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Abstract: Computational fluid dynamics (CFD) modeling of an entrained-flow reactor is demon-
strated and compared with experimental data. The study is focused on char conversion modeling
and its impact on gasification simulation results. An innovative procedure of optimizing input data
to empirical char conversion kinetic-diffusion model is investigated, based on the complex carbon
burnout kinetic model for oxidation (CBK/E) and gasification (CBK/G). The kinetics of the CBK/G
model is determined using the data from char gasification experiments in a drop tube reactor. CFD
simulations are performed for the laboratory-scale entrained-flow reactor at Brigham Young Univer-
sity for the bituminous coal. A substantial impact of applied kinetic parameters on the in-reactor
gas composition and char conversion factor was observed. The effect was most considerable for the
reduction zone, where gasification reactions dominate, although a non-negligible impact could also
be observed in the flame zone. Based on the quantitative assessment of the incorporated optimization
procedure, its application allowed to obtain one of the lowest errors of CO, H2, CO2, and H2O axial
distribution with respect to the experimental data. The maximum errors for these species were equal
to 18.48, 7.95, 10.15, and 20.22%, respectively, whereas the average errors were equal to 4.82, 5.47,
4.72, and 9.58%, respectively.

Keywords: CFD; coal gasification; char conversion; entrained-flow reactor

1. Introduction

More than 80% of the world’s energy comes from fossil fuels [1]. Coal is one of the
main sources of fossil fuel energy as it generates nearly 40% of the world’s electricity [2].
Coal-fired power plants were the single largest contributor to the growth in emissions
observed in 2018 [3]. As a result, coal-fired electricity generation made up 30% of global
CO2 emissions [3]. Unfortunately, this ongoing trend tremendously impacts the natural en-
vironment, climate, and human health. As a result, specific measures are taken to promote
and develop efficient technologies which can mitigate the negative impact on our planet.
Coal, despite its gradually decreasing consumption in many countries, will continue to be a
meaningful energy source for many years to come. This results in continuous research into
environmentally benign coal-based technologies. Gasification is one of the most promising
technologies for solid fuels since it allows the conversion of solid materials to gas consisting
of H2, CO, CO2, CH4, and smaller amounts of different hydrocarbons [4,5]. Production
of such gas enables effective implementation of alternative ways of electricity generation
(e.g., internal combustion engines, fuel cells, gas turbines) as well as a synthesis of different
products (e.g., Fischer-Tropsch process, production of H2). Therefore, gasification is a
beneficial coal technology, offering high efficiency, low environmental impact, and new
possibilities regarding the synthesis of chemicals [6]. However, gasification is still not fully
understood on a fundamental level, and although CFD has been proven to be an efficient
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modeling tool [7–12], many models that describe specific gasification sub-phenomena still
lack extreme accuracy.

The main gasification sub-phenomena are moisture evaporation, devolatilization,
partial oxidation, and gasification/reduction. In [13], where a well-stirred reactor was
investigated with a first-of-its-kind model which considered detailed gas-phase chemistry,
drying, devolatilization kinetics, particle-phase reactions, boundary layer diffusion, pore
evolution and coupling between the phases, the effect of moisture mainly inhibited the
overall gasification rate because of the temperature drop. Its impact on the char-H2O
reaction was very small. Therefore, the increase in the moisture content generally increased
the coal conversion time. The rate of drying/devolatilization was found to have little effect
on the final syngas composition. The same result was obtained by [14,15] under the CFD
studies for a 2D reactor. On the other hand, the final volatile yield from devolatilization
turned out to have a substantial impact on the final carbon conversion [15]. The CFD study
by Mularski and Modliński [14] confirmed the huge importance of devolatilization in the
accurate estimation of the flame properties and its stabilization and structure, which can
directly impact such issues as, e.g., flame lift-off. Kinetic parameters were found to have
a huge influence on the rate of production of the main syngas components in the flame
region. A recent study by Mularski and Modliński [16], which investigated a plug-flow
reactor, a perfectly-stirred reactor, and a CFD analysis of three different operating reactors,
confirmed a substantial effect of gas-phase modeling on the production rate of syngas
components (CO, H2, CO2, H2O) in coal gasification conditions, which ultimately resulted
in different final gas composition and in-reactor temperature distribution.

While each gasification stage is of crucial importance, the char conversion process is
the coal gasification rate-limiting step, which determines the residence time in the gasifier.
Based on the literature review by Mularski et al. [17], most of the attention was paid
to this particular phase. Syngas yield was found to be most sensitive to char-CO2 and
char-H2O reactions. A variety of models have been developed. The most basic ones,
such as surface-based kinetic-diffusion approaches where bulk diffusion was perceived
by the competition between chemical kinetics and film diffusion [18,19] or more complex
ones [20,21], which are accounted for in pore diffusion phenomena with internal surface
area evolution, regime-dependent particle diameter, and density evolution, ash inhibition,
thermal annealing, or even pore closing [22].

However, in order to limit the computational requirements which especially concern
3-D cases with a large eddy simulation (LES) or direct numerical simulation methods
(DNS), CFD simulations of coal gasification generally consider simplified models. The
surface-based kinetic-diffusion model was found to be the most widely applied in the
literature. Unfortunately, the literature review indicated that in most of the cases the kinetic
parameters were not optimized prior to a numerical simulation. For instance, for the
char-H2O and char-CO2 reactions, the following pre-exponential factors and activation
energies (AH2O = 0.0782, EH2O = 1.15× 107, ACO2 = 0.0732, ECO2 = 1.125× 107) were
used by [23–35] for five different reactors. Each reactor has specific operating conditions.
This should result in unique kinetic parameters for each condition. Unfortunately, the
use of experimental techniques for the determination of kinetic parameters can be very
challenging or even inviable, especially in the case of large-scale reactors. The direct use
of complex models such as the carbon burnout kinetic (CBK) approach can significantly
impact the computational effort. Therefore, following the strategy presented by Mularski
and Modliński for the optimization of kinetic parameters for devolatilization in [14], in
the present study kinetic parameters for the empirical char conversion kinetic-diffusion
model are optimized, based on the independent results of the complex CBK/E and CBK/G
models. The optimization is performed through the minimization of the objective function,
which was found to be the most efficient approximation method amongst the investigated
ones [14]. The analysis is carried out for the laboratory-scale, one-stage reactor at Brigham
Young University in the U.S. in the city of Provo, Utah [36].
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2. Numerical Models
2.1. CFD Modeling of Entrained-Flow Gasification

The entrained-flow coal gasification process is investigated by means of the commer-
cial CFD software: (2020R2, ANSYS Fluent, Canonsburg, PA, USA) [37]. The finite-volume
discretization approach is used to solve the Reynolds averaged Navier–Stokes (RANS)
equations. The semi-implicit method for the pressure-linked equation (SIMPLE) [38]
algorithm is used for pressure-velocity coupling. Second-order schemes are used for
spatial discretization.

The gas phase is modeled with the Eulerian approach. The discrete-phase trajectories
are calculated with the Lagrangian formulation, whereas the coupling between the phases
is determined through the particle sources of the Eulerian gas-phase equations [39]. The
following processes are accounted for in the gasifier: turbulent flow, moisture release,
devolatilization, gas-phase reactions, char conversion, particle transport, and radiative
transport. A summary of applied models is presented in Table 1. Turbulence is modeled
with the realizable k-ε approach [40]. Turbulent particle dispersion is modeled with the
discrete random walk model [41]. The time scale constant in the discrete random walk
model-Cτ was set to 0.6, based on the study by Kumar and Ghoniem [42] in order to
improve the prediction of turbulent diffusion of particles. Radiation is simulated with the
discrete ordinate method [37]. The weighted-sum of gray gas (WSGG) model [37] is used
to calculate the gas absorption coefficient. For the gas phase, the specific global reaction
mechanism is used which was found to have the closest agreement with regard to the
detailed GRI-Mech mechanism [16].

Table 1. Summary of applied modeling approaches.

Models

Devolatilization: Competing two-step reaction mechanism (C2SM) [43]
Gas phase: Global reaction approach with finite-rate/eddy dissipation model [44]

Char conversion: Kinetic-diffusion model [19]
Turbulence: Realizable k-εmodel [40]
Radiation: Discrete ordinate method [37], weighted sum of gray gas model [37]

Particle tracking: Discrete phase model, Discrete random walk model [41]

Particle models: Spherical particle drag law [45], Rosin-Rammler particle size distribution, Wet
combustion [37], Particle radiation interaction [37]

Pressure-velocity coupling Semi-implicit method for pressure linked equations (SIMPLE) [38]

2.1.1. Devolatilization Modeling

Devolatilization is modeled with the competing two-step reaction mechanism (C2SM) [43]
through the optimization procedure presented in [14]. The main benefit of this approach
is that it accounts for the effect of operating conditions (fuel properties, heating rate) on
the volatile matter release [46]. The optimization process yields kinetic parameters (the
activation energy and pre-exponential factor) for C2SM, based on the results from the
complex functional-group, depolymerization, vaporization, and cross-linking (FG-DVC)
model. FG-DVC is utilized independently of CFD, as a stand-alone model.

The volatile matter evolved during the process is assumed to consist of tar, light gases,
H2O, CO, and CO2. The tar molecule was assumed to be a CxHyOz molecule with C7 as
the main component [47,48]. Light gases are considered as an CmHn molecule. The volatile
evolves as a single compound that instantaneously breaks up into products. The final
volatile composition has the following form:

Vol→ a1CxHyOz + a2CmHn + a3CO + a4H2O + a5CO2 (1)

where ai, x, y, z coefficients are calculated from the FG-DVC results and the fundamental
atom conservation equations.
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2.1.2. Char Conversion Modeling

Char conversion is modeled with the empirical kinetic-diffusion approach [19,49]. It
can be perceived as a resistance network comprised of diffusion and kinetic resistances.
Reaction rate per unit surface area (g/cm2-s) is defined as:

Rs,i =
ps,i

1
D0,i

+ 1
Rkin,i

(2)

where ps,i is the bulk partial pressure of the gas phase species i, D0,i is the diffusion rate
coefficient for species i and Rkin,i is the kinetic rate of species i.

The diffusion rate coefficient is defined as:

D0,i = Ci

(
Tp+Tg

2

)0.75

dp
(3)

where Tp is the particle temperature, dp is the particle diameter, Tg is the gas temperature,
Ci is the mass diffusion constant and is equal to 5× 10−12 sK−0.75.

The kinetic rate for species i is expressed as follows:

Rkin,i = AiT
βi
p exp

(
− Ei

RTp

)
(4)

where A is the pre-exponential factor, β is the temperature exponent, E is the activation
energy and R is the universal gas constant.

The carbon burnout kinetic model (CBK) [50–53] is recognized as one of the most ad-
vanced combustion models available. The original version was developed by Robert Hurt’s
research group at Sandia National Laboratories and Brown University. The key feature of
CBK is the ability to model the low reaction rates in late burnout. The latest known modifi-
cations of the model are the carbon burnout kinetic model for oxidation (CBK/E) [20] and
gasification (CBK/G) [21]. The models incorporate an eight-step Langmuir-Hinshelwood
(LH) kinetics, random pore model surface area evolution of intrinsic particle surface, single
film diffusion, pore diffusion, ash inhibition, and thermal annealing. These approaches
provide accurate results for a wide range of operating conditions. However, their di-
rect implementation into CFD would considerably raise the computational effort. Hence,
following the strategy for devolatilization optimization [14], the current study allows
obtaining adjusted kinetic parameters for the kinetic-diffusion model on the basis of the
results from CBK/E and CBK/G. CBK/E and CBK/G are used independently of CFD as
stand-alone models.

3. Optimization Procedure

The main idea of the optimization procedure is presented in Figure 1. At first, a
CFD simulation is carried out with literature-taken kinetic parameters for the global
kinetic-diffusion model. In the next step, CFD results provide specific input data for
CBK, such as O2% volume distribution, gas temperature, wall temperature, and particle
residence time. Additionally, operating pressure, fuel properties from proximate and
ultimate analyses and particle size are provided. It must be mentioned that CBK can handle
only monodisperse particles. Therefore only the mean particle size was investigated. The
main results of interest are the reaction rate of char-O2 (obtained from CBK/E), one reaction
rate as the sum of char-CO2, char-H2O, and char-H2 reactions (obtained from CBK/G),
and char conversion factor due to the oxidation reaction and overall gasification reaction.
Afterwards, an optimization of kinetic parameters (activation energy, pre-exponential factor,
temperature exponent) is performed through the minimization of the objective function
(Equation (5)). Newly obtained pre-exponential factor, activation energy, and temperature
exponents are further applied into CFD. The second step of the procedure considered the
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comparison of the results with optimized kinetic parameters and non-optimized (literature-
taken) parameters based on the experimental data.

OF(xk) =
∑

Nt,j
j=1

(
Rnet

i,j − Remp
i,j (xk)

)2

Nt,i
(5)

where: Rnet is the reaction rate from the complex models (CBK/E and CBK/G), xk are the
model parameters (the pre-exponential factor, activation energy, temperature exponent), Nt,j is
the number of discrete time steps. The solution is obtained based on the Levenberg-Marquardt
fitting routine. Remp is the reaction rate from the empirical model (Equation (2)).
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Figure 1. Optimization procedure of empirical char conversion model.

It is important to mention that the objective function is calculated twice. One case
considers oxidation, whereas the second case, gasification. The reaction rate from CBK/E is
given in g/cm2-s. The reaction rate from CBK/G is given in 1/s. Therefore, it is necessary
to convert the rate into g/cm2-s. The following relationship has been applied [21,54]:

Rnet
[ g

cm2s

]
=

ρcdp

6(1− X)
Rnet

[
1
s

]
(6)



Energies 2021, 14, 1729 6 of 20

where ρc is the particle density, X is the conversion degree factor. Particle density and char
conversion are also obtained from the CBK/G model. The reason why this is a two-step
process lies in the fact that the char-O2 reaction completely dominates the gasification
process as long as the O2 concentration is greater than approximately 500 ppm [20,21].
Therefore char combustion and char gasification are considered to occur consecutively.

4. Reactor. Computational Domain

The Brigham Young University (BYU) reactor is a one-stage entrained-flow reactor
operated with oxygen under 1 atm (Figure 2). It is 1.8 m long and has a diameter of
0.2 m. Pulverized bituminous Utah coal was used in the investigations. The ultimate and
proximate analyses are presented in Table 2.
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Table 2. Proximate and ultimate analyses of Utah coal [36].

Proximate Analysis, % as Received

Volatile matter 45.6
Fixed carbon 43.7

Ash 8.3
Moisture 2.4

Ultimate Analysis, % Dry-Ash-Free

C 77.6
H 6.56
N 1.42
S 0.55

Coal was supplied in the primary stream with a gas composed of O2, Ar, and H2O.
The secondary stream contained only H2O. The mass flow rates with molar fractions of the
gas components are presented in Table 3. The particle size followed the Rosin-Rammler
distribution where the mass fraction of particles of diameter greater than d is given by:

Yd = e−(
d
d )

n
(7)

where d is the mean diameter, n is the spread parameter.

Table 3. Mass flow rates of coal and gas with molar composition for BYU reactor.

1st Stream, kg/h 26.24

O2 0.85
Ar 0.126

H2O 0.024

2nd Stream, kg/h 6.62

H2O 1

Utah Bituminous Coal, kg/h 23.88
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The parameters applied in this study are presented in Table 4. The kinetic parameters of
devolatilization and homogeneous reactions are presented in Table 5. The reactor geometry
was discretized applying a 2-D axisymmetric grid consisting of approximately 100,000 rectan-
gular cells. A grid independence study was carried out. For further information regarding
the model please refer to the supplementary data. The numerical simulation was validated
against the experimental data of Smith et al. [36] who measured gas-phase concentrations
of CO, H2, and CO2 at different axial and radial locations using isokinetic probes. H2O
concentration was calculated on the basis of the hydrogen elemental balance. This calculation,
however, leads to an ±14% uncertainty owing to the reported uncertainty in the char ash
analysis [36], especially in the flame region. Therefore, the model quality estimation with
regard to the experimental data should only be performed for CO, H2, and CO2.

Table 4. Parameters used for Rosin Rammler distribution.

Min. Diameter Max. Diameter Mean Diameter Spread Parameter

dmin, µm dmax, µm d, µm n
1 85 36 1.033

Table 5. Kinetic parameters for devolatilization and gas-phase reactions (global reaction approach).

Reactions: Kinetic Parameters: A—kg/s Pa,
E—J/kmol, α—No Unit

Devolatilization:

Vol→ 0.218C7H10.61O0.87 + 0.322CH6.33 +
0.309H2O + 0.127CO + 0.024CO2
x = 7, y = 10.61, z = 0.87
m = 1, n = 6.33

A1= 42, 690
E1= 3.71×107

α1= 0.246
A2= 9.785×106

E2= 8.993×107

α2= 0.931

Gas-Phase Reactions:

CxHyOz +
x−z

2 O2 → xCO+
y
2 H2

A = 4.4×1011

E = 1.25×108 [42]

CxHyOz + (x− z)H2O→ xCO+
( y

2+x− z
)
H2

A = 3×108

E = 1.25×108 [42]

CmHn + m
2 O2 → mCO+ n

2 H2
A = 4.4× 1011

E = 1.25× 108 [42]

CmHn + H2O→ mCO+
( n

2+1
)
H2

A = 3× 108

E = 1.25× 108 [42]

CO + H2O→ CO2 + H2
A = 2.75 [46]
E = 8.38×107 [55]

CO + 0.5O2 → CO2
A = 2.24×1012

E = 1.67×108 [56]

H2+0.5O2 → H2O
A = 6.8×1015

E = 1.67×108 [42]
β = −1

The reaction kinetics of CxHyOz and CmHn with O2 and H2O were assumed to be
identical to those of light hydrocarbon molecules, such as CH4 [42]. The choice is justified
because these reaction rates do not vary greatly [55,56]. Table 6 presents four sets of widely
applied literature-taken kinetic parameters and one set of parameters, which was obtained
through the optimization procedure.
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Table 6. Kinetic parameters for surface reactions.

Reactions

Kinetic
Parameters
A—kg/s Pa
E—J/kmol
β—No Unit

Literature
Parameters No. 1

[30]

Optimized
Parameters

Based on CBK/E
and CBK/G

Models

Literature
Parameters No. 2

[42]

Literature
Parameters No. 3

[15]

Literature
Parameters No. 4

[15]

C + 0.5O2 → CO
A 0.052 1.298× 10−3 2.3 0.005 0.005
E 6.1× 107 1.324× 108 9.23× 107 7.4× 107 7.4× 107

β 0 1.233 1 0 0

C + CO2 → 2CO
A 0.0732 0.066 4.4 0.3493 0.0635
E 1.125× 108 1.385× 108 1.62× 108 2.36× 108 1.62× 108

β 0 −0.263 1 0 0

C + H2O→ CO + H2

A 0.0782 1.877× 10−3 1.33 61.484 0.0019
E 1.5× 108 1.588× 108 1.47× 108 3.16× 108 1.47× 108

β 0 −0.124 1 0 0

5. Results

The results are divided into two parts. The first part considers the results from the
optimization procedure. The second part regards the CFD results.

5.1. Optimization Procedure Results

The results consider the optimization of kinetic parameters for the kinetic-diffusion
model based on the reaction rates obtained from the CBK/E and CBK/G models. Figure 3a
presents the reaction rates from CBK/E and the kinetic-diffusion model with literature-
taken kinetic parameters 1 [30]. One can notice that the O2 consumption rate is strongly
overpredicted by the kinetic-diffusion model with literature-taken kinetic parameters
with respect to the detailed CBK/E approach, especially up to 2.2 ms. Figure 3b depicts
optimized reaction rates of the kinetic-diffusion model based on CBK/E results. One can
observe a relatively reasonable agreement. The final coefficient of determination is equal
to 96.1%. In comparison with, e.g., intrinsic-based char conversion models, the kinetic-
diffusion approach is a relatively simple model, and therefore extremely high coefficients
of determination for this approach were not possible.
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As regards the optimization of the gasification step, the first phase in the optimization
process required proper estimation of the frequency factor for surface oxide desorption in
the CBK/G model [21]. The CBK/G version implemented into NEA’s PC Coal lab accounts
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for an empirical correlation, linking the kinetic parameters in the model with the daf carbon
content of the parent coal [57]:

A70 = 100.1Cdaf−0.64 (8)

where A70 is the frequency factor, Cdaf is coal carbon content in dry-ash-free (daf) wt.%.
However, while analyzing the performance of CBK/G for a dataset of 228 coals with

char conversion in the range from 0% to 100%, a significant scatter with respect to the
experiments was observed. It concerned especially low and high conversion levels. It
was concluded that the above empirical relation only depicted the overall tendency in
the gasification reactivity with the coal rank. Therefore, it was suggested to adjust all the
kinetic rates proportionally to the rate of the CO desorption (C (O)→ CO) to obtain the
most accurate match with experiments. As a result, instead of applying Equation (8), the
frequency factor was scaled on the basis of the char conversion experiment of the Illinois
coal [58], which is close to that analyzed in the present study of Utah coal, was based on
the Van Krevelen diagram (Figure 4).

Energies 2021, 14, x FOR PEER REVIEW 9 of 21 
 

Figure 3. (a) Reaction rates of CBK/E and kinetic-diffusion models with literature parameters no. 1 from Table 6. (b) reac-
tion rates of CBK/E and kinetic-diffusion models with optimized kinetic parameters. 

As regards the optimization of the gasification step, the first phase in the optimiza-
tion process required proper estimation of the frequency factor for surface oxide desorp-
tion in the CBK/G model [21]. The CBK/G version implemented into NEA’s PC Coal lab 
accounts for an empirical correlation, linking the kinetic parameters in the model with the 
daf carbon content of the parent coal [57]: 

A70 = 100.1Cdaf  0.64 (8)

where A70 is the frequency factor, Cdaf is coal carbon content in dry-ash-free (daf) wt.%. 
However, while analyzing the performance of CBK/G for a dataset of 228 coals with 

char conversion in the range from 0% to 100%, a significant scatter with respect to the 
experiments was observed. It concerned especially low and high conversion levels. It was 
concluded that the above empirical relation only depicted the overall tendency in the gas-
ification reactivity with the coal rank. Therefore, it was suggested to adjust all the kinetic 
rates proportionally to the rate of the CO desorption (C (O) → CO) to obtain the most 
accurate match with experiments. As a result, instead of applying Equation (8), the fre-
quency factor was scaled on the basis of the char conversion experiment of the Illinois coal 
[58], which is close to that analyzed in the present study of Utah coal, was based on the 
Van Krevelen diagram (Figure 4). 

 
Figure 4. Location of coals in the van Krevelen diagram. Plot also reports coal database for CBK/G 
validation [21]. 

Figure 5 presents the results of the CBK/G model with the frequency factor obtained 
from Equation (8), and with the adjusted frequency factor on the basis of the experimental 
data [58]. Judging by the results, the modified frequency factor will be further incorpo-
rated in the calculations. 

Figure 4. Location of coals in the van Krevelen diagram. Plot also reports coal database for CBK/G
validation [21].

Figure 5 presents the results of the CBK/G model with the frequency factor obtained
from Equation (8), and with the adjusted frequency factor on the basis of the experimental
data [58]. Judging by the results, the modified frequency factor will be further incorporated
in the calculations.
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Figure 6a presents the gasification reaction rate of CBK/G and the reaction rate of
the kinetic-diffusion model with literature-taken parameters no. 1 [30]. Owing to the fact
that the reaction rate from CBK/G is actually the sum of char-CO2, char-H2O, and char-H2
rates, the overall gasification rate for the empirical kinetic-diffusion model was formulated
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as the sum of char-CO2 and char-H2O rates. Based on the literature, the char-H2 reaction
rate is generally very low compared to the other gasification reactions. Therefore its impact
was neglected in the empirical model. The final gasification reaction rate for the empirical
kinetic-diffusion model is therefore defined as follows:

RCO2+H2O+H2 = RCO2 + RH2O (9)
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The choice is relevant because at atmospheric pressures separated active sites for CO2
and H2O can be assumed and consequently, the total reaction rate can be the sum of the
individual rates [59–61]. Based on Figure 6, one can notice a strong overprediction by the
kinetic-diffusion model with literature-taken kinetic parameters no. 1. In such a case, the
char conversion factor would be strongly overpredicted. The figure clearly indicates that
applying literature kinetic parameters can lead to substantial errors. Figure 6b depicts
the optimized global model based on the results of CBK/G. In this case, a coefficient of
determination is equal to 97.2%. The optimized kinetic parameters can be found in Table 6.

Figure 7 depicts the reaction rate of char oxidation for the kinetic-diffusion model with
literature parameters from Table 6 and CBK/E, whereas Figure 8 depicts the reaction rate
of char gasification for the kinetic-diffusion model with literature parameters from Table 6,
and for CBK/G. One can observe a very strong impact of the applied parameters on the
reaction rate. In Figure 8 the results have been presented in two sub-figures because the
reaction rates with literature parameters no. 3 and no. 4 are an order of magnitude smaller
than for parameters no. 1 and no. 2. It is clear that prior to any simulation, char conversion
parameters have to be carefully adjusted in order to accurately predict the behavior of the
rate of surface reactions.
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5.2. CFD Results

This sub-section presents the CFD results for the BYU reactor focusing on the char
conversion aspect. Four sets of literature-taken kinetic parameters and one set of optimized
parameters based on the CBK/E and CBK/G models are analyzed. Figure 9 presents
the molar fraction concentrations of CO, H2, CO2, and H2O along the centerline of the
BYU reactor.
Energies 2021, 14, x FOR PEER REVIEW 12 of 21 
 

(a) (b) 

(c) (d) 

Figure 9. CFD results (a) CO, (b) H2, (c) CO2 and (d) H2O mole fraction distribution along the centerline for five different 
sets of kinetic parameters. 

An extreme impact of the applied char conversion kinetic parameters on the overall 
gas composition can be observed. One can notice that the slope of the curves varies in the 
reforming zone which corresponds to the strength of the gasification reactions. Judging 
by Figures 7 and 8, the second set of kinetic parameters provides the highest reaction rate. 
As a result, in Figure 9 for the second set of kinetic parameters the CO and H2 mole fraction 
curves have the highest slopes in the reforming zone and consequently, the highest 
amount of CO and H2 produced, while they have the lowest amount of CO2 and H2O. As 
for the third set of kinetic parameters, the gasification rate is the slowest (Figures 7 and 8), 
hence the lowest slope of the CO mole fraction curve in the reforming zone can be ob-
served and the smallest amount of the final CO produced. One can notice that the opti-
mized kinetic parameters and the fourth set of literature-taken parameters are the most 
accurate ones with respect to the experimental results. The phenomenon that a given set 
of data can be fitted equally well by more than one pair of kinetic parameters is referred 
to as the compensation effect. This was already mentioned by [62–66]. The impact of gas-
ification reactions is less pronounced in the lean zone and at the beginning of the flame 
zone where devolatilization and char oxidation prevail. However, the contribution of 
these reactions in these zones is also non-negligible. Figure 10 depicts the devolatilization 
process of particles with 6 representative diameters. For clarity, each sub-figure consists 
of 50 particles. A considerable influence of the particle diameter on the onset of devolati-
lization and the overall time of devolatilization can be observed. The sooner the volatiles 
are released, the sooner the surface reactions begin to occur. One can notice that the axial 
distance for which the volatiles are released varies from x = 0.2 m to x = 0.5 m. Therefore, 
different kinetics of the surface reactions will result in different strength of the surface 

Figure 9. CFD results (a) CO, (b) H2, (c) CO2 and (d) H2O mole fraction distribution along the
centerline for five different sets of kinetic parameters.

An extreme impact of the applied char conversion kinetic parameters on the overall
gas composition can be observed. One can notice that the slope of the curves varies in the
reforming zone which corresponds to the strength of the gasification reactions. Judging by
Figures 7 and 8, the second set of kinetic parameters provides the highest reaction rate. As
a result, in Figure 9 for the second set of kinetic parameters the CO and H2 mole fraction
curves have the highest slopes in the reforming zone and consequently, the highest amount
of CO and H2 produced, while they have the lowest amount of CO2 and H2O. As for the
third set of kinetic parameters, the gasification rate is the slowest (Figures 7 and 8), hence
the lowest slope of the CO mole fraction curve in the reforming zone can be observed and
the smallest amount of the final CO produced. One can notice that the optimized kinetic
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parameters and the fourth set of literature-taken parameters are the most accurate ones
with respect to the experimental results. The phenomenon that a given set of data can
be fitted equally well by more than one pair of kinetic parameters is referred to as the
compensation effect. This was already mentioned by [62–65]. The impact of gasification
reactions is less pronounced in the lean zone and at the beginning of the flame zone where
devolatilization and char oxidation prevail. However, the contribution of these reactions in
these zones is also non-negligible. Figure 10 depicts the devolatilization process of particles
with 6 representative diameters. For clarity, each sub-figure consists of 50 particles. A
considerable influence of the particle diameter on the onset of devolatilization and the
overall time of devolatilization can be observed. The sooner the volatiles are released, the
sooner the surface reactions begin to occur. One can notice that the axial distance for which
the volatiles are released varies from x = 0.2 m to x = 0.5 m. Therefore, different kinetics of
the surface reactions will result in different strength of the surface reactions in this region.
As a result, different amounts of CO, H2, CO2, and H2O are to be expected. Judging by
Figure 10a–c, it is also evident that for smaller particles recirculation is much more intense.
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Judging by Figure 11, the applied kinetic parameters have also a non-negligible effect
on the temperature distribution inside the reactor. Due to more intensive gasification
reactions for the literature parameters no. 2 and no. 3, because of their endothermic
character, the temperature is substantially lower, especially in the reforming zone, where
gasification reactions dominate.



Energies 2021, 14, 1729 13 of 20

Energies 2021, 14, x FOR PEER REVIEW 13 of 21 
 

reactions in this region. As a result, different amounts of CO, H2, CO2, and H2O are to be 
expected. Judging by Figure 10a–c, it is also evident that for smaller particles recirculation 
is much more intense. 

 
Figure 10. Particle tracks of volatiles mass fraction for the optimized kinetic-diffusion model during devolatilization of 50 
particles for 6 representative diameters (a) 1 µm, (b) 17 µm, (c) mean-36 µm, (d) 51 µm, (e) 75 µm, (f) 85 µm. 

Judging by Figure 11, the applied kinetic parameters have also a non-negligible effect 
on the temperature distribution inside the reactor. Due to more intensive gasification re-
actions for the literature parameters no. 2 and no. 3, because of their endothermic charac-
ter, the temperature is substantially lower, especially in the reforming zone, where gasifi-
cation reactions dominate. 

 
Figure 11. CFD results: temperature distribution along the centerline for five different sets of ki-
netic parameters. 
Figure 11. CFD results: temperature distribution along the centerline for five different sets of
kinetic parameters.

Table 7 presents the char conversion factor results for the kinetic-diffusion model with
kinetic parameters from Table 6. As was already mentioned, CBK/E and CBK/G models
can handle only monodisperse particles. Therefore the optimized kinetic parameters
inherently correspond to the mean particle diameter. On this basis, Table 7 regards both the
mean particle diameter comparison and all particle fractions with regard to the experiment.
Judging by the results, the optimized kinetic parameters for the mean particle diameter are
in excellent agreement with the experiment. Char conversion factors for all particle fractions
for the optimized parameters and literature parameters no. 4 are in close agreement
with the experiment. Future enhancement of CBK/E and CBK/G models to account for
polydisperse particles would improve the accuracy of simulations, providing more exact
reaction rates. As a result, optimized kinetic parameters would directly correspond to all
particle fractions.

Table 7. CFD results: char conversion degree for surface reaction model with different kinetic parameters with regard
to experiments.

Char Conversion Degree %

Simulation Results
Mean Particle Diameter

36 µm

Simulation Results
All Particle Fractions

1–85 µm

Experiment
All Particle Fractions

1–85 µm

Literature parameters 1 100% 100%

82%
Optimized parameters 83% 77%
Literature parameters 2 100% 99%
Literature parameters 3 27% 59%
Literature parameters 4 80% 74%

The accuracy of the optimization procedure for the axial in-reactor gas composition
(Figure 9) has been additionally assessed with error analysis. A maximum and average
value of absolute errors for non–optimized and optimized models are presented. The
absolute error is defined as:

∆e =
∣∣xexp − xnum

∣∣ (10)

where xexp and xnum are the experimental and numerical values of the specific variables
(e.g., CO/H2/CO2/H2O mole fraction), respectively.

Table 8 presents the quantitative assessment of the procedure. Judging by the results,
the application of the modified parameters and literature parameters no. 4 results in one of
the lowest errors with respect to the experimental data.
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Table 8. Error analysis of CO, H2, CO2 and H2O concentration along the centerline (Figure 9).

Kinetic
Parameters CO H2 CO2 H2O

Max ∆e
(%)

Av. ∆e
(%)

Max ∆e
(%)

Av. ∆e
(%)

Max ∆e
(%)

Av. ∆e
(%)

Max ∆e
(%)

Av. ∆e
(%)

Lit. parameters 1 17.91 6.74 12.80 7.89 10.22 5.87 16.82 11.84
Mod. parameters 18.48 4.82 7.95 5.47 10.15 4.72 20.22 9.58
Lit. parameters 2 20.20 7.94 14.40 8.98 10.15 5.98 19.73 13.04
Lit. parameters 3 11.11 5.71 11.36 7.51 10.14 5.38 19.24 10.35
Lit. parameters 4 12.50 4.90 8.33 5.40 10.16 4.77 20.68 8.99

Figures 12–14 present molar fraction gas concentrations along radial traverses for axial
distances x = 0.13 m, x = 0.20 m, x = 0.28 m, x = 0.34 m, x = 0.51 m, x = 0.81 m, x = 1.12 m
and x = 1.73 m. These traverses are visualized in Figure 15. In most cases, the model results
with the optimized kinetic parameters are in closest agreement with experimental data. As
mentioned, H2O mole fraction results are calculated from hydrogen balance and should not
be considered as credible reference data. The impact of the applied parameters on the radial
distribution is less substantial than for the axial distribution. This observation is sensible
because the gasification reactions that dominate the reforming zone proceed axially along
with the mainstream. Another observation regards the changes in radial concentration.
One may notice that from the axial distance x = 0.51 m, the molar distribution of species
stabilizes in the radial direction. There are insignificant changes in the yield. This means
that after the devolatilization process, gasification reactions, which begin to dominate in
the reforming zone, are radially uniform. On the other hand, substantial changes in the
radial direction (Figures 12 and 13) for the axial distances x < 0.51 m can be observed. These
changes are most abrupt up to the radial distance 0.04 m where the boundary of the flame
is located (Figure 16).
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Figure 17 shows the contour plots of temperature, CO, H2, and CO2 mole fractions,
while Figure 18 presents the contour plots of H2O, O2 mole fractions, and the devolatiliza-
tion reaction rate. Five regions can be noticed in the reactor: the lean zone, the recirculation
zone, the flame zone, the post-flame zone, and the reforming zone. In the lean zone,
equivalence ratios are lower than stoichiometric conditions, which corresponds to high O2
content (Figure 18b). This zone is mainly composed of O2 and H2O, which are introduced
in the primary and secondary streams. The flame zone begins downstream of the lean zone,
reaching very high temperatures–3000 K—owing to the high O2 content in the primary
stream. CO and H2 content are relatively low. In the post-flame zone, which follows the
flame zone, the temperatures are lower than in the flame. This region is also character-
ized by a very rich mixture. CO and H2 are mainly formed in this region because of the
combined effect of the water–gas shift reaction and the gasification reactions. The next
zone is dominated by reforming reactions. In this region, there are lower temperatures,
extremely small gradients, and low conversion rates. CO and H2 continue to increase
slowly approaching the equilibrium conditions. The last region is characterized by a strong
recirculation of the gas and coal particles, the recirculation zone. This is located between
the lean, flame, post-flame zones and the reactor wall.
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6. Conclusions

An optimization procedure for the empirical char conversion kinetic-diffusion model,
based on the detailed CBK/E and CBK/G models, was presented. The numerical model
was validated against the experimental data from the BYU gasifier. The BYU reactor
reference measurements are suitable for this purpose since in-reactor measurement data
are available which is vital when one considers the credible and effective assessment of the
predictive capabilities of the CFD model. The following main conclusions can be drawn:

• The optimization procedure investigated in the current allows enhancing the modeling
strategy by obtaining adjusted kinetic parameters of the kinetic-diffusion model only
for the specific operating conditions.

• The use of the optimization procedure resulted in a better agreement between the
model results and the experimental data in terms of the gas composition and char
conversion factor. In order to further improve the accuracy of the procedure, future
research should consider the application of the intrinsic-based char conversion models
with Langmuir-Hinshelwood (LH) kinetics.

• The applied kinetic parameters of char-oxidation and char-gasification reactions
proved to have a significant impact in the gasification process simulations. The
major effect could be observed on the final gas composition and the char conversion
factor, but also on the gas composition in the flame zone.
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• Due to the versatile character of the method, the presented optimization procedure can
be applied in other areas of interest, provided that both complex and simple models
are available.
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Abbreviations

BYU Brigham Young University
CBK Carbon burnout kinetic model
CBK/E Carbon burnout kinetic model for oxidation
CBK/G Carbon burnout kinetic model for gasification
CFD Computational fluid dynamics
C2SM Competing two-step reaction model
Daf Dry-ash-free
DNS Direct numerical simulation
FG-DVC Functional-group, depolymerization, vaporization, cross-linking model
LES Large eddy simulation
LH Langmuir-Hinshelwood kinetics
RANS Reynolds averaged Navier-Stokes equations
SIMPLE Semi-implicit method for pressure linked equations
WSGG Weighted sum of gray gas model
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