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Abstract: At present, electric vehicles (EVs) are attracting increasing attention and have great po-
tential for replacing fossil-fueled vehicles, especially for logistics applications. However, energy
management for EVs is essential for them to be advantageous owing to their limitations with regard
to battery capacity and recharging times. Therefore, inefficiencies can be expected for EV-based
logistical operations without an energy management plan, which is not necessarily considered in
traditional routing exercises. In this study, for the logistics application of EVs to manage energy and
schedule the vehicle route, a system is proposed. The system comprises two parts: (1) a case-based
reasoning subsystem to forecast the energy consumption and travel time for each route section, and
(2) a genetic algorithm to optimize vehicle routing with an energy consumption situation as a new
constraint. A dynamic adjustment algorithm is also adopted to achieve a rapid response to accidents
in which the vehicles might be involved. Finally, a simulation is performed to test the system by
adjusting the data from the vehicle routing problem with time windows. Solomon benchmarks are
used for the validations. The analysis results show that the proposed vehicle management system is
more economical than the traditional method.

Keywords: electric vehicle; energy consumption; energy management; logistics; supply chain; vehicle
routing problem

1. Introduction

Fossil energy consumption by vehicles has increased significantly over the past
decades, leading to ever-worsening environmental pollution [1]. Some densely popu-
lated cities, such as Tokyo, Beijing, and Shanghai have strict policies to control the increase
in fossil-fueled vehicles. City managers are also establishing suitable policies to support
electrical vehicles (EVs) in urban freight transport [2,3]. EVs play an important role in
replacing traditional fossil-fueled vehicles worldwide, particularly in logistics applications.
For example, Amazon is procuring 100,000 EVs and plans to deploy them in their package
delivery system by 2021 [4]. Mathematical modeling has also been proposed for EVs to
explore the relationship between the delivery costs and sustainability impact [5].

Energy management is essential for EVs because of their limited battery capacity and
specific recharging times [6]. Fully charging an EV takes much longer than refueling a
traditional vehicle, and fully charged EVs cannot travel as far as fossil-fueled trucks with
full fuel tanks. Therefore, recharging stops for EVs should be incorporated into route
planning as an additional consideration [7]. Thus, it is necessary to develop a new vehicle
routing model for EVs that determines both the shortest possible route and the best energy
management strategy.

The vehicle routing problem (VRP) involves planning for vehicles to deliver and
collect goods or people. The classical VRP is defined as a single depot with route length
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constraints [8]. Several variants of this classical problem have been studied, including the
vehicle routing problem with time windows (VRPTW), because real-life cases are more
complex than theoretical problems [9]. VRPTW is a problem in which every customer must
start within a given time window (a, b), with the vehicle arriving before a and waiting
until the customer becomes available. However, arrivals after b are prohibited. In the case
of a fixed-sized fleet, finding a feasible solution to the VRPTW itself is a non-deterministic
polynomial complete (NPC) problem. As a result, research on VRPTW has focused on
heuristics [10]. The electric vehicle routing problem (EVRP) is an extension of the VRP that
considers the use of EVs in the logistics distribution. Most studies on EVRP have focused
on changes in the EV model; however, the changes brought by the new technologies should
also be considered.

New technologies make logistics more transparent. Global positioning systems (GPS),
sensors, mobile communication, and radio frequency identification (RFID) techniques can
be used to record various types of data regarding delivery vehicles. Energy consumption
can be forecasted using these technologies, albeit with some inaccuracies, and furthermore
some emergent situations can be detected. The method to optimize the vehicle schedule
also needs to be improved to ensure that vehicle schedules can be changed in real time.

The main gap in current studies is the lack of consideration of many factors that affect
energy consumption and can be monitored when building the EV energy model. In this
study, the objective is to develop a new model that considers both the optimal route and
new energy management strategies for EVs. Therefore, a new energy management system
is proposed for EVs based on the VRPTW model to solve the aforementioned challenges.
The proposed system has two functions: first, recording historical energy consumption and
forecasting future energy consumption; and second, applying a genetic algorithm (GA) to
optimize vehicle scheduling using forecast energy consumption. The proposed system also
alerts operators to emergencies in real time, helping operators make timely interventions.

This study is organized as follows: Section 2 briefly reviews previous research on
optimization algorithms for vehicle scheduling problems and systems for energy manage-
ment. In Section 3, the entire framework for the proposed system is introduced, and a
method for forecasting the vehicle energy consumption is described. A new problem model
is built for EVs using the predicted energy consumption; and a GA is used to prepare
the vehicle schedule. Section 4 discusses the simulation, results, and performance of the
proposed system. Section 4 presents the research conclusions and provides an outlook for
future work.

2. Literature Review

Vehicle schedule management is a classical VRP. Researchers VRPs have studied vari-
ous VRP. Alba and Dorronsoro solved the classical VRP using a cellular GA combined with
a specialized local search method [11]. Tarantilis and Kiranoud developed a generalized
route construction algorithm to find the optimal solution for the distribution of perishable
products and ready-mixed concrete for construction companies [12]. Hwang developed a
GA-TSP model by improving the GA to solve a typical VRPTW [13]. Ho and Haugland
presented a tabu search heuristics method for the split delivery vehicle routing problem
with time window (SDVRPTW), which considers that more than one vehicle can provide
service to a customer [14]. Cheung et al. developed a mathematical model that can be used
in monitoring systems for dynamic fleet management, which uses dynamic data such as
vehicle locations, traveling time, and incoming customer orders [15]. These methods built
a research basis for the EVRP.

Regarding EVRP research, Conrad and Figliozzi were the first to extend the traditional
VRP to EVRP. They proposed a model that assumes that EVs in a fleet are allowed to
recharge at certain customer locations [16]. Juan et al. proposed the use of metaheuristics
and heuristics as the most efficient way to deal with VRPs [17]. Zuo et al. considered a con-
cave, nonlinear charging function as a new energy consumption model for the EVRP [18].
Zhang et al. suggested an EV battery swap station (BSS) location-routing problem with
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stochastic demands to determine a minimum cost scheme. EVRP with BSSs includes the
optimal number and location of BSSs in an efficient route plan based on stochastic cus-
tomer demands [19]. Keskin et al. presented a two-stage simulation-based heuristic using
adaptive large neighborhood searches (ALNSs) for an electric vehicle routing problem
with a time window (EVRPTW) that considers whether the waiting time at the stations is
longer than expected [20]. Napoli et al. discussed the issue of the production of electricity
required for EVs to carry out daily missions [21]. Ferro et al. developed a new mixed-
integer programming model for the EVRP and used the CPLEX solver [22]. Xiao et al.
investigated an EVRPTW that included the energy and electricity consumption rates (ECR)
per unit distance traveled as a function of speed and load; this problem is referred to
as EVRPTW-ECR. A mixed-integer linear programming model was developed for the
EVRPTW-ECR [23]. Afroditi et al. developed a comprehensive mathematical formulation
with multiple constraints owing to capacity limitations, time window restrictions, and
the vehicle’s predefined charging level to model EVRP [24]. Kancharla and Ramadurai
proposed a three-index formulation for an EVRP with nonlinear charging, load-dependent
discharging, and an ALNS algorithm to solve the problem with capacitated charging sta-
tions [25]. Zhang et al. applied the ant colony algorithm to EVRP to minimize energy
consumption [26]. Lin et al. presented a general EVRP and determined an optimal routing
strategy that minimizes travel time, energy costs and the number of EVs dispatched. This
is the first EVRP model to consider the effect of vehicle load on battery consumption [27].
Soysal et al. proposed a chance-constrained mixed-integer nonlinear programming model
and a linear approximation for the pick-up and delivery problem with EVs under the
stochastic battery depletion assumption [28]. Raeesi and Zografos introduced an alterna-
tive to intra-route recharging of electric commercial vehicles used for freight distribution by
utilizing new pertinent technological developments that enable mobile battery swapping.
They further proposed a methodology for the exact evaluation of each given solution in
the context of EVRPTW [29]. Jie et al. presented a two-echelon capacitated electric vehicle
routing problem with battery swapping stations (2E-EVRP-BSS) to determine the delivery
strategy that considers battery driving range limitations for deliveries within metropolitan
areas most effectively. An integer programming formulation and a hybrid algorithm that
combines column generation and adaptive large neighborhood search (CG-ALNS) were
proposed to solve this problem [30].

In addition to the aforementioned studies that used different models to calculate
specific energy consumption values, other studies have considered energy consumption as
an uncertainty factor for the EVRP. For example, Zhang et al. used fuzzy numbers to denote
service time, battery energy consumption, and travel time inconsistencies, and applied
fuzzy theory to solve the EVRPTW [31]. Pelletier et al. proposed a robust optimization
framework to consider inconsistencies in the context of an EVRP. Furthermore, a two-phase
heuristic method based on a large neighborhood search was used to solve larger instances
of the problem. Several numerical tests were conducted to assess the effectiveness of the
proposed methodology [32]. Notably, the energy consumption and traveling time must be
considered because of the difficulties involved in predicting the energy consumption.

The main difference between the traditional VRP and EVRP is that the latter considers
energy consumption in its model. For energy management, Basso et al. proposed a method
for calculating the energy cost coefficients of a road network. These coefficients embed
information regarding road topography, vehicle speed, power train efficiency, and the
effects of acceleration and braking at traffic lights and intersections. Using this method, an
accurate energy consumption estimation can be obtained [33]. Kessler and Bogenberger
analyzed the existing energy consumption models [34]. Alqahtani and Hu developed an
integrated VR and energy scheduling decision model to adaptively dispatch vehicles to
balance temporally and spatially distributed energy requests. This model considers vehicle
mobility constraints to maximally exploit the potential of mobile prosumer networks for
cost savings and carbon emission reductions [35].
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Based on these previous studies, it is difficult to accurately predict energy consumption.
Multiple factors exist apart from the vehicle and the traveling distances that affect energy
consumption including the weather, road conditions, and driver behavior. The effects of
factors such as the number of starts and stops at intersections and traffic lights, and the
speed dropping below a certain threshold must also be considered for dynamic traffic
information. Consequently, a case-based reasoning (CBR) system is considered to forecast
the energy consumption and travel time.

For research on the CBR system, Shen et al. built an approximate CBR model that uses
neural network technology to process fuzzy inference with the dualities of fuzzy logic and
approximate reasoning [36]. The main characteristic of this system is its ability to solve
new problems by using the results of past cases, which is similar to the current models.
Sadek et al. proposed a prototype CBR system that can create routes for real-time freeway
traffic. The results of the aforementioned study indicated the successful generation of
high-quality solutions using case-bases of reasonable sizes in real time [37]. Moreover,
it could automatically update the case-bases by modifying the coefficients. For instance,
Anthony and Xun successfully dealt with planning problems in development control
using a developed CBR system. The system helped the user make decisions for new cases
by recycling similar previous cases [38]. Passone et al. incorporated an expert database
into a GA that was implemented for the CBR adaptation phase. The proposed system is
suitable for numerical modeling applications [39]. Maria and Maite proposed retention and
forgetting strategies to add and remove cases, with strategies that automatically update
the case-base of a CBR system and maintain it at a certain scale. The results showed that
the case-base was effectively maintained by the proposed strategies [40]. Castro et al.
developed a fuzzy CBR system to solve the risk problems. The fuzzy algorithm helped the
CBR system use the most suitable case in the case base instead of the most similar one [41].

3. Vehicle Management System
3.1. System Architecture
3.1.1. Vehicle Management System Architecture

With the emerging sensor and mobile communication techniques, vehicle status and
environmental factors can be immediately determined and transmitted to back-end man-
agement systems. However, it is difficult to predict accurate values of energy consumption
and travel time through mathematical formulations as many factors can affect the results.
Therefore, a CBR system can be developed to obtain a range of values and apply the static
method to obtain a conservative result for further optimization of the vehicle schedule.

Figure 1 illustrates the framework of the proposed system. This system has two
subsystems: a CBR system and an optimization system. The CBR system is used to estimate
the energy consumption and travel time for each delivery task. By combining the static
optimization, an amplification parameter is first determined; then the energy consumption
and traveling time for the calculation are obtained and output to the optimization system.
With this information, the optimization system optimizes the schedule for the vehicles and
the company then follows the schedule. The optimization system adjusts the schedule
using heuristics if the real-time monitoring system detects abnormal situations.
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3.1.2. CBR System Architecture

In the proposed vehicle scheduling system, a CBR system is incorporated to fore-
cast the energy consumption and travel time. The system architecture is illustrated in
Figure 2. The system is composed of two parts. The first part is the route division. It
separates the planned route into several segments. Route segmentation simplifies finding
the same route from the case base. If the exact same route does not exist in the database,
then fuzzy logic and CBR are used to select the most similar one. The second part of the
system is the calculation part. The CBR is applied to calculate the time of each route’s small
segment. Neural network theory is applied to train the weightings of the CBR; rule-based
strategies are then used to update the case base in the final step.

Compared with the traditional CBR system, the proposed system integrates fuzzy
logic and neural network techniques. Consequently, the system is much more intelligent.
The case base automatically updates itself. If the deviation between the estimated and
the actual traveling result is considerable, the weightings will be trained using the neural
network and the existing case will be replaced.

Figure 2. The sub case-based reasoning (CBR) system architecture.
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3.2. CBR System
3.2.1. Weighting Design

Weightings are used to calculate the degree to which cases match in the case-base in
the CBR system. A database is designed to save the weight coefficients of all factors that
affect the process of degeneration. The design of the database for traveling time estimation
is shown in Table 1, while the database design for energy consumption is shown in Table 2.

Different data types exhibit different weightings (wi), with the weightings satisfying
the following constraints:

n

∑
i=1

wi = 1 (1)

where 0 ≤ wi ≤ 1 (i = 1, 2 . . . . . . n).
The vehicles will provide the information listed in Tables 1 and 2 to the back-end

system when they have completed their delivery tasks. The system stores the data in the
case base and produces a new case identification number for the data.

When the system begins to estimate the traveling time and energy consumption, it
first searches in the case base. If the data of the unsolved problem matches the data of a
case in the case base, the system records the value of xi as 1 in the blank space of the match
degree. Then, it multiplies the match degree with the weighting of this type of data (wi
× xi) to produce the result. The system summates all calculation results for all types of
data belonging to the case. The sum (M) is obtained as the case degree, which matches the
problem that needs to be solved.

xi =

{
0, not match,
1, match,

(2)

i = 1, 2 . . . . . . n,

M =
n

∑
i=1

wixi, (3)

where M indicates the match degree of the case matches to the problem.
The system chooses the data with the highest match degree in the database for all cases

of the same route and then uses the case’s time or energy consumption as the predicted
result for the matching segment after calculating the results. The sum of the times or
energies needed for all segments is the time or energy consumption required for the vehicle
to arrive at the destination.

Table 1. Weighting coefficient database for traveling time/energy consumption.

Weighting (wi) Factor Match_Degree (xi)

wi Weather 1/0
wi Workday 1/0
wi Time_Period 1/0
wi Vehicle_Type/Battery_Type 1/0
wi Driver 1/0
wi Products Weight 1/0
...... . . . . . . ......
wi Energy level/Tire Pressure 1/0
wi Sum ∑ wixi

If the match degree of a case to the problem is less than c (c is a coefficient, which can
be adjusted based on real conditions by users), the deviation of the most similar existing
route segments under the conditions of the best-matched case and of the unsolved problem
will be calculated. The deviation ratio of the distance is the deviation ratio of the route
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segment of the problem and the most similar case. Then, the result can be calculated using
Equation (4): {

t = ts · L
Ls

E = Es · L
Ls

, (4)

where t is the traveling time for the route segment of the problem, ts is the traveling time
for the most similar case, E is the energy consumption for the route segment of the problem,
Es is the energy consumption for the most similar case, L is the length of the route segment
for the problem, and Ls is the length of the route for the most similar case.

Finally, the total energy consumption and the time spent for each segment are the
energy and time needed for delivery, respectively.

3.2.2. Case Update

The factors that affect logistics are constantly changing and developing. With the
development of new vehicles, changes in the transportation infrastructure, and the amount
of traffic in a city, the time needed to travel or the energy consumed between the same
starting point and destination under the same conditions will change. Thus, the results
of the cases in the database are not applicable to new cases. Consequently, the database
should be updated once the deviation becomes more pronounced. The method is as follows:
First, the system checks whether the segment in the case-base is the most similar route
to the problem; if it is, the case-base stores the actual result of the segment as a new case.
If the new case is more similar to the previous case, for which M = 1, the new case will
replace the previous case. The system trains the weighting of the case when the results are
different. If M 6= 1, the case base also adds a new case. The case base is updated according
to the following rules:

Rule 1: If the segment in the case-base is the same as the actual segment then go to
Rule 2.

Rule 2: If the match degree is not less than c, go to Rule 3; otherwise, go to Rule 4.
Rule 3: If M 6= 1 go to Rule 4; otherwise, go to Rule 5
Rule 4: Add the case to the case base and train the weightings using a neural network.
Rule 5: If ResultNew−ResultOld

ResultOld > a or ResultNew−ResultOld
ResultOld < −a then add the case to the

case base and train the weighting of this segment.

3.2.3. Weight Training

In the proposed CBR system, the result is calculated from the weight of each factor in
a case wi. In some cases, the weights in the database are incorrect. Therefore, it is necessary
to apply a neural network to train the weights. The details are as follows:

X = {x1, x2, . . . , xn} is a set of n vectors, where the components of each vector repre-
sent the match degree of a case with wi as the coefficient, the value of which is determined
by specific segments. The different segments have different sets of wi. A single-layer neural
network is applied to train the weightings [42].

Step 1: Initialization
Set initial weights wi and threshold θ as random numbers.
Step 2: Activation
Activate the perceptron by applying inputs xi(q) and the desired output Yd(q), which

is the actual traveling time. The actual output at iteration q = 1 is calculated.

Y(q) = step[
n

∑
i=1

xi(q)wi(q)− θ], (5)

where n is the number of perception inputs and Equation (5) is a step activation function.
Step 3: Training
Update the weights of the perceptron

wi(q + 1) = wi(q) + ∆wi(q), (6)
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where ∆wi(q) is the weight correction at iteration q.
The weight is corrected based on the delta rule:

∆wi(q) = α× xi(q)× e(q), (7)

e(q) = Yd(q)−Y(q), (8)

Step 4: Iteration
Increase p by 1, return to Step 2, and repeat the process until convergence.
Then, wi can be determined.

3.2.4. Amplification Coefficient

In this study, the uncertainties of the predicted time and energy consumption are
considered. Therefore, an amplification coefficient is used to ensure that the arrival time
of the product will be within an acceptable time window and to prevent the vehicle from
running out of energy while it is in use.

The CBR has two outputs: the estimated time and the match degree. An amplification
coefficient A is created by considering these two factors.

A = 1 +
c
M

(9)

where c is a coefficient that can be adjusted based on practical situations, experiments, and
simulation results. M represents the match degree of the most similar case. Figure 3 shows
the relationship between A and M.

Then, the estimated traveling time t is adjusted to t′:

t′ = A · t (10)

The estimated energy consumption E is adjusted to E′:

E′ = A · E (11)
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3.3. Model of Problem

The recharging of EVs in a charging station during a delivery is considered neither
in the proposed model nor in most other EVRPTWs. Therefore, the vehicle can only be
charged in the depot, in the proposed system. There are two reasons for this design. First,
in most countries, recharging stations for EVs are not common; hence, it is possible that
there are no recharging stations on the delivery route. Second, current batteries can last
longer than previous batteries owing to the improved EV designs. For example, Tesla states
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that its electric trucks can travel 800 km between successive charges. Other commercial
electrical trucks can travel as much as 400 km between charges. This distance is normally
sufficient for the daily tasks of a delivery truck. In the future, a solution will need to be
considered for the charging problem.

The schedule problem can be defined on a direct graph G = (V, A), where A is the set
of arcs and V = {1,2, . . . , v} is the set of destination locations. Furthermore, Am is the set
of arcs of vehicle m. For any i→ j ∈ A , let t′ij denote the normal adjusted traveling time
from destination i to destination j, let eij denote the energy consumption from destination i
to destination j, and let dij denote the distance from destination i to destination j. All the
vehicles start from the same distribution center, called the depot. Set k as the available
vehicles, where vehicle m has the capacity Cm and full energy Em. Set pm as the cost of
vehicle m running at 1 km. Set fm as the fee for using vehicle m, which includes the driver
salary and depreciation cost of the vehicle. There are n products that must be delivered.
In this problem, a vehicle is only allowed to deliver product i in a given time window [ai,
bi], which means that the destination only handles the consignment after ai and before bi.
A vehicle is only allowed to arrive at the distribution center before ai, but the vehicle can
wait until the destination becomes available; however, but arrivals after bi are not allowed.
Set si as the service time for product i. Set w as the weight of product i. The duration for
which the destinations are open is defined as [a, b].

The objective function of the problem is stated as follows:

Minimize ∑
m∈K

(pm ∑
(i,j)∈Am

dij + fm), (12)

Each vehicle’s schedule is subject to the following constraints:

t′ + t′ij <= bj (13)

where bj denotes the latest time for product j. This means that the vehicle must arrive
before the upper time of the time window for destination j.

t′ = max(t′, aj) + sj, (14)

This formula is used to calculate the ready time that the vehicle can leave the destina-
tion j.

∑ Wk ≤ Cm, (15)

where Wk denotes the weight of product k in vehicle m. This means that the total weight of
the products must be less than the capacity of vehicle m.

∑
i,j∈Am

eij ≤ Em (16)

This means that the total energy consumption by vehicle m must be less than its
energy capacity.

A GA is applied to solve this problem. A specific method can be found in reference [43].
In the algorithm, the chromosome string is composed of the serial number of the products,
where a gene means a product and its order means an arrangement order. The initial
population was randomly selected. A selection factor was set to select the parents using
the roulette wheel. It also contains a mutation operation to prevent the population from
becoming trapped in local optimization. Subsequently, a new generation was produced.
Equation (12) is a fitness function that is used to evaluate the arrangement performance.
This process is repeated. After each iteration, the best solution is obtained. When the
number of iterations reaches the stopping number or time reaches the stopping time, the
vehicle schedule is arranged using the best result.
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3.4. Dynamic Adjustment

Three situations are considered for dynamic adjustment: traffic jams, environmental
changes, and urgent consignments.

3.4.1. Traffic Congestion and Vehicle Problem

It is difficult to forecast traffic situations and vehicle accidents. If the monitoring
system finds a truck stuck in a traffic jam or in need of maintenance, it will check whether
the current estimated delivery time will exceed the latest starting time of the delivery or
whether the remaining energy is sufficient to complete all deliveries. If the system finds
that some products cannot be delivered within their corresponding time windows or that
the vehicle’s energy will be insufficient, the system will remove the deliveries from the
original schedule of the vehicle and reassign them.

3.4.2. Environmental Effects

Some products are sensitive to certain environmental conditions. Changes in factors
such as temperature, humidity, and concentration of dangerous gases strongly affect the
quality of these products. If there are problems with environmental factors in a vehicle,
the consignments in the vehicle are removed from the original schedule by the system and
reincorporated into the schedule.

3.4.3. New Urgent Tasks

If there are any urgent products arriving after the static optimization, dynamic opti-
mization is applied to ensure that these products can be incorporated into the
original schedule.

The three aforementioned situations, as well as some other situations, can be handled
by incorporating deliveries into the original schedule, but the parameters of the problem
need to be adjusted. The methods used to handle such situations would be the same. The
method shown in Figure 4 is described in detail in reference [43]. Subsequently, a new
schedule is generated.
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3.5. Simulation

Solomon benchmark problems were employed for the simulation to test the proposed
system. The data can be obtained from http://w.cba.neu.edu/~msolomon/problems.htm
(Accessed on 7 October 2020). Because of a lack of energy data for EVs in the Solomon
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database, only time was considered in the simulation. For the CBR system, a normal
distribution was used to build the traveling time model. Because the traveling time of each
issue was independent, it obeyed a normal distribution. The model was used to simulate
the traveling time. The expected value and variance were related to the results of the case
archived from the CBR system. The model was built as follows:

The probability density function of the normal distribution is

f (x) =
1√
2πσ

e−
(x−µ)2

2σ2 ,−∞ < x < +∞, (17)

As shown in Equation (17), the normal distribution has two variables: µ and σ. In this
model, the estimated time can be set as µ, and

σ =
1

c ·M , (18)

where c represents a coefficient that can be adjusted, and M represents the match degree of
the most similar case.

Based on the 3σ rule, which states that for a normal distribution, nearly all values lie
within three standard deviations of the mean, the amplification coefficient A can be set
based on Equation (19):

A =
µ + 3σ

µ
, (19)

For this problem, the traveling time is assumed to follow a normal distribution
between the two distribution centers and between each distribution center and the depot.
The corresponding amplification coefficient is obtained from the data of the CBR system
Aij(i, j ∈ A; i 6= j). Subsequently, t′ij can be calculated. With the calculated result, the GA
is used for further optimization.

Table 2 shows an example of some cases between the depot and the two distribution
centers in the case base. From the data, µ = 15.25D = σ2 = 1.337, and σ = 1.156 can be
obtained. The amplification coefficient can be calculated as follows:A02 = µ+3σ

µ = 1.227,
t′02 = A02 ·µ02 = 18.718. Then, t′02 is used as the new traveling time between the depot and
Point 2 for the Solomon benchmark problem to test the optimization method. The traveling
times between points are calculated using the same method. The calculated traveling
time replaces the original time in the Solomon benchmark problem for optimization.
Subsequently, the GA is applied.

Table 2. CBR database of distribution center and second customer.

ID Weather Workday/Holiday Time Driver Weight Travelling Time

001 Workday 8:00 A 10 15.1
002 Workday 9:00 A 10 12.5
003 Workday 8:00 A 10 16.5
004 Workday 8:30 A 10 17.2
005 Workday 8:30 B 8 13.0
006 Holiday 9:00 B 9 15.8
007 Holiday 9:00 B 8 15.0
008 Holiday 8:30 B 10 16.2
009 Workday 8:25 B 9 15.2
010 Workday 8:10 A 10 15.5
011 Workday 8:00 A 10 15.0
012 Holiday 8:10 B 9 15.1
013 Holiday 8:00 B 10 16.0
014 Workday 8:00 A 10 15.2
015 Workday 8:20 A 10 15.5
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For the GA, the population size is set as 500, pc is set as 0.8, pm is set as 0.03, and the
maximum Gen is set as 3000. The cost unit p = 1, the loading of the vehicle q = 200, the
penalty for waiting pe = 1, and the penalty for late arrival pl = 10. The running results of
R101 in the Solomon benchmarks and the optimal route are shown in Table 3 and Figure 5.

The main objective of the tests is to compare the performance for certain and uncertain
times. Table 4 shows the results of the optimized cost for the R101 problem. Then, the real
conditions are simulated. After implementing the optimal schedule, a random traveling
time is generated following the normal distribution of the cases in the case base. This may
cause schedules with a certain time to not satisfy the time requirement. Then, a penalty
is added to the cost. The results are listed in Table 5. The results show that the real cost
considering uncertain time is less than the cost that only considers a certain time.

Table 3. Operating results for 10 tests.

Test Result

1 1892.60
2 1895.06
3 1900.24
4 1906.41
5 1892.60
6 1895.06
7 1892.60
8 1902.61
9 1892.60

10 1892.60
Average 1896.78
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As mentioned before, the Solomon benchmark has three types of problems. The serial
numbers begin with C, R, and RC respectively. For the cases that begin with C, the points
can be divided into clusters according to their locations. For the cases that begin with R,
the time windows are narrow. For the cases that begin with RC, the locations of the points
can be divided into clusters, and the time windows are narrow. Therefore, three groups
of ten tests were conducted. From the results shown in Tables 4, 6, and 7, for the original
schedule, the cost for a certain time is better than that for an uncertain time. This is because
the traveling time for a certain case uses the time for an average number of cases, which is
less than the traveling time in uncertain cases, and it can arrange fewer vehicles and incur
less cost. However, ideal cases do not occur in reality. Real conditions may cause schedules
with a certain time to not satisfy the time requirement, and a penalty will be produced.
Therefore, after the simulation, the situation is different. Regardless of the type of problem,
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the results show that the real cost considering uncertain time is less than the cost that only
considers a certain time. This can be observed from Tables 5, 8, and 9.

Table 4. Comparison of scheme costs for R101.

Test Cost
(Certain Time)

Vehicle
(Certain Time)

Cost
(Uncertain Time)

Vehicle
(Uncertain Time)

1 1629.99 12 1892.60 12
2 1640.94 13 1895.06 12
3 1635.31 12 1900.24 13
4 1629.99 12 1906.41 13
5 1631.54 12 1892.60 12
6 1629.99 12 1895.06 12
7 1629.99 12 1892.60 12
8 1631.54 12 1902.61 13
9 1633.12 12 1892.60 12
10 1636.02 12 1892.60 12

Average 1632.84 12.1 1896.78 12.3

Table 5. Simulation results of R101.

Test Cost (Certain Time) Cost (Uncertain Time)

1 2598.56 2437.28
2 2690.75 2341.65
3 2571.67 2276.59
4 2498.63 2284.61
5 2601.43 2348.10
6 2571.62 2283.94
7 2489.61 2310.48
8 2701.46 2401.82
9 2613.20 2199.62
10 2894.02 2294.84

Average 2623.09 2317.89

The Solomon benchmark has three types of problems. Simulations are conducted
for C101 and RC 101. The results of the initial costs are presented in Tables 6 and 7.
Tables 8 and 9 present the data after the implementation of the schedule. The schedules
considering uncertain time are better for these two types of problems.

Table 6. Comparison of scheme costs for C101.

Test Cost
(Certain Time)

Vehicle
(Certain Time)

Cost
(Uncertain Time)

Vehicle
(Uncertain Time)

1 363.25 5 458.62 5
2 370.89 6 462.06 6
3 363.25 5 458.62 5
4 369.79 6 459.36 5
5 363.25 5 458.62 5
6 363.25 5 458.62 5
7 365.62 5 462.14 6
8 363.25 5 460.84 6
9 365.62 5 459.36 5
10 368.02 5 458.62 5

Average 365.02 5.2 459.71 5.3
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Table 7. Comparison of scheme Costs for RC101.

Test Cost
(Certain Time)

Vehicle
(Certain Time)

Cost
(Uncertain Time)

Vehicle
(Uncertain Time)

1 1023.65 9 1345.29 9
2 1038.34 9 1347.06 9
3 1034.06 9 1345.29 9
4 1023.65 9 1345.29 9
5 1034.06 9 1348.20 9
6 1023.65 9 1350.62 10
7 1023.65 9 1345.29 9
8 1040.12 10 1345.29 9
9 1034.06 9 1347.06 9
10 1023.65 9 1353.07 11

Average 1029.89 9.1 1347.25 5.3

Table 8. Simulation results of C101.

Test Cost (Certain Time) Cost (Uncertain Time)

1 583.95 495.17
2 593.41 509.46
3 602.74 521.03
4 630.15 559.46
5 573.24 496.86
6 584.36 539.16
7 591.03 529.43
8 604.53 560.14
9 640.13 499.62
10 596.70 520.94

Average 600.02 523.13

Table 9. Simulation results of RC101.

Test Cost (Certain Time) Cost (Uncertain Time)

1 1476.32 1302.68
2 1452.04 1446.92
3 1464.65 1386.34
4 1623.86 1450.46
5 1500.96 1409.62
6 1546.21 1395.26
7 1689.01. 1345.10
8 1489.62 1406.98
9 1600.45 1400.23
10 1584.23 1384.63

Average 1390.74 1275.82

Finally, the conclusions are summarized. Considering the uncertainty of the factors,
including energy consumption and travel time, will be more suitable to reality. The final
result is the most cost-saving solution.

4. Conclusions

In summary, a new EV schedule management system was presented. The system
consists of two parts.

(1) The forecasting system obtains a set of fuzzy data, in which the CBR is applied to
forecast the time and energy consumption. The proposed CBR system includes a case-base
design, weight training, and case updates. For weight training, an ANN is incorporated
into the algorithm design. Additionally, considering the development of cities, case base
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updates are also included in the system design. The main innovation of the system is that
an amplification coefficient that complies with the match degree is proposed, which will
also be used in the second part of the system. An amplification coefficient is generated to
guarantee that the vehicle can complete the tasks in the allotted time without running out
of energy.

(2) The optimization process with a GA and hybrid heuristic method is applied to
optimize the vehicle schedule. In this process, the amplification coefficient was considered;
if there are any abnormal situations, dynamic adjustment can be performed.

Finally, a simulation was conducted to prove that the consideration of uncertain
times and energy could effectively reduce delivery loss and cost. The Solomon benchmark
problem was used to test the system. The results showed that, in the beginning, the cost of
the proposed system was higher than that of a traditional system. However, the proposed
system could effectively decrease the occurrence of default issues, which would affect the
reputation of a company.

This study built a new energy management and vehicle routing model for EVs. In the
model, the energy consumption and travelling time can be forecasted by CBR system and
adjusted for further processed. With the result a more reasonable and reliable routing can
be made for EVs. With the help of the model, companies can manage EVs’ schedule more
effective in logistics.

In future work, the system would be deployed in a logistics company to collect real
data to perfect the proposed model and CBR system. For EVs, the factors that affect battery
life are limited to the theoretical part (at least for now). However, in the real world, there
may be some other factors that have not been considered previously, such as road situations
and driver behaviors.
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Abbreviations

EV Electric vehicle
VRP vehicle routing problem
VRPTW vehicle routing problem with time windows
NPC non-deterministic polynomial complete
EVRP electric vehicle routing problem
GPS Global positioning systems
RFID radio frequency identification
GA genetic algorithm
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TSP Traveling salesman problem
BSS battery swap station
SDVRPTW Split Delivery Vehicle Routing Problem with Time Window
ALNS adaptive large neighborhood search
EVRPTW electric vehicle routing problem with a time window
ECR electricity consumption rate
2E-EVRP-BSS two-echelon capacitated electric vehicle routing problem

with battery swapping station
CG-ALNS column generation and adaptive large neighborhood search
CBR case-based reasoning
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