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Abstract: Energy efficiency of systems of water pumping is a complex problem since efficiency
of two distinct interacting systems needs to be combined: water and power supply. This paper
introduces a non-intrusive method of calculating the so-called “collective losses” of a cage induction
motor. The term “collective losses”, which the authors define, allows for accurate estimation of motor
efficiency. Control system of a pump determines operating point of a pumping station, and thus its
efficiency. General estimated performance characteristics of a motor, components of a control system,
are assumed to serve selection of a range of pumping speed variations. Rotational speed has a direct
effect on motor load torque, pump power and head, and thus on motor performance. Hellwig’s
statistical method was used to specify characteristics of estimated collective losses on the basis of
experimental studies of 21 motors rated at up to 2.2 kW. The results of simulations and experiments
are used to verify validity and efficiency of the suggested method. The method is non-intrusive,
simple to use, and requires minimum data.

Keywords: energy efficiency; induction motors; motor losses; Hellwig’s method; estimation charac-
teristic; water pump

1. Introduction

Analysis of energy efficiency of a water plant system is complex. Variations of plant
output pressure and efficiency of pump and motor must be addressed. Energy efficiency
is commonly decided by a control system applied to pump operation. In parallel, the
control system is designed to provide adequate water pressure for each consumer. A pump
and motor should operate in the region of maximum efficiencies, and thus of minimum
losses. Minimum losses are a criterion of a control system’s operation [1]. The losses are an
indication of rotational speed and motor load torque. They are directly correlated with a
plant’s efficiency and output pressure. For relatively low pump capacity, rotational speed
reduces relatively much, which affects the losses and motor efficiency [2].

Estimation of losses of a motor in operation (in situ) helps to develop an energy effi-
cient control system of a pumping plant. Most traditional methods of efficiency assessment
require measurements of rotor speed and shaft torque to compute output power. In most
cases, torque and speed transducers cannot be installed because motors may be embedded
in a machine where space is insufficient for attachment of such transducers between the
motor and the load. The so-called non-intrusive motor efficiency regulator is the part
of a control system that helps to improve energy efficiency without using a transducer
of rotor speed and shaft torque. Therefore, indirect methods for estimating induction
motor efficiency are preferable, since they do not require direct measurements of torque or
speed [3,4].

The model of main losses of an induction machine (IM) consists of stator and rotor
losses, mechanical losses, and core losses. Additional losses in effect of switching and
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conducting losses which are inside the inverter are not taken into account. Several control
structures aiming to minimize losses of a squirrel-cage IM are presented in [5,6]. These
methods adapt flux across a motor to operating conditions in order to attain an optimum
efficiency point [7].

The Search Control (SC) is an efficiency optimization method which tracks the mini-
mum possible input power of a motor [8,9]. This algorithm has an average delay of 15 s to
arrive at the optimum operating point. In causing instability of electrical and mechanical
systems, control oscillations can be obtained. This will happen, for instance, in case of
pressure oscillations in the water mains.

Analysis of loss minimization control corresponds to the total loss derivative equal
to zero, which produces an optimal flux [10,11]. Several applications use this technique
which allows to decrease the losses, particularly in cases of lower load torques. However,
since core losses are merely estimated or omitted, the value obtained at optimal flux may
not be accurate.

The Maximum Torque Per Ampere (MTPA) bases on stator current curves calculated
for a given IM and minimizes current in terms of torque. The MTPA method decreases
motor losses. However, this method of loss minimization is not always certain to give
the best results because the core losses are ignored [12,13]. The technique based on MTA
approach optimizes the efficiency in scalar controlled induction motors by optimal slip
control [14].

The method utilizes an improved dynamic model of IM covered in [15]. This model
addresses the effect of core losses, calculated using Bertotti model, and friction mechanical
parameters [16]. The proven IM model is taken to optimize scalar control and Field-
Oriented Control (FOC) with decreasing total losses. FOC shows a high dynamic response
and accuracy.

The Air-Gap Torque (AGT) method, based on computation of air-gap torque equations,
is a commonly applied in-situ method that requires the following data to be measured:
line voltages, line currents, and stator resistance [17,18]. The main strengths of this method
are its accuracy and easy implementation. The no-load losses and stray losses are not
considered. A no-load test is needed for calculating the friction loss and the core loss,
although it should be avoided due to its intrusiveness. The Modified Induction Motor
Equivalent Circuit is used for AGT method. The parameters are arrived at by solving a set
of highly nonlinear and multi-dimensional equations [19].

The AGT-based method of estimating induction motor efficiency, involving online
voltages, line currents, and nameplate data with a new notion of stator resistance including
the Mechanical Loss Effect, was proposed in [20]. This new concept solves both the
problems (stator resistance and mechanical losses estimation in AGT). The proposed
objective function reduces the torque error at tFhe rated operation point, based on equations
of the stator flux. However, this method does not address stray load losses. Stator resistance
including the effect of mechanical losses is estimated by applying an algorithm based on
Particle Swarm Optimization (PSO). This method generates good results for torque and
efficiency estimation in comparison with other common methods.

Increasing the computing power of control systems allows to use artificial intelligence
in estimation of motor efficiency. The genetic algorithm (GA) is one of the evolutionary algo-
rithm methods. The estimative motor efficiency is close to the actual motor efficiency [21,22].
Another type of artificial intelligence control uses the Particle Swarm Optimization (PSO)
method [23]. This model requires the motor power factor and has a relative error of 5%
for 1800 RPM motors at constant speed and displays a higher uncertainty for small-sized
motors or lower speed ratios. A new version of the big bang-big crunch algorithm has been
proposed to estimate a three-phase motor efficiency [24]. This method is faster than PSO
and GA. For estimation of motor efficiency, motor equivalent circuit is used. A comparison
with other artificial intelligence methods shows that efficiency estimation is less prone to
error and the results are closer to actual values.
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Efficiency optimization can be realized by load observer control [25]. A motor equiva-
lent model is used with online speed measurement. The load observer accurately estimates
an unknown load disturbance. However, total motor loss consists only of stator and rotor
copper loss and stator iron loss. Knowledge of parameters of the motor equivalent model
is also required.

Efficiency is determined relying on equivalent circuit parameters, which are updated
as a motor operates. At the same time, symmetry of these parameters is assumed for three
phases of the motor [26]. In addition, power supply voltage, stator, and rotor resistances
influence accuracy of efficiency calculations; what is more, this method does not cover stray
load losses or mechanical losses. [27]. In effect, it is not applicable to industrial variable
speed drives. An improved method of estimating parameters that serves identification of
energy efficiency for an equivalent circuit is presented by [28,29]. Stray loss and friction and
windage loss are derived from IEEE 112. A detailed method for determination of stray load
losses is described in [30,31]. Estimation of iron losses in a motor under sinusoidal voltage
supply plays an important part in the process of determining efficiency characteristics. Iron
losses account for a substantial part of all the losses during frequency variations [32,33]. A
new method of start-up helps to calculate motor efficiency. The test is very easy, practical,
and quick to perform. It requires neither statistical nor nameplate data information. The
results for the rated frequency are only described, since they are of no use to control
systems [34].

The method of interpolation of total losses in induction motors in the power range
0.12–1000 kW is presented in the International Standard IEC 61800-9-2 [35]. Losses are
calculated taking into account regression coefficients in terms of function of motor fre-
quency and torque. The torque measurement for loss calculations is high intrusive. DTC
or FOC electric drive control also enables torque determination. The high accuracy of the
torque calculation (2%) according to the field-oriented methods makes them interesting
for the determination of motor losses. The scalar control method cannot be applied. The
efficiency interpolation data of typical motors two- and four-poles and efficiency class IE2
is provided.

A group of methods compute motor efficiency by means of slip measurement. They
employ a linear dependence of output power on slip [36]. This method allows to estimate
efficiency for rated frequency as a function of output power. High errors of efficiency
estimation for other frequencies make it useless [37,38].

Another group of methods for determining efficiency of a squirrel cage motor relies on
measurements of stator current [39,40]. They produce satisfactory results only for a limited
range (0.7–1) of rated torque TN. Accuracy of efficiency calculation using this estimation
method is not relevant.

There are many (over 30) methods for determining efficiency of a squirrel cage induc-
tion motor. A general division is based on:

• use of motor equivalent circuit parameters,
• study of influence of slip on motor efficiency,
• measurement of current and voltage in stator winding,
• measurement of rotational speed and torque,
• analysis of no-load or load motor parameters,
• calculation of air gap torque—AGT method,
• efficiency optimizations techniques.

These methods generate results which estimate efficiency of induction motors only
after performing additional investigations accurately or effectively. They all need no-load
losses and stray losses to minimize the estimated efficiency error. This involves some
intrusive steps. Table 1 shows a comparison of the methods analyzed above and what
testing needs to be conducted for a given method, whether a method is highly or weakly
intrusive, and what its accuracy level is.



Energies 2021, 14, 1749 4 of 19

Table 1. Comparison of methods of motor efficiency determination.

Method No Load
Test

Stray Load
Loss

Rotational Speed
or Torque

Determination

High
Intrusive

Low
Intrusive No-Intrusive

Efficiency
Calculation

Accuracy

Measurement of
rotational speed No No Yes Yes - - High

Slip method No No Yes Yes - - Low

Equivalent circuit
diagram Yes IEEE 112 No - Yes - Low

Current and voltage
measurement No No No - - Yes Low

AGT Yes IEEE 112 No - Yes - High

No load current
method Yes No No - Yes - Low

Artificial intelligence Yes IEEE 112 No - Yes - High

Load observer Yes IEEE 112 No - Yes - High

Optimizations
techniques Yes No Yes - Yes - High

The authors review of control systems of existing and new pump and fan drives
demonstrates they often do not apply energy optimization. In order to change this situation,
control systems should be modernized without substantial spending or changes to design of
electric drives. A modernized control system should address the following considerations:

• A control system should operate in-situ, that is, without additional intervention in
drive design.

• A control system should not require additional preliminary motor testing, e.g., no-load
test, or inductance measurement.

• Determination of mechanical losses and stray load losses should not require additional
measurements.

• The above assumptions are adopted for estimation of IM losses and are intended to
simplify implementation procedures of control systems to new and existing electric
drives with any control techniques.

In order to calculate motor efficiency, a new non-intrusive method that refers to
the so-called “collective losses” is postulated. The “collective losses”, introduced by the
authors, are not new losses but a group of total losses in a squirrel cage induction motor.
The study is designed to determine a characteristic for their estimation as a function of
frequency, voltage, and current supplied to a motor. Arguments of the estimation function
are easily measurable, do not require high financial costs, and are non-intrusive. The
main goal of the paper is to compare estimated and measured collective losses using the
experimental model.

The newly proposed method of calculating the coefficients of explained variable, i.e.,
collective losses, is expressed as follows:

1. Collective losses are defined on the basis of a Sankey diagram,
2. Explaining variables necessary for a multiple regression model are determined on the

basis of relative collective losses,
3. Hellwig’s method is adapted to eliminate those explaining variables that have less

significant impact on the estimated collective loss function—the estimated model is
simplified,

4. Coefficients, components of the predicted variable, are determined.

2. Collective Losses—Definition

Induction motor losses for in-service intervals are evaluated further on for motors of
rated power below 2.2 kW. Power loss components as described by the classical theory of
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electric machines are shown in Figure 1. Depending on their location in a motor, the losses
are classified as

Figure 1. Distribution of power loss components: P1—input power, P2—output power, Ps—stator
losses, Pr—rotor losses, Pm—mechanical losses, Pmb—bearings losses, Pmf—windage and fan losses,
PΨ—electromagnetic power, Pjs—stator Joule loss, Pjr—rotor Joule loss, Pins—insulation losses, Pcors,
Pcorr—stator and rotor core losses, Pstrs, Pstrr—stator and rotor stray load losses.

Ps—stator losses, equal to Pels resulting from adverse electromagnetic effects across
the stator,

Pr—rotor losses, equalling Pelr and resulting from negative electromagnetic effects
across the rotor and mechanical losses Pm (bearing Pmb and windage and fan Pmf losses).

A detailed analysis of losses in a motor is highly complex and irrelevant to their
in-service evaluation. The authors suggest a new, simplified distribution of power losses
across a squirrel-cage induction motor to calculate output power P2. The collective losses
Pcoll are introduced as a new term whose interpretation is the purpose of this paper. They
comprise parts of traditional induction motor losses. Core losses Pcor, stray load losses
Pstr, mechanical losses Pm, and insulation losses Pins, calculated in complicated ways,
are assumed to form a single grouping, i.e., collective losses Pcoll. The remaining losses,
determined by distribution of power loss components in Figure 1, are stator winding (Joule)
loss Pjs and rotor winding (Joule) loss Pjr. These assumptions simplify Sankey diagram
(Figure 2) [41–44]. A sinusoidal supply voltage is assumed in this discussion.

Figure 2. A simplified Sankey diagram: P1—input power, P2—output power, Pcoll—collective losses,
Pjs—stator winding (Joule) loss, Pjr—rotor winding (Joule) loss.

In line with the modified Sankey diagram (Figure 2), collective losses Pcoll are

Pcoll = P1 −
(

Pjs + Pjr + P2
)

(1)

The suggested method for estimation of collective losses relies on some assumptions:

a. Accurate analysis of the individual losses is not the main goal.
b. We assume “a priori” that an estimation characteristic of collective losses can be produced.
c. The excess eddy-current losses are ignored. Finally, core losses Pcor consist of stator

and rotor hysteresis losses Physs, Physr and stator and rotor eddy-current losses Peddys,
Peddyr. Analysis of collective losses in this paper is a new approach, therefore, simplifi-
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cation of this method is important. If the errors are not acceptable, a new assumption
is intoduced.

d. The insulation losses Pins are omitted as they are negligible for 2.2 kW motors.
e. Stator and rotor stray load losses Pstrs, Pstrr and stator and rotor stray no-load losses

Pstr0s, Pstr0r are presented independently. This is connected with a broad range of load
torque variations as defined by affinity laws for pumps and fans.

f. The motor is supplied with a sine wave and has a variable frequency voltage source.
g. The following relationship is realized by the voltage source: U

f = const.

A component of (1), rotor Joule loss Pjr, equals slip s times electromagnetic power PΨ:

Pjr = sPΨ (2)

The following was produced on the basis of distribution of power loss components
(Figure 1):

PΨ = P1 −
(

Pjs + Pcors + Pstrs
)

(3)

The following equation is obtained on the basis of (1), (2), and (3):

Pcoll =
(

P1 − Pjs
) n

ns
− P2 + s(Pcors + Pstrs) (4)

The component including slip s at (4) becomes negligible small relative to Pcoll, which
ultimately become:

Pcoll ≈
(

P1 − Pjs
) n

ns
− P2 (5)

For nominal operating conditions of an induction motor, rated collective losses PcollN
are defined as

PcollN ≈
(

P1N − PjsN
)nN

ns
− P2N (6)

where
P1N—rated input power,
PjsN—rated stator Joule loss,
nN—rated rotational speed,
P2N—rated output power.
A comparison between distribution of power losses components in Figures 1 and 2

shows collective losses Pcoll consist of: Pins—insulation losses, Physs, Physr—stator and
rotor hysteresis losses, Peddys, Peddyr stator and rotor eddy-current losses, Pstrs, Pstrr—stator
and rotor stray load losses, Pstr0s, Pstr0r—stator and rotor stray no-load losses, and Pm—
mechanical losses. Pcoll are expressed by:

Pcoll = Pins + Physs + Peddys + Physr + Peddyr + Pstrs + Pstrr + Pstr0s + Pstr0r + Pm (7)

Equation (7) can be simplified as the following assumptions are taken into account:

• The rotor hysteresis losses Physr are ignored because: fs � fr. Such an assumption is
correct for pump and fan load torque that reduces in line with the squared rotational
speed in accordance with affinity laws.

• The rotor eddy-current losses Peddyr are omitted because: f 2
s � f 2

r .
• The rotor stray load losses Pstr0r are ignored. They include rotor current Ir, which is

difficult to measure. However, Ir is strongly correlated with the stator current Is.
• Linearity of the magnetic circuit is assumed.
• Magnetic flux densities Bzs and Bzr of the stator and rotor teeth are considered propor-

tional to supply voltage Us and to the rotational speed n.
• A heating power Pheat component which defines temperature increment of the motor

∆T is added, representing effect of heat on Pcoll.



Energies 2021, 14, 1749 7 of 19

According to (7) and the above assumptions, the collective losses Pcoll can be shown
in Figure 3.

Figure 3. A block diagram showing parts of collective losses Pcoll, Pcor—core losses, Physs—stator
hysteresis losses, Peddys stator eddy-current losses, Pstrs—stator stray load losses, Pstr0s—stator stray
no-load losses, Pm—mechanical losses, Pheat—heating power.

and can be represented as follows:

Physs = chyss fsU2
s (8a)

Peddys = ceddys f 2
s U2

s (8b)

Pstrs = cstrs I2
s (8c)

Pstr0s = cstr0sB2
zsn (8d)

Pm = cmn2 (8e)

Pheat = cτ∆T (8f)

where chyss, ceddys, cstrs, cstr0s, cm, cτ—constant loss coefficients,
cτ—temperature constant.
∆T = Tf − Ti; Tf—final stator winding temperature, Ti—initial stator winding temperature.
Constant loss coefficients have different values for each electric machine. The precise

value of a constant helps to calculate selected loss correctly. Collective losses Pcoll represent
a group of motor losses and can be estimated at an assumed accuracy. It means that other
common constants can be computed for a given group of squirrel cage induction motors.

The above assumptions and set of Equation (8) are employed to convert Equation (7) into:

Pcoll = chyss fsU2
s + ceddys f 2

s U2
s + cstrs I2

s + cstr0sU2
s n + cmn2 + cτ∆T (9)

In order to standardize the analysis and considering (9) and (6), relative collective
losses P∗coll are defined as follows:

P∗coll = c1 f ∗s (U
∗
s )

2 + c2( f ∗s )
2(U∗s )

2 + c3(I∗s )
2 + c4(U∗s )

2n∗ + c5(n∗)
2 + c6∆T (10)

where
relative collective losses P∗coll are

P∗coll =
Pcoll

PcollN
(11a)

and relative constant loss coefficients c1, ..., c6 are

c1 =
chyss fsU2

s

PcollN
(11b)
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c2 =
ceddys f 2

sNU2
sN

PcollN
(11c)

c3 =
cstrs IsN
PcollN

(11d)

c4 =
cstr0sU2

sNnN

PcollN
(11e)

c5 =
cmn2

N
PcollN

(11f)

c6 =
cτ

PcollN
(11g)

3. Test Stand

Collective losses P∗coll can be computed for each individual motor according to (10).
It is assumed for the purposes of this paper there is a single characteristic of estimated
collective loses for squirrel-cage induction motors rated below 2.2 kW. Such a characteristic
can be generated on the basis of our testing of squirrel-cage induction motors. The test
stand and the process of testing are described in the following part of this article.

Twenty-one squirrel-cage induction motors of both old and new motors and motors of
various IE efficiency classes by six manufacturers were used in the experiments. Their rated
powers ranged 0.75–2.2 kW and rated rotational speeds were 620–2900 rpm for frequency
50 Hz. Table 2 shows the rated data of some motors selected for the testing. A maximum
rated power of 2.2 kW was adopted as the sole limitation. This assumption was expected to
conform with testing conditions of pump energy efficiency as set out in [2]. Those authors
analyzed pumps from four manufacturers with input power of up to 2.5 kW including
squirrel-cage induction motors by unknown manufacturers. The sole assumption, of the
maximum rated power of the motors, is reasonable.

Table 2. The rated data of selected motors.

No PN UN IN nN cosϕ ηN R2

1 2.2 400 4.8 1425 0.8 0.82 0.97
2 1.5 380 3.7 1420 0.8 0.77 0.95
3 2.2 400 5 2870 0.77 0.83 0.97
4 1.1 400 2.7 1415 0.8 0.74 0.8
5 1.5 400 4.2 900 0.82 0.63 0.89
6 0.75 400 1.88 1395 0.8 0.72 0.7
7 1.1 380 2.6 2870 0.84 0.77 0.7
8 1.5 400 3.2 2835 0.83 0.82 0.7

The testing was conducted in a laboratory stand shown in Figure 4. A synchronous
generator GS was driven by a squirrel-cage induction motor M1 powered from a frequency
converter ACS800. Change of frequency fp of Up at ACS800 output enabled variations of the
M1 rotational speed and of voltage frequency fs across GS terminals. The excitation wiring
was powered with voltage UextS from an SE source to arrive at a set voltage Ug. Separation
Delta-Wye transformer TR was installed at the output of the synchronous generator in
order to eliminate the third harmonic of Ug. Voltage Us of TR at fs was supplied to the
motors tested, M2. In order to produce a desirable torque T across the shaft of M2, a
DC separately excited machine DCM was coupled with M2. Winding of DCM armature
was supplied with voltage UA and excitation winding was supplied with UextD from a
thyristor converter DML [45]. Signal from a tachometer generator PT was provided to
the DML. In effect, T across the motor shaft depended on rotational speed n of M2. A
temperature sensor PT100 was mounted directly on the winding of each tested motor. To
begin with, the load torque value is as desired. The motor temperature rises during the
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testing. In the initial time interval, close to the instant t1, the motor temperature becomes
stable (temperature cannot change more than 1 ◦C in 1 h). This allows to measure all test
values necessary to calculate collective losses. After these variable values are read, the load
torque increases, then the motor temperature rises again till the next time interval close
to the instant t2. With a further increase in torque, measurements are taken at subsequent
instants t3, t4 and so on. An example of temperature distribution and instants t1–t8 of the
measurements for the supply voltage frequency of 40 Hz are illustrated in Figure 5. Every
instant t1–t8 corresponds to a different load torque.

Figure 4. A laboratory stand for testing induction motors M2.

Figure 5. Temperature chart for the frequency 40 Hz and eight different values of the load torque.

The tests were performed using the following measuring devices:

1. Phase currents were measured with E3N current probes. Their accuracy was δI = 0.03.
A probe signal was converted into digital signal by a 16-bit converter in a NI-USB
6361 measurement card.

2. Differential probes MTX9030-Z served to measure inter-phase voltages. The voltage
measurements had a relative error of δU = 0.03 and signal damping 1/200. The probe
output signal was sent to the analogue input of NI-USB 6361 16-bit measurement
card.

3. Rotational speed and motor torque were measured with MT-20 and MT-10 load cells
with the accuracy 0.2% of the measurement range.

4. MPS41 XX METROL mains parameter metre measured electric quantities supplied
to the motor. The device analyzes the mains parameters with a satisfactory accu-
racy. The measurement errors are: current measurement error δI = ±0.5%, voltages
measurement δU = ±0.5%, active power measurement δP = ±1%.
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Over 1600 measurements were conducted for 21 tested motors. Measurement errors
were below 10%. They were maximum for T lower than 50% of the rating, a consequence
of measurement ranges of the metres which had been adopted.

4. Adapting Hellwig’s Method

Test results of induction motors rated PN < 2.2 kW were the starting point for one
estimated characteristic of collective losses P∗coll. Selection of variables for econometric
models was applied to this end. It was necessary to determine a computational method
of finding a best-fitting subset of orthogonal linear combinations of all available predictor
variables. Linear models or those that can be reduced to such models by single-equation
methods are the best developed [46–49]. When there are two or more predictor variables,
the model is called a “multiple regression model” with the general form:

yt = β0 + β1X1,t + β2X2,t+, . . . ,+βkXk,t + εt (12)

where
y—the variable to be forecast (explained variable).
X1, . . . ,Xk—k predictor variables (explaining variable). Each of the explaining vari-

ables must be numerical.
t—time.
β1, . . . ,βk—the coefficients measure the effect of each explaining variable after taking

into account the effects of all the other explaining variables in the model.
εt—random component.
β0—constant.
The basic postulate concerning the variables’ strong correlation between each ex-

plaining and explained variable and a weak correlation between the explaining variables
causes most variable selection methods to employ some versions of the linear correlation. A
solution found to be optimal depends on the lowest number of mutually uncorrelated
explaining variables. The explaining variables show a maximum possible correlation with
the explained variable [50].

The method of optimum predicate selection, adapting Hellwig’s method [47], served
to limit the number of elements of set X of originally selected explaining variables. Hell-
wig’s method is most popular with empirical econometric research. Its idea is to select
as explaining variables such variables that are strongly correlated with an explained vari-
able and weakly correlated with one another. Estimating a matrix R (13) of correlation
coefficients between potential explaining variables and vector R (13) of correlation coeffi-
cients between potential explaining variables and vector R0 (14) of correlation coefficients
between an explained variable and potential explaining variables is the starting point.

Correlation coefficients rxl xk between the particular explaining variables (Xl, Xk) form
the following matrix of correlation coefficients R:

R =


rx1x1 rx1x2 · · · rx1xk

rx2x1 rx2x2 · · · rx2xk
...

...
. . .

...
rxkx1 rxkx2 · · · rxkxk


K×K

(13)

Correlation coefficients ryxk between an explained variable Y and the particular ex-
plaining variables Xk form the following matrix of correlation coefficients R0:

R0 =


ryx1

ryx2
...

ryxk


K×1

(14)
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The correlation coefficients ryxk and rxl xk are measured by means of Pearson’s coeffi-
cient of linear correlation ryxk between the explained variable Y and the explaining variable
Xk, expressed with [49,51,52]:

ryxk =

N
∑

i=1
(xik − xk)(yi − y)√

N
∑

i=1
(xik − xk)

2 N
∑

i=1
(yi − y)2

(15)

The correlation coefficient rxl xk between two explaining variables Xl and Xk is de-
fined as

rxl xk =

N
∑

i=1
(xik − xk)(xil − xl)√

N
∑

i=1
(xik − xk)

2 N
∑

i=1
(xil − xl)

2

(16)

where N—number of measurements,
xik—ith value of the explaining variable Xk,
xil—ith value of the explaining variable Xl,
yi—ith value of the explained variable Y, and
xk—mean value of the explaining variable Xk, defined as

xk =
1
N

N

∑
i=1

xik (17)

y—mean value of the explained variable Y, defined as

y =
1
N

N

∑
i=1

yi (18)

As part of Hellwig’s method, all possible combinations of potential explaining vari-
ables are generated and then the so-called integral individual ratio of information capacity
is studied, produced by application of each possible combination of these variables. Se-
lection of explaining variables for the model according to Hellwig’s method follows the
procedure below.

In the first step, all possible L combinations are formed for all m explaining variables
X1, ..., Xm. The number of combinations L equals the number of all possible subsets of the
m-element set, that is, L = 2m − 1. For instance, if m = 2, 3 variable combinations can be
produced: K1 = {X1}, K2 = {X2}, K3 = {X1, X2}.

As part of step two, for each lth combination (l = 1, ..., L), an individual ratio of
information capacity hlj (19) is calculated for jth explaining variable belonging to the lth

combination of variables, as formulated below:

hl j =
r2

yxk

∑
i∈Il

∣∣rij
∣∣ (19)

where
Il = {i : Xi ∈ Kl}—set of variable indices as part of lth combination Kl;
hlj—individual capacity of jth variable in lth combination Kl;
ryxk —correlation coefficient of kth explaining variable with the endogenous (explained)

variable y;
∑

i=Il

∣∣rij
∣∣—total sum of absolute correlation coefficients of jth explaining variable with

the remaining explaining variables included in the combination Kl.
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The third step involves calculation of individual capacity of potential explaining
variables (Hl) as the total sum of individual capacities as part of each combination, as
formulated below:

Hl = ∑
j=Il

hl j, l = 1, . . . , L (20)

Explaining variables X belonging to that subset of lth combination to which a maxi-
mum value of Hl corresponds are selected to the multiple regression model (12), i.e.,

Hl∗ = max
l∈{1,...,L}

Hl (21)

5. Statistical Model of Collective Losses P∗coll

The prediction of relative collective losses P∗coll (10) is performed in this chapter. The
linear multiple regression model in line with (12) was accepted for the purposes of analysis.
Explaining variables Xk (where k∈{1,2 . . . m}) are expressed with the quantities, parts of
vector X, which are tested in the real model as a function of time [2]:

X =



X1
X2
X3
X4
X5
X6

 =



f ∗s (U∗s )
2

( f ∗s )
2(U∗s )

2

(I∗s )
2

(U∗s )
2n∗

(n∗)2

∆T


(22)

Coefficients β1, . . . ,βk (12) correspond to the constants c1, ..., c6 from (10); the definition
is offered:

Y = C · X + c0 (23)

where vector C consists of relative constant loss coefficients c1, ..., c6:

C = [c1, c2, c3, c4, c5, c6] (24)

Finally, the predicted variable Y as a linear multiple regression model is defined as

Y = c0 + c1X1 + c2X2 + c3X3 + c4X4 + c5X5 + c6X6 (25)

The linear multiple regression model required optimization of the number of ex-
plaining variables and determination of coefficients c0...c6. To this end, we measured
the following electric and mechanical quantities as part of our experimentation: torque,
rotational speed, voltages, currents, motor winding temperature, and frequency. About
1600 test samples were produced for 21 motors. Using the measurement data, the vector X
explaining variables (22) was generated on the basis of (10) that defines relative collective
losses and the multiple regression model (12).

Explaining variables Xk for the predicted variable Y was selected according to the
following formal and statistical criteria:

• the explaining variables Xk in the predicted variable Y should have coefficients of
correlation νk > 0.2—the method of eliminating quasi-constant variables,

• the coefficients of correlation between the explaining variables Xk, and the explained
variable Y should tend towards one,

• the coefficients of correlation between the explaining variables Xk should tend towards
one zero,

• the degree of matching of the predicted variable Y to results of real measurements
should be maximum possible, which is expressed as maximization of the determina-
tion coefficient R2.

The analyses showed the above criteria are met for all the explaining variables Xk.



Energies 2021, 14, 1749 13 of 19

Hellwig’s method was applied to the next stage of selection of the explaining variables
Xk. Based on the correlation coefficients ryxk (15) and rxl xk (16), Hellwig’s ratio of integral
capacity Hl is analyzed for all combinations of l without repeating the explaining variables
remaining in the model. L = 2m − 1 of the combinations for m = 6 explaining variables
equals 63. The individual ratio of information capacity for ith combination, Kl, is calculated
as per (19).

Out of all the combinations of explaining variables Xk one l is selected for which
Hellwig’s ratio of integral capacity becomes maximum Hlmax = max (Hl) (21). Following
Hellwig’s method, the number of explaining variables Xk is reduced. Two explaining vari-
ables, X1 and X3, remain in the model of relative collective losses for which the explained
variable Ye is defined as follows:

Ye = ce0 + ce1X1 + ce2X3 (26)

where
ce0, ce1, ce2—coefficients of explained variable Ye of relative collective losses P∗coll.
The simplified model of the predicted variable Y was subject to statistical verification

to check if the selected variables X1 and X3 have significant impact on the explained variable
Y and whether the criteria of applicability of the least-squares method to determination
of the coefficients c0, c1, c3 of the model are fulfilled. The model’s statistical verification
proceeded by:

1. Testing significance of the model’s coefficients with Student’s t-test.
2. Testing of the model’s matching to empirical data:

• calculation of the determination coefficient,
• calculation of the convergence coefficient,
• calculation of the random variability coefficient.

3. Verification of the random structure’s properties:

• testing randomness of a random component with the runs test,
• testing normalcy of a random component’s distribution,
• testing homogeneity of a random component’s variance with White’s test.

The analyses demonstrated the selected variables X1 and X3 have significant impact
on the explained variable Ye. Finally, the explained variable Ye (26) depends on two
variables, X1 and X3, and is described with three coefficients: c0, c1 and c3. The mean
square approximation, also named the minimum chi-square method, where a minimum
sum ∆min is sought, served to compute these coefficients [48,49]:

∆min =
N

∑
i=1

(ymi − yei)
2 (27)

where
i—number of a measurement,
ymi—measured value of relative collective losses,
yei—value of predicted variable, estimated by the model (26) for the ith measurement.
The minimum chi-square method reaches function factors by means of matrix calculus.

The method can be applied if the following assumptions are met:

a. The model is linear or can be reduced to a linear form,
b. A linear dependence holds between no interpretative variables,
c. The number of measurements serving to estimate factors exceeds the number of

factors estimated in this manner,
d. The expected value of a random component equals zero E(ε) = 0.
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In order to estimate the model coefficients (ce0, ce1, ce2), a coefficient vector Ce is
arrived at according to [51,52]:

Ce =
(

MT·M
)−1
·MT·Ym (28)

where
Ym—vector of measured values ymi of relative collective losses, defined as

Ym =


ym1
ym2
· · ·

ymN

 (29)

Ce—vector of the model coefficients is given as

Ce =

 ce0
ce1
ce2

 (30)

M—observation matrix of the explaining variables is defined as

M =


1 X11 X31
1 X12 X32
· · · · · · · · ·
1 X1N X3N

 (31)

ce0, ce1, ce2, computed as per (28), were substituted to (26) and values of the predicted
variable Y were calculated as

Ye = (4.7 + 45X1 + 23X3) · 10−3 (32)

The predicted variable Ye considering (10) enables to define the model for estimation
of relative collective losses P∗coll:

P∗coll =
(

4.7 + 45 f ∗s (U
∗
s )

2 + 23(I∗s )
2
)
· 10−3 (33)

Relative estimation collective losses P∗coll (33) were compared to measured experimen-
tal values.

6. Simulation and Testing Analyses

Variations of estimated relative collective losses P∗ecoll were analyzed on the basis of
calculation results as per (33). Based on (5) and (6), variations of tested relative collective
losses P∗tcoll expressed as follows could be analyzed:

P∗tcoll ≈
(

P1 − Pjs
) n

ns
− P2(

P1N − PjsN
) nN

ns
− P2N

(34)

Calculations of estimated P∗ecoll (33) and tested P∗tcoll (34) relative collective losses
required measurement of the following quantities: f —frequency of supply voltage, Us—
supply voltage to induction motor, Is—stator current, R—resistance of stator winding,
n—rotational speed, P1—input power, TL—torque across motor shaft, T—temperature of
stator winding. Temperature is not directly present in the model of relative collective losses,
nevertheless, it affects winding resistance.

To compare estimated P∗ecoll and tested P∗tcoll collective losses, losses of 21 motors
operating at different rotational speeds and loads were tested. Rotational speed was in
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the range (0.2–1) nN. For selected motors, maximum rotational speed reached 1.2nN. A
thyristor converter DML and a separately excited machine DCM helped to maintain a
constant load torque TL for the tested motor M2 during a single test. The load torque
ranged (0.1–1.1) TLN (TLN—rated load torque). The real range of load torque variations TL
depended on the frequency of voltage supplied to M2. For lower frequencies, maximum
load torque reduces if the motor current is below the rated value IN. The calculation results
are shown in Figure 6. Tested P∗tcoll collective losses are represented with black dots, while
estimated P∗ecoll collective losses are represented with red dots. The results form sets of
dots around selected values of rotational speed n*. For instance, the set of dots around
the relative rotational speed n* = 1 determines values of relative collective losses P∗tcoll and
P∗ecoll for f = 50 Hz selected values of load torque TL in the range (0.1–1.1) TN. As f declines,
corresponding to lower rotational speeds n*, maximum load torque reduces. The resultant
black and red dot sets for a selected frequency largely overlap in Figure 6a,b,d. The results
illustrated in Figure 6c are evidence of relatively high divergences.

Figure 6. Tested (black) P∗tcoll and estimated (red) collective losses P∗ecoll as a function of rotational
speed n* for: (a) motor 1, (b) motor 2, (c) motor 3, (d) motor 4 (Table 2).

The coefficient of determination R2 is an indication of how correct the results are.
R2 for the entire test group of 21 motors is calculated as 80%. This means the selection
of explaining variables is good. Higher values of R2 represent quality of matching of an
estimated model to a real motor. R2 values for individual motors range 70–97%. This
means the selection of explaining variables for estimation of collective loss characteristic
curve P∗ecoll is satisfactory, good, or very good. Examples of R2 are presented in Table 2.
The results can be seen as satisfactory. They reaffirm the prior assumption an estimated
characteristic of collective losses exists in a squirrel cage induction motor is correct.

The statistical group encompasses 21 new and in-service motors by different manufac-
turers. This ensures universality of the results. The suggested approach is non-intrusive
and can be used by industry to control on-line motor losses. To estimate collective losses,
only measured values of frequency, supply voltage, and motor current must be taken
into consideration. The instrumentation in this method is cost-effective, which justifies its
particular applicability to low power pump drives.
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The results suggest a need for further testing of 2.2–7.5 kW motors. They are part of
many electric drives of pump systems. Existence of an estimated characteristic for collective
losses shows motor efficiency needs to be verified. Such an estimated efficiency would be
especially useful in control of water pump stations in order to improve energy efficiency.

7. Conclusions

In this paper, a non-intrusive method of estimating the so called “collective losses”
of squirrel-cage induction motors of rated power 0.75–2.2 kW has been utilized. The
term “collective losses” has been introduced. In order to determine coefficients of a
collective loss curve, Hellwig’s information capacity method has been used. The results
have demonstrated the method’s accuracy, with a good agreement between measured and
estimated collective losses in an induction motor fed with a sinusoidal voltage source in
the range of 10–60 Hz.

Determination of estimated collective losses is non-intrusive. It is necessary only
to measure (33) frequency, voltage, and current of an induction motor. Additionally,
temperature of the motor windings should be monitored. A comparison of this method
of collective loss calculation with known techniques of motor loss calculation leads to the
following conclusions:

In the new method of collective loss calculation:

1. No load test is required.
2. IEEE 112 standard or other test methods are not used to determine stray load losses,
3. A torque metre does not need to be mounted on the motor shaft—the method is

non-intrusive.
4. Any control system of electric drive can be used—V/f, DTC, FOC, VVC, or others,
5. The estimated characteristic of the collective losses includes a minimum of explaining

variables—Hellwig’s optimization.
6. The estimated characteristic of the collective losses addresses both new motors and

motors after years of service.
7. The estimated characteristic of the collective losses addresses motors of various

efficiency classes.
8. Collective losses are computed for broad ranges of frequency (10–60) Hz and torque

(0.1–1.1) TN variations.
9. Collective loss calculation requires only measurement of supply voltage, motor cur-

rent, and frequency.

These results are part of our research oriented towards improvement of pumping
efficiency of water or sewage. If a satisfactory convergence is confirmed between estimated
and measured characteristics of motor efficiency, the efficiency of an entire pumping unit
can be controlled. Practical application of this solution to PLCs will improve energy
effectiveness of new and in-service water and sewage pumping stations.
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Abbreviations

f frequency (Hz)
fN rated frequency (Hz)
Is current of stator winding (A)
IN rated current (A)
n rotational speed (rpm)
P power (kW)
PN rated power (kW)
Us voltage across stator winding (V)
P1 input motor power (kW)
P2 output motor power (kW)
PΨ electromagnetic power (kW)
Pjs stator Joule loss (kW)
Pjr rotor Joule loss (kW)
Pcoll collective losses (kW)
PcollN rated collective losses (kW)
Pcorr rotor core losses (kW)
Pcors stator core losses (kW)
Pstrr rotor stray load losses (kW)
Pstrs stator stray load losses (kW)
Pstr0 stray no-load losses (kW)
Pm mechanical losses (kW)
Pins insulation losses (kW)
s slip
TN rated motor torque (Nm)
TL load torque (Nm)
TLN rated load torque (Nm)
Us voltage across stator winding (V)
η motor efficiency
P∗coll =

Pcoll
PcollN

relative collective losses

f ∗s =
fs
fN

relative frequency of motor supply voltage
n∗ = n

nN
relative rotational speed

I∗s = Is
IN

relative current of stator winding
U∗s = Us

UN
relative voltage across stator winding

T∗ = TL
TLN

relative load torque
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51. Borkowski, B.; Dudek, H.; Szczęsny, W. Econometrics. Selected Problems; PWN: Warsaw, Poland, 2003.
52. Nowak, E. An Outline of Econometric Methods; PWN: Warsaw, Poland, 1998.

http://doi.org/10.3390/en14020345

	Introduction 
	Collective Losses—Definition 
	Test Stand 
	Adapting Hellwig’s Method 
	Statistical Model of Collective Losses Pcoll  
	Simulation and Testing Analyses 
	Conclusions 
	References

