, DC-DC the DC to DC converter, ELOP the electric oil pump, FD the final drive, VA the variator, and WH
the wheel. Design, control, and state variables are highlighted in bold.
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Based on the configuration shown in Figure 2, three systems, namely S1, S2 and S3,
are developed and compared in terms of TCO as in (1). Three systems have the same
battery. Although battery aging is not the focus of this study, the methodology presented
also applies to scenarios where battery needs to be changed. S1 is developed with reference
to the series production vehicle, which is described in Appendix A. S2 is created based
on S1, where only the SST is replaced by the CVT, which is presented in Appendix B.
In S1 and S2, the component models are represented by experimentally-based lookup
tables (efficiency maps), which describe the power generation or power dissipation of each
component. The design variables are fixed. In S2, the CVT speed ratio is predetermined
by a low-level CVT controller, which is developed based on [19]. The goal of the CVT
controller is to reduce the EM power losses depending on the power demand, which is
common in literature, such as [20]. The air-flow rate of the TMS is tuned to maintain the
EM temperature below its thermal limit. In S3, convex models are developed based on
measurements. The design and control variables are to be determined by the co-design
optimization strategy.

This section formulates the co-design optimization problem of a CVT-based EV.
To solve this co-design optimization problem, the required convex EV model based on mea-
surements, especially the mathematical coupling between the CVT and EM from design
and control perspectives, is presented in more detail in the next section.

3. System Modeling

This section presents the convex EV model and cost models needed for solving the
co-design problem defined in (1). An introduction to CP is first given in Appendix C,
which serves as a guideline for developing convex models. A data-driven approach used
to derive the convex models is then provided in Section 3.1. Subsequently, given the drive
cycle in Section 3.2, the vehicle longitudinal dynamics are described in Section 3.3, which
is an input to the convex models in S3. Given the input, however, the torque input to
the CVT is not available. Because the CVT speed ratio is a control variable, which is not
known in advance and will be determined by the co-design optimization strategy. Dealing
with torque information will lead to non-convexity (Appendix C). Therefore, to preserve
convexity for the co-design optimization problem, all the relations are converted to power
level. By utilizing the data-driven approach as mentioned above, three convex models are
consequently developed, namely the CVT power loss model (Section 3.4), EM power loss
model (Section 3.5) and the EM power limitation model (Section 3.6). Equality constraints
are also relaxed with inequalities where applicable, and the equality holds at the optimum.
Notice that, this study mainly focuses on the CVT, EM and battery sizing, and the ELOP
sizing is not required at this level. Therefore, the ELOP is only considered in the calculation
of energy consumption, and no convex representation is required. The ELOP power
losses are computed offline, meaning the ELOP power losses are obtained based on the
optimal CVT speed ratio found by the optimization algorithm and then added to the energy
consumption. Furthermore, to remove the heat (power losses) generated by the EM and
CVT, the TMS and its associated thermal model are presented in Section 3.7. Eventually,
the required power is supplied by the battery, which is described in Section 3.8. The convex
battery model is developed based on physics [21]. Additionally, in Section 3.9, convex mass
and cost models related to CVT, EM and battery sizes are developed for the implementation
of the co-design approach.

3.1. Derivation of Convex Models

As mentioned in Appendix C, the component models, for example, the power loss
models, are required to be convex for the CP algorithm. The general idea to derive
the convex models based on a data-driven approach can be seen in Figure 3, where
measurements are used as inputs for the modeling. The measurement data (top) about the
CVT and EM, for example, power losses, torque, speed, and ratio over time, are first served
as inputs. Based on these measurements, a set of convex expressions capturing input and
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output relationships with sufficient accuracy is created. With different combinations of
those expressions, for example, CVT and EM power loss models, are then developed. These
parameterized models are subsequently fitted to capture the loss behaviors of components
with sufficient accuracy, which have a negligible impact on the result. Fourth, the convex
models are utilized by the co-design optimization method to find the optimal solution of
the system.

Measurement data

Fitting of coefficients

Convex models

Convex programming

Figure 3. A data-driven approach to derive convex models. In order to apply convex programming,
constraints and cost function are also required to be convex.

3.2. Drive Cycle

In this work, a realistic and representative real-world drive cycle, Worldwide Harmo-
nized Light Vehicles Test Cycles (WLTC), is chosen. It is currently widely adopted in the
automotive sector to certify energy consumption. It includes low, medium, high, and extra
high speed scenarios, which can represent, for example, urban, rural, and highway driving
conditions. In order to show the thermal effect, two repeated WLTC is used. The drive cycle
contains the vehicle speed vv(k) and acceleration av(k). Note that, although the quantity
(e.g., energy consumption) might vary, the methodology presented also applies to other
drive cycles.

3.3. Longitudinal Dynamics

Note that, in this case the total vehicle mass is a variable because of the scaling factors
for the CVT, EM and battery, which will be presented in the next sections. Considering all
the forces acting on the vehicle, the power demand for the known WLTC can be obtained by

Pd(k) =
(

1
2

ρa cd Af v2
v(k) + cr mv g sign(vv(k)) +

(
mv + 4

Jw

r2
w

)
av(k)

)
vv(k), (11)

where the total vehicle mass mv is given by

mv = mcw + mc + mm + mb + md, (12)

where mcw is the curb weight excluding the CVT (mc), EM (mm) and battery (mb) mass
(Table 1). md is the driver mass.
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Table 1. Comparison of component parameters between S1, S2 and S3.

Parameter Unit S1 S2 S3

Transmission ratio - 9.02 [4.47, 16.8] [3.5, 11.68]
EM scaling factor - 1 1 0.79

Battery cells - 264 264 253
Maximum EM torque Nm 290 (τm) 290 228

EM base speed rpm 3293 (ωm,b) 3293 4188
Maximum EM power kW 100 (Pm) 100 100

Curb weight kg 1252 (mcw) 1252 1252
Transmission mass kg 26 (ms) 56 (mc) 52

EM mass kg 74 (mm) 74 58
Battery mass kg 318 (mb) 318 303
Driver mass kg 90 (md) 90 90

3.4. Convex CVT Model

Convex modeling of the CVT is shown in Figure 4, taking into account the effect of
design (sγ,sτ) and control (γv) on the CVT power losses (Pc,loss).

Based on the measurement data, the CVT torque losses τc,loss can be expressed as
a function of its input torque τc, input speed ωp, and ratio over time γv. As shown in
Figure 2, the relationships in S3 are converted to the power domain. At given input speeds
to the CVT, the CVT torque losses τc,loss are converted to their corresponding power losses
Pc,loss, that is,

Pc,loss(k) = τc,loss(k) ωp(k). (13)

On the basis of these inputs (τc, ωp, and γv) to the CVT, the outputs (Pd and ww) of
the CVT can be determined as

Pd(k) = τc(k) ωp(k)− Pc,loss(k), (14)

ww(k) =
ωp(k)
γv(k)

. (15)

The input-output relationship of the CVT implies that the CVT power losses can also
be formulated on system level as (Figure 4a):

Pc,loss(k) = Pc,loss(Pd(k), ww(k), γv(k)). (16)

WheelCVT

Pc,loss (Ec(γv,sγ))

Pd

(a) Effect of design (sγ) and control (γv) on the CVT power dissipation 

EM
sττmωm,b

CVT

(b) Effect of EM design (sτ) on the CVT power dissipation 

ωw

Pc,loss (Ec(γv,sγ))

Figure 4. Convex modeling of the CVT, where τm represents the maximum EM torque and ωm,b the
EM base speed.
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Clearly, the CVT power dissipation is influenced by the control variable γv. How-
ever, while Pd and ww are known here, the CVT speed ratio γv will be decided by the
optimization algorithm. Dealing with this speed ratio alone would lead to non-convexity
(Appendix C). Hence, considering the co-design problem and in order to preserve con-
vexity, the information of γv is embedded in another variable Ec, by applying a change of
variables [22], given by

Ec(k) = γ2
v(k) ω2

w(k). (17)

Notice that there is no information loss and the optimization strategy will assess every
possible combination of γv and ωw. There are also two other reasons of selecting Ec. Firstly,
the CVT is a rotating mechanical component, and this term is closely related to its kinetic
energy. Secondly, in practice, the CVT speed ratio is often determined based on the EM
speed γv ωw and wheel speed ωw, since there is always torque loss in between, but there
is no speed loss. Therefore, the CVT power dissipation is affected by Ec(γv) (Figure 4a),
as it contains the information of speed ratio. Furthermore, the variable Ec(γv) is influenced
by the ratio coverage of the CVT sγ, which is the range that the CVT can actually shift,
as illustrated in Figure 5. In this figure, γv and γv are the overdrive ratio and underdrive
ratio of the CVT, respectively. The ratio coverage of the CVT is defined by

sγ = γv/γv. (18)

The CVT sizing is carried out on the basis of the design variable sγ, because it is one
of the most influencing factors that affect cost, efficiency, drivability, and packaging of CVT
and powertrain [6]. Note that there are other factors that affect the variator efficiency and
hence the CVT loss, such as the center distance of the pulleys and variator asymmetry.
Since this study focuses on system-level representation and there is no pre-reduction
between the EM and CVT, these factors are not considered. The underdrive ratio γv and the
overdrive ratio γv are known. In order to avoid non-convexity for the co-design problem
(Appendix C), the overdrive ratio γv is fixed in this study. Therefore, constraints on γv, Ec,
and sγ are

γv(k) ∈ [γv, sγ γv], (19)

Ec(k) ∈ [γ2
v ω2

w(k), s2
γ γ2

v ω2
w(k)], (20)

s2
γ ∈ [s2

γ, s2
γ]. (21)

The CVT power dissipation in (13) is measured based on an original CVT product
(sold on the current market) with a full ratio range of [0.38, 2.63]. Therefore, it has a
large ratio coverage, torque capacity (τc) and power capacity (Pc). In case of a CVT
with reduced ratio coverage (sγ), smaller ELOP and on-demand actuation, resulting in
a compact and small CVT (superscript “s”) with smaller power capacity (Ps

c ), a higher
CVT efficiency is expected [6,23]. This higher efficiency potential means a lower power
dissipation. Compared with the original CVT power losses Pc,loss in (16), this lower power
dissipation can be modeled by a multiplier µc, which is a function of the EM scaling factor,
giving

Ps
c,loss(k) = µc(sτ) Pc,loss(k). (22)

This multiplier is sensitive to many parameters and technological advances. For ex-
ample, as reported in [24], the maximum efficiency of the current variator could be above
98%. Notice that, the final drive does not benefit from this loss reduction. Additionally,
the current CVT and EM are designed separately, which leads to a mismatch between the
specifications. In this work, as shown in Figure 2, the EM is connected to the CVT without
a pre-reduction gear. The required CVT torque capacity is determined by the output of
the EM sτ τm, as demonstrated in Figure 4b. Here, sτ , the scaling factor for the EM, is a
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design variable, which will be explained in Section 3.5. Thus, the multiplier µc(sτ) can be
obtained by [23]

µc(sτ) =0.7 + 0.3
Ps

c

Pc

=0.7 + 0.3
sτ τm ωm,b

τc ωm,b

=0.7 + 0.3
sτ τm

τc
,

(23)

where τm is the maximum EM torque when sτ = 1 and ωm,b is the EM base speed. Similar
to [23], this multiplier can be interpreted as a proportional improvement of the more
efficient variator, which typically accounts for thirty percent of the total power losses in
previous applications.

P
ri

m
ar

y
 s

p
ee

d
 [

rp
m

]

Vehicle velocity [km/h]

γv  underdrive

overdriveγv  
sγ  

Figure 5. Ratio coverage of the CVT.

Consequently, the factors that influence the CVT power losses are Pd, ww, Ec(γv, sγ),
and sτ (Figure 4a,b). Taking into account convexity and possible combinations of expres-
sions, various models are developed to represent the CVT power losses. The models are
fitted to capture the loss behavior of the CVT. Based on the evaluated fitting accuracy,
the convex CVT model is identified as follows:

Ps
c,loss(k) = cc,0

(
Pd(k)
ww(k)

)2

+ cc,1 Ec(k) + cc,2 |Pd(k)|+ cc,3 sτ ww(k) + cc,4 sτ + cc,5, (24)

where cc,0, cc,1, cc,2, cc,3, cc,4 and cc,5 are the corresponding coefficients. Notice that the
power losses are always constrained to be equal to (i.e., vehicle velocity vv = 0) or larger
than zero. This model is convex (Appendix C) and has a fitting accuracy of around 98%. It
should be noted that, information is exchanged between the terms. For example, the infor-
mation of sτ is not only explicitly expressed in sτ and sτ ww, but also implicitly embedded
in other terms. The term sτ ww is important for CVT applications, as generally CVT does
not operate at very high speeds, yet would lead to lower friction losses of the EM. Another
design variable (sγ) and control variable (γv) are reflected in Ec. While the information of
speed and torque are conveyed already by |Pd| and sτ ww, it is further reinforced by torque
squared ( Pd

ww
)2 and speed squared Ec to capture essential CVT dynamics. An example of

γv = 0.7 and sτ = 1 is shown in Figure 6, where the CVT power dissipation is a function of
the power demand and Ec(γv, sγ). It can be seen that the developed convex CVT model
and the original model based on the measurement data resemble well. The difference
between them, which is represented by the absolute error, is small for the relevant range.
It means that the developed convex model captures the loss behavior of the CVT with
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sufficient accuracy. Such correlations in data analysis can be done by clustering the data
sets for certain physical attributes. In this case, the CVT power dissipation is considered as
the attribute.

Figure 6. Convex CVT power loss model for γv = 0.7 and sτ = 1. The absolute error repre-
sents the difference in power loss between the convex model and the original model based on the
measurement data.

3.5. Convex EM Model

Convex modeling of the EM power losses (Pm,loss) is illustrated in Figure 7, taking
into consideration the interconnections between the EM and CVT from design and con-
trol perspectives.

To obtain the convex EM model, the steps in Figure 3 are followed, as it is done for the
CVT in Section 3.4. As shown in Figure 2, the EM is directly linked to the input shaft of the
CVT and provides the power requested by the CVT, referring to (22), that is,

Pm(k) = Pd(k) + Ps
c,loss(k). (25)

Based on the measurement data, the EM power losses can be expressed as a function
of its output torque τm and speed ωm. The EM power dissipation is given by

Pm,loss(k) = Pm,loss(τm(k), ωm(k)). (26)

On the basis of the output torque and speed of the EM, its output power can be
calculated by

Pm(k) = τm(k) ωm(k). (27)

Combing (26) and (27), as depicted in Figure 7, leads to

Pm,loss(k) = Pm,loss(τm(k), ωm(k), Pm(k)). (28)

Moreover, the EM power dissipation Pm,loss is influenced by its size (in torque and
speed). In this work, the maximum EM torque (τm) is scaled down by using the scaling
factor sτ , as shown in Figure 8. The base speed is increased (ωs

m,b) such that the maximum
output power is maintained, that is,

Pm = τm ωm,b = sτ τm ωs
m,b. (29)
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CVT
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Ec(γv, sγ)

PmPm

Pm,lossPm,loss

Figure 7. Convex modeling of the EM, where Pm represents the EM output power.

The EM sizing is performed based on the design variable sτ , because it affects the EM
efficiency, weight and cost. For example, reducing the maximum EM torque decreases
the usage of active materials of the EM. Note that because of physical limitations of the
CVT, the EM speeds above 6500 rpm are not used for the CVT application, which has a
negligible impact on the result.

1

Case study: EM design – base speed

EM
 to

rq
ue

 [N
m

]

EM speed [rpm]

Base speed

Same output power

τm

sτ

ωm,b

ωm,b
sτm

OOL

Figure 8. Scaling factor of the EM including the DC-AC inverter, where the solid lines represent
the original EM, dashed lines the scaled EM while keeping the same output power, and optimal
operating line (OOL) the optimal operating line minimizing the EM losses for every power demand.

The EM scaling factor sτ influences the EM torque, optimal operating line (OOL) and
power losses, which is bounded by

sτ ∈ [sτ , sτ ]. (30)

As illustrated in Figure 4b, the scaling of EM has a direct effect on the CVT design
requirements. Furthermore, as explained before, the EM power dissipation Pm,loss is influ-
enced by another design variable sγ and control variable γv, which change its operating
point and hence the power losses. The information of sγ and γv are represented by Ec.

To sum up, the identified parameters that affect the EM power losses are Pm, sτ ,
and Ec(γv, sγ), which are shown in Figure 7. Models that contain these parameters and
their combinations, which are also potentially convex, are built. In a similar fashion as
with the convex CVT modeling (Section 3.4), the EM models are fitted to capture the loss
behavior of the EM. On the basis of fitting accuracy, the convex EM model is found as
follows:

Pm,loss(k) = cm,0
P2

m(k)
Ec(k)

+ cm,1 Ec(k) + cm,2 |Pm(k)|+ cm,3 sτ + cm,4, (31)
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where cm,0, cm,1, cm,2, cm,3 and cm,4 are the corresponding coefficients. The information
of speed and torque are conveyed already by |Pm|, and it is further reinforced by torque

squared P2
m

Ec
and speed squared Ec to capture essential EM dynamics. Based on Appendix C,

this model is convex. It has a fitting accuracy of around 95%. An example of sτ = 1 is
illustrated in Figure 9, where the EM power dissipation is a function of the EM power and
Ec(γv, sγ). A good resemblance can be seen between the developed convex EM model and
the original model on the basis of the measurement data. As represented by the absolute
error, the difference between them is small. This implies that the developed convex model
captures the loss behavior of the EM with sufficient accuracy. Notice that all the EM torque
and speed combinations are taken into consideration in constructing the model, and some
of them result in higher losses, leading to a larger discrepancy in the upper part of Figure 9.
The EM, in practice, however, will not operate at those points. These points are outside the
torque-speed envelope, which will be constrained by the EM power limitation model and
will be described next. The relatively lower correlation accuracy in the lower part is due
to the fact that both motoring and generating modes are considered. Taking into account
limited operating points in this part for a long drive cycle in practice, the impact is small.

Figure 9. Convex EM power loss model for sτ = 1. The absolute error represents the difference in
power loss between the convex model and the original model based on the measurement data.

3.6. Convex EM Power Limitation Model

As sτ varies, the EM power limits change as well, referring to (29), as shown in
Figure 10. Note that the EM power limits also consider the effect of the CVT (Ec(γv, sγ)).
Regarding the EM power limits, as can be seen from Figure 8, they mainly relate to two
parts, that is, one before the base speed and the other after the base speed (ωm,b). Hence,
the speed information is important. As speed information is mostly conveyed by Ec,
it is identified as one of the key parameters. As a result, factors that influence the EM
power limits could be, for example, sτ and Ec(γv, sγ). Based on these parameters, possible
models that preserve convexity are developed, which are fitted to represent the EM power
limitation. Based on fitting accuracy, the convex EM power limitation model including
motoring and generating modes is identified as follows:

Pm = min{(c+m,0 Ec(k) + c+m,1

√
sτ Ec(k) + c+m,2 sτ + c+m,3), sτ Pm}, (32)

Pm = max{(c−m,0 Ec(k) + c−m,1

√
sτ Ec(k) + c−m,2 sτ + c−m,3), sτ Pm}, (33)
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where c+m,0, c+m,1, c+m,2, c+m,3, c−m,0, c−m,1, c−m,2 and c−m,3 are the corresponding coefficients.
The plus sign (+) represents the motoring mode and the minus sign (-) the generating mode.
This model is convex (Appendix C) and has a fitting accuracy of around 99%. The terms
Pm and Pm represent the maximum and minimum power of the original EM, respectively,
which can be obtained from Figure 8. An example of this model for sτ = 1 in motoring
mode (Pm) is depicted in Figure 11, which can be mirrored for generating mode (Pm). It can
be observed that the developed convex EM power limitation model and the original model
based on the measurement data resemble well. It indicates that the developed convex
model replicates the power limitation of the EM in reality. It should be noted that while the
approximated convex model appears as straight lines in Figure 11 for sτ = 1, they may not
be for other scaling factors, depending on (32) and (33). Notice that, this model is mainly
used in Section 4.3.

CVT
EM

Pm(sτ) / Pm(sτ)

Ec(γv,sγ)

Figure 10. Convex modeling of the EM power limits.
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Figure 11. Convex EM power limitation model for sτ = 1 in motoring mode (Pm). The dash-dot lines
represent the approximated convex model before and after the base speed.

3.7. Thermal EM-CVT Model

The heat (power losses) generated by the CVT (Ps
c,loss in (24)) and EM (Pm,loss in

(31)) is removed by a TMS, as demonstrated in Figure 12. The main difference between
Figures 12 and A4 is that there is an extra small off-the-shelf heat exchanger in Figure 12.
It enables heat exchange between the CVT cooling medium and the EM cooling medium.
The EM and the CVT are physically attached. The heat from the CVT is removed directly
by its cooling medium, which exchanges that with the EM cooling medium. Furthermore,
the heat from the EM is taken away by its cooling medium driven by a pump, which is
eventually removed by the radiator with a fan providing the required air-flow rate. The EM
and CVT dissipate heat to the ambient air due to convection. The aim of the TMS is to find
the desired air-flow rate (φa) that maintains the EM temperature (θm) below its prescribed
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thermal limit (65 ◦C) dictated by the manufacturer. A lumped-parameter approach is
utilized to describe the thermal behavior of the EM and CVT. Based on first principles of
thermodynamics, referring to Appendix A.4, the thermal EM-CVT model is given by

cm mm θ̇m(k) = Pm,loss(k)− hm Am (θm(k)− θo(k))− km (θm(k)− θc(k))− ha Aa (θm(k)− θa), (34)

cf mf θ̇o(k) = hm Am (θm(k)− θo(k))− φf cf (θo(k)− θi(k)), (35)

cf mf θ̇h(k) = kh (θc(k)− θh(k))− φf cf (θh(k)− θo(k)), (36)

ch cc mc θ̇c(k) = Ps
c,loss(k) + ke (θm(k)− θc(k))− kh (θc(k)− θh(k))− hc Ac (θc(k)− θa), (37)

cf mf θ̇i(k) = φc cf (θh(k)− θi(k))− ε φa(k) ca (θh(k)− θa). (38)

The thermal variables are restricted by

θm(k) ∈ [θm, θm], (39)

θo(k) ∈ [θo, θo], (40)

θi(k) ∈ [θi, θi]. (41)

This model is validated against measurement data in terms of temperature, which is
presented in Appendix A.4. Note that since detailed pump and fan signals are not available
in the measurement data, validation of cooling power consumption is not performed.
Hence, the cooling power consumption is not added to the overall energy consumption. It
does not influence the purpose of this study, focusing on evaluation of thermal performance
(Section 4.4).

EM
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Figure 12. Thermal management configuration for the EM-CVT.

3.8. Convex Battery Model

The electric power of the EM is provided by the battery. The battery model is based
on lithium-ion technology with identical cells. The required battery power is given by

Pb(k) =Pel(k) + Pb,loss(k)

=Pm(k) + Pm,loss(k) + Pb,loss(k),
(42)
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where Pb,loss represents the battery losses, which is calculated by

Pb,loss(k) =sb N0 I2
c (k) Rc

=
P2

b (k)Rc

sb N0 V2
c (k)

,
(43)

where Ic is the cell current and Rc its resistance. The battery sizing is performed based
on the scaling factor sb for scaling the battery cells, which linearly influences the battery
energy, weight and cost. N0 is the original number of battery cells when sb = 1. To preserve
convexity for the co-design problem (Appendix C), the open circuit voltage of a battery cell
(Vc) is approximated as a linear function of the state-of-charge of the battery (ξ), given by

Vc(k) =
Qc

Fc
ξ(k) + V0, (44)

where Qc is the cell capacity and Fc the capacitance. The battery energy can then be
calculated by

Eb(k) =sb N0

∫ ξ

0
Vc(k) Qcdξ

=
Fc

2
sb N0 (V2

c (k)−V2
0 ).

(45)

Taking the derivative of Eb yields

Ėb(k) = −Pb(k). (46)

In order to model the battery on a pack level instead of a cell level, which does not
require information of series-parallel connection, the cell voltage Vc is replaced by a new
variable Ub, by applying a change of variables, given by

Ub(k) = sb N0 V2
c (k) =

2
Fc

Eb(k) + sb N0 V2
0 . (47)

The battery power losses can then be expressed as

Pb,loss(k) =
P2

b (k) Rc

Ub(k)

=
P2

b (k) Rc Fc

2 Eb(k) + sb N0 Fc V2
0

.
(48)

The battery energy and power are constrained by

Eb(k) ∈ [
Fb
2

sb N0 (V2
c −V2

0 ),
Fb
2

sb N0 (V
2
c −V2

0 )], (49)

Pb(k) ∈ [Ic Vb(k), Ic Vb(k)], (50)

where Vb is given by

Vb(k) =sb N0 Vc(k)

=
√

sb N0 Ub(k).
(51)

3.9. Convex Mass and Cost Models

Apart from powertrain and thermal models, convex mass and cost models are required
for the implementation of the co-design method. This section describes the convex mass
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and cost models associated with the CVT, EM and battery sizes. The CVT mass includes the
mass of the variator and final drive. The EM mass includes the mass of the EM and inverter.

For a generic CVT, its weight can be approximated as a function of its torque capacity
τc based on existing CVTs [25]. The CVT weight mc is modeled by

mc = 0.28 τc + 23.21. (52)

The original production CVT with a full ratio range of [0.38, 2.63], implying a ratio coverage
of around 7, has a torque capacity of 250 Nm. On the basis of this CVT, assume the
ratio affects the torque capacity proportionally. For each torque capacity (ratio coverage),
the corresponding weight can be computed based on (52). Specifically for the CVT in this
study, a one-on-one mapping between the weight mc and ratio coverage sγ can thus be
expressed as

mc = 1.19 s2
γ + 39.12. (53)

Therefore, given the specific cost of CVT [23] (ac in Table A1), the CVT cost Cc (in e) is
given by

Cc = ac (1.19 s2
γ + 39.12). (54)

The prediction (54) is valid on the basis of this CVT, since the ratio coverage is
scaled down.

The EM weight is estimated as a function of its scaling factor [26], that is,

mm = sτ mm, (55)

where mm is the original EM mass when sτ = 1, which is provided in Table 1.
The EM cost Cm (in e) is estimated as a function of its scaling factor [27,28], giving

Cm = bm sτ . (56)

The battery weight is described as a function of its scaling factor, given by

mb = sb mb, (57)

where mb is the original battery mass when sb = 1, which is provided in Table 1. The battery
cost Cb (in e) is approximated by [28,29]

Cb = sb cb Eb. (58)

Note that, the price of CVT could be lowered, as some parts of the CVT for conven-
tional applications are not needed in EVs, such as torque converter and DNR (drive, neutral
and reverse). However, since part of this information is taken into account in (53) and
the exact weight is not known before optimization, it is not further addressed. Moreover,
currently, there is no consensus on the component price. The numbers used in this study
are only indicative figures (e.g., bm, cb Eb), which have no direct relation to possible market
prices. They do not affect the comparison, as the same scale is employed in all the systems
(S1, S2 and S3).

Additionally, notice that the component specifications appear large in this case.
The components are scaled down, which means that, for example, sτ > 1 and γv > 2.63,
are not necessary. The models are always valid within their feasible ranges based on the
measurement data. The right combination of the speed ratio of the CVT over time γv,
air-flow rate of the cooling system φa, ratio coverage sγ, the scaling factor for the EM sτ and
the scaling factor for the battery sb will be determined simultaneously by the optimization
algorithm, which is discussed in the next section.

This section presents a convex EV model and its associated cost models for the co-
design optimization problem. A data-driven approach is used to derive the convex CVT
and EM models. In particular, the coupling between the EM and CVT from design and
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control perspectives is described in detail. Compared to the original model based on
measurements, the convex CVT power loss model is developed with a correlation accuracy
of 98%. The convex EM power loss and power limitation models are developed with
correlation accuracies of 95% and 99%, respectively. An experimentally validated thermal
EM-CVT model is subsequently presented. A convex battery model is also developed.
Finally, convex mass and cost models that are size-dependent for the CVT, EM and battery
are created. The overall system has a large number of states, and there is a strong coupling
between the CVT and EM. By applying CP, not only will it find an optimal solution
but also it will find the solution in a computationally efficient manner. It allows for
extensive parameter variation studies and evaluation of diverse design aspects on system
and component level.

4. Optimization Results and Discussion

On the basis of the convex models developed in the last section, the objective of the
co-design optimization strategy is to minimize the TCO. It aims at generating an optimal
control trajectory of the speed ratio of the CVT (γv) and finding the desired air-flow rate of
the cooling system (φa). Furthermore, it aims to identify the optimal sizes of the CVT (sγ),
EM (sτ) and battery (sb). Based on (1), the overall co-design optimization problem in S3
can be written as follows:

min
N

∑
k=1

ρe Pb(sγ, sτ , sb, Eb(k), θm(k), θc(k), θo(k), θi(k), φa(k), γv(k) | vv(k), av(k)) ∆t

+
Sd
Sv

(Cc(sγ) + Cm(sτ) + Cb(sb)),

(59)

s.t. (11)− (58). (60)

The final state of the battery energy is not constrained, considering the battery capacity
and the power demand of the drive cycle. The overall optimization problem is convex,
including convex cost function, models and constraints. Basic convex functions, for ex-
ample, linear, quadratic, quadratic-over-linear and opposite of geometric mean functions,
and operations that preserve convexity, for example, nonnegative weighted sums and
pointwise maximum, are used to verify model convexity. For example, the battery mass
model (57) is linear and the CVT cost model (54) is quadratic. A quadratic-over-linear term
is used in the EM loss model (31). The overall co-design optimization problem is solved by
using SDPT3 [30]. Specifically, the problem can be recognized as a semidefinite program. It
is then translated automatically by a tool CVX into a form required by SDPT3 [30]. This per-
mits the problem to be written in a readable form, for example, using expressions/symbols
to hold operations over variables. It solves the dual problem for improved efficiency [22].

4.1. Control and Design Freedom

The co-design optimization method tends to obtain a globally optimal solution by
simultaneously optimizing the design and control variables to minimize the TCO. Figure 13
shows the EM operating points on the WLTC for the three systems. It can be seen from
Figure 13 that the EM operation in S1 is relatively fixed, which has no control freedom
because of the fixed gear ratio (9.02 in Table 1). The EM has to operate according to the
driving conditions, which can hardly be efficient in consideration of real-world dynamic
behavior. In contrast, the EM in S2 has relatively more freedom to adjust operating points
to reduce the power dissipation. This is realized by changing the speed ratio of the CVT,
depending on the loading conditions. Yet, implementing the standard CVT controllers
developed for conventional vehicles would reduce only the EM power losses (Section 2),
regardless of the CVT efficiency. While the EM operation in S2 is efficient, which follows
its OOL (Figure 13), the system (combined EM and CVT) is not able to operate efficiently
over a dynamic cycle (WLTC). The combined EM and transmission losses are thus higher
in S2 than that in S1, as shown in Figure 14. The co-design optimization strategy, however,
takes full advantage of control freedom (continuous ratio adjustment depending on the
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driving conditions) provided by the CVT. Specifically, apart from the EM power dissipation,
the CVT power losses are also monitored in S3. The CVT speed ratio over time γv (19) is
selected to improve the overall system efficiency. Ratio variation that results in a higher
loss is penalized. Smooth ratio change improves efficiency, drivability and reduced ELOP
power losses. This effect can be seen in Figure 14, where the CVT power dissipation in S3
is significantly lower than that in S2 and the system efficiency is higher. The EM efficiency
is also high in S3, as demonstrated in Figure 13. The battery power dissipation is similar in
three systems.

Additionally, the control freedom offered by the CVT creates design flexibility, which
is not explored by S2, as the component sizes are fixed. The design space is larger in S3,
with different combinations of CVT (21) and EM (30) sizes, which bring opportunities of
optimizing the system from design perspective. The optimal component sizes, namely
the right combination of the scaling factor for the battery (so

b), scaling factor for the EM
(so

τ) and the ratio coverage of the CVT (so
γ), are eventually determined by the co-design

optimization method. The co-design optimization strategy takes into account the coupling
between the EM and CVT, cost function and the drive cycle.
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Figure 13. EM operating points on the Worldwide Harmonized Light Vehicles Test Cycles (WLTC). (Top to bottom) S1, S2,
and S3.
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Figure 14. Comparison of energy consumption between S1 (with a total vehicle mass of 1670 kg),
S2 (with a total vehicle mass of 1700 kg) and S3 (with a total vehicle mass of 1666 kg) on the WLTC,
where RL represents road load. The transmission (TR) losses include the ELOP power dissipation,
which is zero in S1. The EM power losses include the effect of the DC-AC inverter.

As shown in Table 1, the maximum EM torque is reduced from sτ = 1 in S1 and S2
to sτ = 0.79 in S3. Reduced EM torque and increased base speed decrease the EM losses
(Figure 13). The optimal battery size is found and the number of battery cells is reduced
because of improved efficiency (Table 1). The EM in S3 has the same maximum power
as the other systems. Because the same EM from the SST-based EV on the market (S1) is
utilized in S2, which is not optimized for the CVT application. Even if the EM is made
smaller in S2, the overall system efficiency is not necessarily always be higher, see Figure 8
about the OOL, as the CVT efficiency is not considered.

This reduced EM size is achieved due to a variable ratio coverage. The right ratio
coverage of the CVT can also thus be determined in combination with the EM size in terms
of torque and power. It is reduced from [0.7, 2.63] with a ratio coverage of 3.76 before
optimization to [0.7, 2.34] with a ratio coverage of 3.34 after optimization (Table 1). In S2,
the CVT is oversized considering the WLTC. First, the CVT used in S2 is based on an
off-the-shelf component, which is not optimized. Second, the CVT is controlled only to
reduce the EM power dissipation, regardless of the CVT size. The system mass including
transmission, EM and battery (Table 1) is thus reduced in S3 due to the reduced component
sizes, resulting in a decrease in power demand (RL in Figure 14). The curb weight and
driver mass are the same in the three systems.

Owing to high CVT power losses in S2, the energy consumption is reduced by around
3.1% in S1. Compared with S2, because of the reduction in the system power losses
(Figure 14), the energy consumption is decreased by around 5.1% in S3. The decrease in the
CVT power dissipation contributes more to the energy saving. Given the component sizes,
the component costs are calculated based on (54), (56) and (58). As shown in Figure 15,
compared with S1, the system cost is increased by around 5.1% in S2, as the CVT cost is
higher than the SST price. Due to the reduction in the component sizes (Table 1), compared
to S1, the system cost is reduced by around 1.8% in S3. Reduced EM torque decreases
the EM mass and cost. The decrease in the battery and EM prices contributes more to the
cost saving.
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Figure 15. Comparison of normalized system cost between S1, S2 and S3, where the EM cost includes
the DC-AC inverter.

Overall, as shown in Figure 16, S3 has the lowest TCO because of reduced energy
consumption and system cost, which is around 2% lower than S1. The optimization results
demonstrate that the optimized EM-CVT system can be compact, lightweight, energy-
efficient and cost-effective. It is very different from its traditional image. Additionally, it
can be suggested that automotive suppliers could greatly benefit from highly integrated
components and systems to maximize their system efficiency and minimize cost targets. It
can also be observed that reducing the maximum EM torque and increasing the base speed
while having a higher slope of OOL compared with that of SST are beneficial for CVT-based
EVs (Figure 13). Most importantly, it shows the importance of cycle-driven (Section 3.2)
and co-design (Section 2) in identifying the optimal control trajectories and component
sizes. Specifically, it finds the trade-off between CVT power losses (24), CVT size (21),
EM power losses (31), and EM size (30), based on the combined EM-CVT characteristics
(Figure 7) and cost function (1).
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Figure 16. Comparison of normalized TCO between S1, S2 and S3.
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4.2. Sequential Design versus Simultaneous Design

The strength of co-design (simultaneous design in this case) lies in the fact that it finds
the optimal design and control variables simultaneously. It minimizes the cost function
for a strongly coupled problem, which is the case for the integration of the EM and CVT
(Figure 1). The CVT speed ratio (control) influences the CVT and EM sizes (design/plant),
and vice versa (e.g., (24) and (31)). The cost function, namely the minimization of the TCO
(1), consists of the energy consumption (9) and system cost (10), and both are affected by
the design and control variables. In order to demonstrate the effectiveness of the co-design
approach in S3, it is compared to a sequential design (SD) method, where the plant and
controller are determined sequentially (Section 1). Note that for purposes of comparison,
not all the plant parameters are predetermined. SD is defined as follows:

• SD: Based on S3, assuming that the EM size is fixed (i.e., sτ = 1) in order to achieve
the required performance (Section 1), the goal is to find the CVT speed ratio over time,
CVT and battery size reducing the TCO.

Referring to (1), the corresponding cost function is given by

min
N

∑
k=1

ρe Pb(sγ, sb, x(k), u(k) | sτ) ∆t +
Sd
Sv

(Cc(sγ) + Cm + Cb(sb)), (61)

where Cm is a constant because of the fixed EM size. Other constraints remain the same.
The comparison between SD and S3 is shown in Figure 17.
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Figure 17. Comparison of normalized EC, SC and TCO between SD (with a total vehicle mass of
1677 kg) and S3, where EC represents the energy consumption and SC the system cost.

It can be seen from Figure 17 that the energy consumption (EC) and system cost (SC)
are reduced in S3 compared with SD. Overall, the TCO is decreased by around 3.4% in S3.
The primary reason is that the control and design freedom provided by the CVT cannot
be fully exploited in SD because of the fixed EM size. Admittedly, the CVT is optimized
in SD, especially the CVT cost because of a reduced ratio coverage of around 2, which is
significantly lower than that of 3.34 in S3. Nevertheless, the EM and battery optimization
are not taken into account, leading to a higher system cost. The control trajectory identified
may not be efficient for the overall system. In SD, the problem is decoupled and the
interconnections between the CVT (24), EM (31) and battery (42) are not considered,
resulting in a higher TCO. For an inherently coupled problem (i.e., the integration of the
EM and CVT), SD creates a separation and cannot guarantee an optimal solution. This issue
is tackled by the co-design approach (S3), where the right combination of the control policy
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and component sizes reducing the TCO is identified. It considers the coupling between the
components from design and control perspectives.

4.3. Towards a Low-Power Application

As illustrated in Figure 13, the usage of the available EM torque is low considering
WLTC. It implies that powertrain components are typically oversized (considering WLTC)
to meet certain vehicle performance requirements. The selection of electric powertrain com-
ponents (e.g., EM) for future EV applications is still an ongoing question. Current selection
criteria are largely based on performance requirements, such as top speed, acceleration
time and gradability (Section 1). It usually leads to oversized components, considering
drive cycles used for efficiency indicators. Therefore, even with the co-design approach,
the downsizing potential is limited (Section 4.1). High performance, however, may not
be required in urban driving. In order to see the downsizing potential, a low-power (LP)
design is utilized as an example. Note that for purposes of comparison, the EM design is
not restricted by (29). LP is defined as follows:

• LP: Based on S3, assuming that there are no performance requirements (Section 1),
the aim is to find the optimal design and control variables reducing the TCO while
satisfying drive cycle requirements.

The objective function in this case is similar to (1). The comparison between LP and S3
is shown in Figure 18. It can be observed from Figure 18 that compared with S3, the energy
consumption (EC) and system cost (SC) are decreased in LP. Overall, in LP, the TCO is
reduced by around 4%. The main reason is that LP takes full advantage of the control
and design freedom provided by the CVT without performance constraints. Compared
to S3, all the parameters as presented in Table 1, Figures 14 and 15 are reduced in LP.
For example, the maximum EM power is reduced from 100 kW in S3 to 54 kW in LP
with a CVT ratio coverage of around 2.06. The battery size is decreased in LP as well.
The minimum required component size is found in LP. For a specific use case (WLTC) and
a given EM-CVT system (combined EM-CVT characteristics), there is a lower bound for
the system (i.e., the CVT, EM and battery) so as to complete the driving mission. The result
also demonstrates the importance of co-design optimization in determining the system
size for a representative use case, considering the coupling between the EM and CVT
(combined EM-CVT characteristics). Although reduction of peak power has a negative
effect on vehicle performance (e.g., the 0–50 km/h and 0–100 km/h acceleration times of
LP are around 6 s and 18 s, respectively), LP is energy-efficient and cost-effective. It can be
used for urban driving that does not require high performance.
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4.4. Thermal Performance

The EM is a power source. It is also a heat source, and so does the transmission.
They generate heat during operation, which needs to be taken away efficiently by a
cooling system. For purposes of comparison, S1, S2 and S3 have the same control target,
maintaining the EM temperature below its thermal limit 65 ◦C dictated by the manufacturer
at the end of the drive cycle. All the other conditions are the same, including the coolant
flow rate. For simplicity, the problem is translated to finding a constant air-flow rate
for each system over the WLTC. Assume the air-flow rate is proportional to the cooling
power consumption. They are compared in terms of cooling power consumption and
temperature profile.

It is found that φa(S2) = 0.89 φa(S1), which means that compared to S1, the cooling
power consumption is reduced in S2, as shown in Figure 19. Recall that the system losses
are higher in S2 (Figure 14). The EM power dissipation in S2 is less than that in S1 but the
transmission power dissipation is much higher. In this case, the EM is more dominant
in determining the level of the cooling power consumption. Another reason is that the
thermal mass (EM and CVT) is higher in S2 (Table 1). Moreover, because of topology
difference, the extra small off-the-shelf heat exchanger in S2 enables heat exchange between
the EM and CVT. It changes the overall thermal behavior of the cooling system. It is also
calculated that φa(S3) = 0.78 φa(S2), which implies that compared to S2, the cooling power
consumption is decreased in S3. They have the same topology. The primary reason is
that the power losses are less in S3, which requires less cooling power to remove the heat,
although the system mass is reduced in S3. The corresponding temperature profiles are
illustrated in Figure 20.

Additionally, an important finding from Figure 20 is that the EM temperature and
the CVT temperature are very similar in S3. The primary reason is that the small heat
exchanger provides extra heat exchange between the EM and the CVT. It is a crucial step
towards a thermally integrated EM and CVT, for example, using a combined cooling loop
with a dedicated cooling medium, taking into account such as corrosion, viscosity and
conductivity [31–33]. It would make the system even more compact and efficient.
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Figure 20. Comparison of temperature profile between S1, S2 and S3.

Note that as the systems, overall, are efficient, this amount of reduction will not
significantly influence the total energy consumption, although depending on the use case.
Furthermore, the exact value of cooling power is not provided, because detailed pump and
fan signals are not available in the controller area network (CAN) data, as mentioned in
Section 3.7. However, based on physics and model validation (Appendix A.4), the result
is representative. Previously, it is shown that there is a strong coupling between the EM
and CVT, and the combined system can be lightweight, efficient and low-cost. Now, it is
demonstrated that they can also be integrated thermally, and a further reduction in weight,
energy usage and cost can be expected. In the future, a highly integrated EM-CVT system
can be anticipated for EV applications.

5. Conclusions

A co-design optimization method based on CP is proposed for a CVT-based EV to
minimize the TCO, focusing on the integration of the EM and CVT. The co-design optimiza-
tion method finds the optimal CVT speed ratio, air-flow rate of the cooling system, CVT
size, EM size and battery size simultaneously. It takes full advantage of the control and
design freedom provided by the CVT. The optimized system with the co-design approach
decreases the TCO by around 2% compared with an SST-based EV with reference to a series
production vehicle and by around 5.9% compared with a non-optimized CVT-based EV
(based on off-the-shelf components). The advantages of the co-design approach are also
highlighted by comparing to a sequential method. Moreover, for urban driving, insights
into the design of a low-power EV are given based on the co-design approach, which finds
the minimum required component size. It can be concluded that although the current EV
market is dominated by SSTs, multi-speed transmissions, for example, CVTs, are competi-
tive alternatives for EVs in terms of TCO, due to continuous ratio adjustment depending
on driving conditions and the resulting design freedom. For EV applications, a highly and
thermally integrated EM-CVT system, which is low-cost, efficient and lightweight, can
be anticipated.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Alternating Current
BA Battery
CAN Controller Area Network
CP Convex Programming
CVT Continuously Variable Transmission
DC Direct Current
DNR Drive, Neutral and Reverse
DP Dynamic Programming
EC Energy Consumption
ELOP Electric Oil Pump
EM Electric Machine
EV Electric Vehicle
FD Final Drive
ICDC Intercity Drive Cycle
KPI Key Performance Indicator
LP Low Power
OOL Optimal Operating Line
PSO Particle Swarm Optimization
RL Road Load
SC System Cost
SD Sequential Design
SST Single Speed Transmission
TCO Total Cost of Ownership
TMS Thermal Management System
TR Transmission
VA Variator
VCU Vehicle Control Unit
WH Wheel
WLTC Worldwide Harmonized Light Vehicles Test Cycle

Appendix A. SST-Based EV Model

The SST-based EV model (S1) is validated by measurement data obtained from the
series production vehicle driven on a real-world drive cycle, namely intercity drive cycle
(ICDC). The measurement data are extracted from the CAN signals of the vehicle control
unit (VCU) in the series production vehicle driven on the ICDC. The sampling time is 0.01 s.
The vehicle specification is provided in Table A1.

Appendix A.1. Longitudinal Dynamics

Given the drive cycle represented by vehicle velocity vv and acceleration av and taking
into account aerodynamic drag force, rolling resistance and inertia force, the demanded
wheel torque τw and speed ww can be calculated by

τw(k) =
(

1
2

ρa cd Af v2
v(k) + cr mv g sign(vv(k)) +

(
mv + 4

Jw

r2
w

)
av(k)

)
rw, (A1)

www.m2i.nl
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ωw(k) =
vv(k)

rw
, (A2)

where the total vehicle mass mv is given by

mv = mcw + ms + mm + mb + md, (A3)

where ms is the SST mass (Table 1).

Table A1. Main parameters of EV model.

Parameter Value Unit Description

ρa 1.18 kg/m3 Density of air
cd 0.27 - Aerodynamic drag coefficient
Af 2.21 m2 Frontal area
cr 0.00724 - Rolling resistance coefficient
Jw 1 kgm2 Wheel inertia
rw 0.312 m Wheel radius
ηg 0.98 - Fixed gear efficiency
ηf 0.985 - Final drive efficiency
γv 2.63 - Underdrive ratio
γv 0.7 - Overdrive ratio
cm 430 [19] J/kgK Specific heat capacity of EM
cc 630 [23] J/kgK Specific heat capacity of CVT
cs 630 [23] J/kgK Specific heat capacity of SST
cf 4090 J/kgK Specific heat capacity of EM cooling medium
ca 1000 J/kgK Specific heat capacity of air
ch 0.62 [23] - CVT heating coefficient
hm 2000 W/m2K Heat transfer coefficient between EM and its cooling medium
ha 10 W/m2K Heat transfer coefficient between EM and ambient air
hc 10 W/m2K Heat transfer coefficient between CVT and ambient air
km 111 W/K Heat transfer coefficient between EM and CVT
kh 125 W/K Heat transfer coefficient between EM cooling medium and CVT oil
Am 0.2 m2 Heat exchange area between EM and its cooling medium
Aa 0.32 m2 Heat exchange area between EM and ambient air
Ac 0.17 m2 Heat exchange area between CVT and ambient air
mf 1.5 kg Cooling medium mass
φf 0.35 kg/s Coolant flow rate
ε 0.6 [34] - Radiator effectiveness

θm 65 ◦C Maximum EM temperature
θo 65 ◦C Maximum cooling medium temperature at EM outlet
θi 65 ◦C Maximum cooling medium temperature at EM inlet
Sd 46.532 km Two repeated WLTC length
Sv 300,000 km Traveled distance of vehicle in its lifetime
ρe 0.23 e/kWh Price of electricity
ac 13 [23] e/kg Specific cost of CVT
bm 1000 e Specific cost of EM
cb 250 e/kWh Specific cost of battery
Eb 25.4 kWh Battery energy
N0 264 - Battery cells
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Appendix A.2. Single-Speed Transmission

The SST including the final drive provides a fixed speed ratio γs between the EM and
the wheel. To meet the torque and speed at the wheels given by (A1) and (A2), the required
torque and speed of the SST are obtained by

τs(k) =


τw(k)
ηs γs

, if τw(k) > 0,

ηs τw(k)
γs

, if τw(k) ≤ 0,
(A4)

ωs(k) = γs ωw(k), (A5)

where ηs is the combined efficiency of the fixed gear ηg and the final drive ηf (Table A1).

Appendix A.3. Electric Machine

The EM is a permanent magnet synchronous machine, featuring motoring and gener-
ating modes. Its specification is provided in Table 1. The torque and speed of the EM are
computed by

τm(k) = τs(k), (A6)

ωm(k) = ωs(k). (A7)

Given the same inputs (vehicle speed and acceleration) from the ICDC, the outputs of
the EM from the developed model (simulation) are compared with the corresponding CAN
signals (measurement). These signals are the EM torque and speed, and the comparisons
are shown in Figures A1 and A2, respectively. In Figures A1 and A2, the right subplot
zooms in on the left subplot, showing the details of the comparison. It should be noted
that the measurement data are presented as they are in this study. In consideration of
noise, driving environment, data recording, and effect of CAN signals, the simulation and
measurement resemble well.
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Figure A1. Validation of the EM torque for the ICDC.
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Figure A2. Validation of the EM speed for the ICDC.

The mechanical power of the EM is then given by

Pm(k) = τm(k) ωm(k). (A8)

An efficiency map is used to calculate the power losses of the EM, as shown in
Figure A3. This efficiency map includes the effect of the DC-AC inverter. The EM power
dissipation is described as a function of its torque and speed, that is,

Pm,loss(k) = Pm,loss(τm(k), ωm(k)). (A9)

Therefore, the electrical power supplied to/by the EM is expressed as

Pm,el(k) = Pm(k) + Pm,loss(k). (A10)

The EM torque and speed are bounded by

τm(k) ∈ [τm(ωm(k)), τm(ωm(k))], (A11)

ωm(k) ∈ [ωm, ωm]. (A12)
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Figure A3. Efficiency map of the EM including the DC-AC inverter.
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Appendix A.4. Thermal EM-SST Model

The SST (Ps,loss) and EM (Pm,loss) power losses appear as heat, which is removed by a
TMS, as demonstrated in Figure A4. The EM and the SST are physically attached. The SST
is cooled based on oil splashing, where its heat is taken away by the EM cooling medium
indirectly and the ambient air directly due to convection. The EM dissipates heat to the
ambient air. Moreover, the cooling medium driven by a pump removes heat from the EM.
When the EM temperature is higher than a predefined threshold, the EM is cooled down
with a radiator. The goal of the TMS is to maintain the EM temperature below its prescribed
thermal limit. A lumped-parameter method is used to capture the thermal behavior of the
EM and SST. On the basis of first principles, the thermal EM-SST model is described by

cm mm θ̇m(k) = Pm,loss(k)− hm Am (θm(k)− θo(k))− km (θm(k)− θs(k))− ha Aa (θm(k)− θa), (A13)

cf mf θ̇o(k) = hm Am (θm(k)− θo(k))− φf cf (θo(k)− θi(k)), (A14)

ch cs ms θ̇s(k) = Ps,loss(k) + km (θm(k)− θs(k))− hc Ac (θs(k)− θa), (A15)

cf mf θ̇i(k) = φf cf (θo(k)− θi(k))− ε φa(k) ca (θo(k)− θa). (A16)

The thermal EM-SST model is validated by measurement data. Since the SST tem-
perature is not available in the CAN data, the EM temperature is used for validation.
The measurement data are extracted from the CAN signal regarding the EM temperature
of the VCU in the series production vehicle driven on the ICDC. The estimated thermal
parameters are provided in Table A1. As shown in Figure A5, a good resemblance can be
seen between the model and measurement.
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Figure A4. Thermal management architecture for the EM-SST.
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Figure A6. Validation of the battery output power for the ICDC.

Appendix A.5. Battery

The battery provides the power required by the EM, that is,

Pb(k) = Pm,el(k), (A17)

Ėb(k) = −Pb(k). (A18)

For the same inputs from the ICDC, the battery output power from the model is
compared to the corresponding CAN signal regarding the battery output power in terms
of voltage and current (measurement). The comparison can be seen in Figure A6, where
the right subplot zooms in on the left subplot. It can be observed that the model and
measurement resemble well.

In summary, the SST-based EV model represented by S1 is validated against the
measurement data, which replicates the physical behavior of the series production vehicle
in reality.

Appendix B. CVT-Based EV Model

As presented in Section 1, a CVT-based EV model (S2) is created based on S1 (Appendix A).
The main difference is that the SST model as described in Appendix A.2 is replaced by a
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CVT model. The SST mass in (A1) is replaced by mc (Table 1). The thermal model is the
same as that in Section 3.7. All the other component models remain the same as S1.

In this context, the variator of the pushbelt CVT has two pulleys, a primary pulley
(subscript “p”) and a secondary pulley (subscript “s”), which are connected by a pushbelt.
The CVT provides a continuous variable speed ratio γv between the primary pulley and
the secondary pulley. It permits the EM speed to be independent of the wheel speed to
optimize its operating point. Given the required torque τw (A1) and speed ωw (A2) at the
wheels, the torque and speed of the primary pulley are obtained by

τp(k) =


τw(k)

ηf γv(k)
, if τw(k) > 0,

ηf τw(k)
γv(k)

, if τw(k) ≤ 0,
(A19)

ωp(k) = γv(k) ωw(k), (A20)

The total torque input to the CVT is thus given by

τc(k) = τp(k) + τc,loss(k), (A21)

where τc,loss represents the torque loss in the CVT, which is described by a lookup table,
that is,

τc,loss(k) = τc,loss(τp(k), ωp(k), γv(k)). (A22)

The power losses of the CVT can thus be calculated by

Pc,loss(k) = τc,loss(τp(k), ωp(k), γv(k)) ωp(k). (A23)

The primary torque and speed ratio are constrained by

τp(k) ∈ [τp, τp], (A24)

γv(k) ∈ [γv, γv], (A25)

where γv is the overdrive ratio and γv the underdrive ratio. Bounds on the primary speed
will be implicitly taken into consideration in the constraints on the EM speed. Additionally,
to maintain the CVT speed ratio γv, the corresponding hydraulic actuation power can
be calculated.

Appendix C. Convex Programming

CP demands all the models to be convex. A brief introduction to CP is given here,
and interested readers are referred to [22] for a rigorous treatment. A convex optimization
problem can be formulated as follows:

min f0(x),

s.t. fi(x) ≤ 0, i = 1, ..., m,

hj(x) = AT
j (x)− Bj = 0, j = 1, ..., n,

(A26)

where fi(x) are convex functions and hj(x) are affine functions. The feasible set of this
optimization problem is convex with m convex sublevel sets and n hyperplanes. A convex
function can be described as

f (β x1 + (1− β) x2) ≤ β f (x1) + (1− β) f (x2), (A27)

where β ∈ [0, 1], and it means that the line segment between any two points lies above
the graph. Models that are originally non-convex can be reformulated based on approxi-
mations, relaxations, and change of variables. Model convexity can be verified, by using
basic convex functions, for example, linear functions, quadratic functions, quadratic-over-
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linear functions and opposite of geometric mean functions, and operations that preserve
convexity, such as nonnegative weighted sums and pointwise maximum.

Appendix D. Main Parameters of EV Model

The main EV model parameters are provided in the following table, including ve-
hicle parameters with reference to the series production vehicle and validated thermal
parameters.
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