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Abstract: Wind power is cleaner and less expensive compared to other alternative sources, and it
has therefore become one of the most important energy sources worldwide. However, challenges
related to the operation and maintenance of wind farms significantly contribute to the increase in
their overall costs, and, therefore, it is necessary to monitor the condition of each wind turbine
on the farm and identify the different states of alarm. Common alarms are raised based on data
acquired by a supervisory control and data acquisition (SCADA) system; however, this system
generates a large number of false positive alerts, which must be handled to minimize inspection
costs and perform preventive maintenance before actual critical or catastrophic failures occur. To
this end, a fault detection methodology is proposed in this paper; in the proposed method, different
data analysis and data processing techniques are applied to real SCADA data (imbalanced data)
for improving the detection of alarms related to the temperature of the main gearbox of a wind
turbine. An imbalanced dataset is a classification data set that contains skewed class proportions
(more observations from one class than the other) which can cause a potential bias if it is not handled
with caution. Furthermore, the dataset is time dependent introducing an additional variable to deal
with when processing and splitting the data. These methods are aimed to reduce false positives and
false negatives, and to demonstrate the effectiveness of well-applied preprocessing techniques for
improving the performance of different machine learning algorithms.

Keywords: fault detection; machine learning; principal component analysis; SCADA; structural
health monitoring; wind turbine; imbalanced data; support vector machines; k nearest neighbors

1. Introduction

Wind power generation has become increasingly important in daily life. Its use has
increased substantially because of the current environmental crisis and the efforts to mini-
mize environmental damage. It has become one of the best alternative sources for the near
future given its reliability and low vulnerability to the climate change [1]. Supranational
governments such as the European Union have set ambitious goals to migrate from non-
renewable to renewable energy in the next few years. In Spain, over 7000 MW of wind
power capacity was installed between 2007 and 2016 [2], and it continued to increase until
it reached 25,704 MW in 2019 [3]. Among renewable energy sources, the contribution of
wind energy increased from 9.7% in 2007 to 23.7% in 2016 [4]; however, it decreased to
20.8% in July 2020 because of the increased utilization of other renewable sources. In Spain,
renewable energy contributes to [5] 44.7% of the total energy generation. The increased
importance of wind power in the electricity market suggests that there is a need to ensure
year-round production. Therefore, several studies have focused on wind turbine (WT)
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maintenance to ensure reliable performance regardless of weather and to minimize costs
and gas emissions [6]. Currently, preventive maintenance is the most widely employed
maintenance strategy. This strategy includes tasks such as replacement of parts after a
predetermined utilization period, which incurs high costs because of the difficulty associ-
ated with estimating the replacement time frame accurately. The estimated replacement
time frame is affected by factors such as unforeseen external conditions that may lead
to unexpected breakdown, which would create the need for corrective maintenance [7].
Such factors further increase the economic and time costs of the maintenance process.
To deal with these problems, different innovative methods have been proposed. Several
methods involve improving processes inside the WTs, for example, the proposal of an
automatic lubrication system for the WT bearings to contribute to the WT maintenance
process while improving the WT reliability and performance by Florescu et al. [8]. Other
methods such as the condition monitoring (CM) strategy for preventive maintenance have
gained considerable research attention because it employs sensors and data analysis to
optimize the preventive maintenance interval and/or draw predictions that ensure that
maintenance is performed only when it is imperative [9]. This helps minimize part losses
and the related costs involved with common predictive and corrective maintenance strate-
gies. Consequently, companies are conducting research to develop such reliable methods
to detect and/or predict failures associated with WT components [10]. Currently, specific-
purpose based and expensive condition monitoring sensors are developed and used to
perform preventive CM. The supervisory control and data acquisition (SCADA) data are
collected from every industrial-sized WT for use as a dataset. However, it is not a common
approach to employ SCADA data for fault diagnosis and CM. However, recently, it has
gained interest owing to the possibility of using this data for fault diagnoses at almost no
additional cost compared to other CM techniques that require the installation of expensive
sensors. Sequeira et al. [11] demonstrated that several relationships exist between the
variables of SCADA data (e.g., a correlation between the gearbox oil temperature and wind
velocity, active power generation and wind velocity, and the gearbox oil temperature and
active power generation) that can be used to detect and predict faults or optimize fault
detection and maintenance processes. Furthermore, it is common practice to store only the
average of the SCADA data to save storage space; the standard SCADA data for WTs are
sampled at a rate of 1 s, and they are averaged using a time window of 10 min; this is called
the slow-rate SCADA data [12]. This implies that each observation logged by the SCADA
system corresponds to an average of the measurements conducted over the last 10 min [13].
Among these relations, the oil temperature of the gearbox is a variable that is used in the
state-of-the-art. This variable is used extensively because it can be used to assess gear wear
and predict faults that result from it [14]. In this study, this variable is used because of its
relation to the alarm configured in the SCADA system of a wind farm. These alarms cause
problems for park maintenance personnel because it sometimes raises system alerts that
are false alarms. Therefore, it is extremely important to monitor and detect the real state of
an alarm.

Fault diagnosis in WTs can be performed at two different levels: the WT level or the
wind farm level. This study focuses on the WT level, wherein data analysis techniques are
used to detect different types of faults and damage. These techniques include co-integration
analysis for early fault detection and CM [15]; statistical modeling for fatigue load analysis
of WT gearboxes [16]; and the development of indicators to detect equipment malfunctions
by combining SCADA data, digital signals, and behavioral models [17]. Other studies
have applied the Dempster–Shafer evidence theory for fault diagnosis using maintenance
records and alarm data [18], kernel density estimation methods for generating criteria to
assess the aging of WTs [19], early defect identification using dynamical network markers,
and correlation and cross-correlation analyses of SCADA data [20] to analyze the available
data and exploit it. Furthermore, many other studies have used artificial intelligence (AI)
techniques and machine learning (ML), which have become essential in fault detection
and CM fields. These techniques allow training classification and regression models based
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on different types of data that can be extracted from wind power generation process [21]
and [22]. Among the many ML strategies, the use of artificial neural networks (ANNs) and
deep learning strategies is a very popular approach. Their applications include early fault
detection and optimization of maintenance management frameworks [23], fault analysis
and anomaly detection of WT components [24], CM using spatiotemporal fused SCADA
data by convolutional ANNs [25], deep learning strategies using supervised and non-
supervised models [26], etc. Considering all these methods and a real dataset provided
by the company SMARTIVE (https://smartive.eu/ (accessed on 18 March 2021), Sabadell,
Barcelona, Spain), a fault detection methodology is proposed. Real SCADA data from
an operational wind farm are a highly imbalanced dataset; understand an imbalanced
data set, for a binary classification problem, as a classification data set with skewed class
proportions [27]. When the data classified with a certain label (class) have more observa-
tions than the other, this is usually called majority class and the remaining class, with less
observations, is called a minority class. Thus, the proposed methodology deals with an
extreme imbalanced data problem. Furthermore, as real data are employed, the problems
of missing values and outliers are considered. This work includes a comparison between
the imputation of missing data using different techniques.

Data are first preprocessed using principal component analysis (PCA) to exploit the
relationships between SCADA variables, followed by processing using techniques to deal
with data imbalance. PCA is widely used in the literature, but for different applications
and objectives. For instance, and in the field of wind turbines, PCA can be used as a visual-
ization tool [28], to identify suitable features [29,30] or to perform a fault detection based on
hypothesis testing [31,32]. This paper presents a comparative analysis between the results
obtained using supervised ML methods such as k-nearest neighbor (kNN) and support
vector machine (SVM) algorithms fed with processed data using time-split and oversam-
pling techniques for imbalanced datasets. The results obtained using one of the most recent
ensemble methods—a combination of random undersampling and the standard boosting
procedure AdaBoost (RUSBoost)—was used as the baseline. This comparative analysis con-
tributes to the state-of-the-art preprocessing techniques while proposing different methods
for preprocessing data enhances fault detection in WTs. Furthermore, it provides a different
perspective of what can be achieved using a small amount of data to minimize false alarms
(or false positives (fp)) and undetected faults (or false negatives (fn)), while increasing the
detection rate of real alarms (or true positives (tp)), minimizing costs, and contributing to
the WT lifespan.

The rest of this manuscript is organized as follows: Section 2 describes the dataset,
and Section 3 presents the proposed fault detection methodology including the data
preprocessing techniques used to deal with the imbalanced dataset, the description of
the selected ML algorithms along with the performance measures, and the experimental
framework defined for the tests. Furthermore, Section 4 presents the results, which are
then discussed in Section 5. Finally, Section 6 concludes this manuscript.

2. Data Description

Real data comprise two files: one contains a set of measurements recorded by the
SCADA a system of one WT in a Spanish wind farm, and the other is an alarm log that
registers the alarms raised during the same period.

1. File 1: This file contains the monitoring data of the SCADA system corresponding to
WT number 15 of the farm, as measured between 1 January 2015 and 1 August 2015.
The file comprises 29,489 rows and 20 columns, where each recorded measurement
corresponds to the mean value of all data monitored for 10 min (slow rate SCADA
data). The first column contains the exact date and time of the measurement; the
remaining columns contain the data of different monitored variables, which are listed
in Table 1.

https://smartive.eu/
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2. File 2: This file is an alarm log that contains the time, date, description, and state of
different alarms activated over the same period of file 1 for the same WT. It comprises
21 rows and 5 columns. The features that describe the alarm states are listed in Table 2.

Table 1. Description of the variables measured by the SCADA system that comprises the WT monitoring data file.

Index Variable Description Units Type

0 date_time Date and time of the sample - timestamp
1 power Generated real power kW Real
2 bearing_temp Bearing temperature of the turbine ◦C Real
3 cos_phi Power factor - Real
4 gen_1_speed Speed of the generator m/s Real
5 gen_bearing_temp Bearing temperature of the generator ◦C Real
6 grid_current Grid current A Real
7 grid_fre Grid frequency Hz Real
8 grid_v Grid voltage V Real
9 int_fase_r R-Phase intensity a A Real
10 int_fase_s S-Phase intensity a A Real
11 int_fase_t T-Phase intensity a A Real
12 reac_power_gen Generated reactive power kVAR Real
13 rotor_speed Rotor speed m/s Real
14 setpoint_power_act Power generation set point kW Real
15 temp_oil_mult Oil temperature of the gearbox ◦C Real
16 temp_out_nacelle External temperature of the turbine nacelle ◦C Real
17 v_fase_r R-phase voltage a V Real
18 v_fase_s S-phase voltage a V Real
19 v_fase_t T-phase voltage a V Real
20 wind Wind speed m/s Real

a The phases of a three-phase electric power system, commonly denoted as A, B, and C or R, S, and T, originate in a three-phase generator
connected to the output shaft of a WT. The three-phase generator or synchronous generator comprises an inner rotating part called a rotor,
which is surrounded by coils positioned on an outer stationary housing called a stator. When the rotor moves, the machine delivers three
independent voltages with peaks equally spaced over time. Simultaneously, an electric current or intensity is induced. The electric power
generated is transmitted to the grid of the farm, thereby providing three-phase electricity that is transmitted to the main grid, reduced to a
lower voltage, and then transmitted to users [33].

Table 2. Description of features that comprise the alarms report generated by the SCADA system.

Variable Description Type

date_time Date and time of the alarm timestamp
model Model of the wind turbine (wind turbine number inside the park) String
code_desc Description and code of the fault a String
status Status of the alarm (ON, OFF) Bool
alarm Alarm active or not (0,1) Bool

a Alarm activation is related to the oil temperature of the middle bearing of the gearbox.

Alarms listed in Table 2 are triggered by the oil temperature of the middle bearing
of the gearbox. The two alarm codes are generated depending on the temperature level,
which results in four different alerts, as listed in Table 3.

Table 3. Description of the alarm codes present in the provided report file.

Alarm Code Description

TRA-137 Sobre-tmp 137 over-temperature
TRA-135 Sobre-tmp 135 over-temperature
TRA-137 Alta tmp 137 high temperature
TRA-135 Alta tmp 135 high temperature

The SCADA system reports when an alarm is activated or deactivated; fault diagnosis
must be performed based on this information. In this study, all data between the ON
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and OFF alarm states are considered as faulty data, which leads to a binary classification
problem (0—healthy; 1—faulty).

3. Fault Detection Methodology
3.1. Data Analysis, Preprocessing and Labeling

Real datasets such as those provided by the company have several missing values.
In SCADA systems, this is often caused by communication issues such as network down-
time, caching issues, and inconsistent power. Therefore, it is imperative to replace these
values to perform all pertinent calculations. In this study, the missing values were replaced
by the median of their corresponding features. This approach induces less noise and im-
proves the data distribution compared with using the mean values. After data imputation,
it is possible to create a basic visualization of the temperature variables of the dataset,
as illustrated in Figure 1.
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Figure 1. Temperature variables plot: TBearing denotes the WT main bearing temperature, TGenBearing

corresponds to the temperature of the generator bearing, TOilM represents the oil temperature inside
the gearbox, and TOutN represents the nacelle temperature.

The complete period of faulty observations can be identified after comparing the date
and time of each alarm log from the alarm report with the date and time of the monitoring
data. Thus, all data between the ON and OFF states are considered faulty. This process
adds a vector of labels to the dataset, wherein 1 indicates that an observation is classified
as faulty, and 0 indicates a healthy observation. For visualization, and considering that the
alarms are related to the gearbox temperature, faulty observations were plotted along with
the oil temperature variables, as shown in Figures 2 and 3.
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Figure 2. Measured temperatures and associated discrete faults.
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Figure 3. Measured temperatures and associated merged faults.

3.2. Data Modeling and Dimension Reduction by Principal Component Analysis

After the initial stage of data integration that includes data imputation and labeling,
PCA was used for both data transformation and data reduction. In the present framework,
data transformation is understood as the application of a particular function to each element
in the dataset to uncover hidden patterns. Data reduction is conducted to reduce data
complexity and computational effort and time. The PCA transforms the dataset into a
new set of uncorrelated variables called principal components (PCs) that are sorted in the
descending order with respect to the retained variance given by the eigenvalues of the
variance–covariance matrix [34].
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The algorithm of the proposed approach is described as follows. Consider the ini-
tial dataset

D = (dij)i=1,...,N
j=1,...,p

=

x1 · · · xj · · · xp y(p+1)



d1,1 · · · d1,j · · · d1,p d1,(p+1)
...

. . .
...

. . .
...

...

di,1 · · · di,j · · · di,p di,(p+1)
...

. . .
...

. . .
...

...

dN,1 · · · dN,j · · · dN,p dN,(p+1)

X Y

∈ MN×(p+1)(R), (1)

where i = 1, . . . , N and j = 1, . . . , p.
Matrix D comprises a matrix X ∈ MN×p(R), which contains N observations (or

samples) described by p features (or variables) called xj, j = 1, . . . , p, and a vector Y ∈ RN

that contains N known labels of healthy (0) and faulty data (1).
When the following set is defined

idx = {i ∈ {1, . . . , N} | di,(p+1) = 0},

data in matrix D in Equation (1) are split into healthy data (H) and faulty data (F)

H =
(
dij
)

i∈idx
j=1,...,p

∈ M(Nh)×p(R),

F =
(
dij
)

i∈{1,...,N}\idx
j=1,...,p

∈ M(N f )×p(R),

where Nh = #idx and N f = N − #idx are the total number of healthy and faulty observa-
tions, respectively.

Then, healthy data are standardized using Z-score normalization. The standard
deviation of each column is equal to 1, and its mean is equal to 0. This is calculated as

h̆ij =

hij − 1
Nh

Nh

∑
i=1

hij√√√√ 1
Nh−1

Nh

∑
i=1

(
hij −

1
Nh

Nh

∑
i=1

hij

)2
, i = 1, . . . , Nh, j = 1, . . . , p, (2)

where hij represents the element in the ith row and the jth column of matrix H. The stan-
dardized healthy data are now called H̆. Then, the variance–covariance matrix of H̆ is
computed as

cov(H̆) =
1

Nh − 1
H̆>H̆ ∈ Mp×p(R), (3)

where Nh denotes the number of observations (rows) in matrix H̆.
The PCA identifies linear manifolds characterizing the data by diagonalizing the

variance–covariance matrix cov(H̆) = PΛP>, where the diagonal terms of Λ are

λ1 > λ2 > · · · > λp.

Analogously, the eigenvectors that form the columns of matrix P are sorted in the
same order. The matrix P ∈ Mp×p(R) is called the PCA model of the dataset H, where
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each column of this matrix corresponds to a linear combination of the xj features of the
normalized healthy dataset H̆.

In the next step, the faulty data stored in F are standardized using the mean and
standard deviation of the corresponding column of healthy data

f̆ij =

fij − 1
Nh

Nh
∑

i=1
hij√√√√ 1

Nh−1

Nh
∑

i=1

(
hij − 1

Nh

Nh
∑

i=1
hij

)2
, i = 1, . . . , N f , j = 1, . . . , p, (4)

where fij denotes the element in the ith row and jth column of matrix F.
Finally, all data are transformed using the PCA model P as

Th = H̆P ∈ MNh×p(R), (5)

Tf = F̆P ∈ MN f×p(R). (6)

The transformed datasets Th and Tf are the projections of the normalized healthy (H̆)
and faulty (F̆) datasets onto the vector space spanned by the PCs. This process is applied
to the training and testing datasets of the ML algorithms.

For a comprehensive study of these datasets and the effect of the PCA model, the pro-
portion of variance explained (PVE) or explained variation is used. The PVE measures the
proportion at which a mathematical model affects the dispersion of a dataset. The PCA
is used to analyze the distribution of information among the PCs to select components
that can be discarded. Several tools have been proposed to study the explained variations.
For example, the scree plot is a graphical tool built by plotting the individual explained
variances of each PC along with the cumulative PVE (CPVE) obtained by adding the PVE
of each PC individually. The PVE associated with the jth principal component is

PVEj =
λj

∑
p
i=1 λi

, j = 1, . . . , p, (7)

while the CPVE of the first j PCs is

CPVEj =
λ1 + · · ·+ λj

λ1 + · · ·+ λp
=

∑
j
i=1 λi

∑
p
i=1 λi

, j = 1, . . . , p. (8)

The scree plot of the PCA model is shown in Figure 4.
Figure 4 shows the distribution of variance among the different PCs, which indicates

where the most information is located. Therefore, the transformation using only ` ∈ N, ` <
p PCs induces a change because a reduced version of the PCA model is used as

P` ∈ Mp×`(R). (9)

Dimensionality reduction is performed using the reduced PCA model defined in
Equation (9):

Th,` = H̆P` ∈ MNh×`(R), (10)

Tf ,` = F̆P` ∈ MN f×`(R). (11)
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Figure 4. Principal components analysis scree plot.

According to Figure 4, the first ` = 6 PCs are the most suitable for use as they account
for over 95% of the cumulative variance.

To observe the distribution of the faults and healthy data, the first three PCs are
plotted, as shown in Figure 5. Figure 5 shows the large difference between the number
of the members of each class (healthy and faulty). This is a highly imbalanced dataset
containing 29,459 healthy observations and only 29 faults—a condition that can lead to a
bias toward the healthy class when using the dataset to train an ML algorithm.

Figure 5. Projection of normalized data into the vector space spanned by the first three
principal components.

3.3. Techniques for Dealing with Imbalanced Data

Two balancing techniques are proposed to deal with the highly imbalanced dataset:
the first is random oversampling, which is a simple and effective technique used to generate
random synthetic data from the minority class of the dataset. This technique can outperform



Energies 2021, 14, 1728 10 of 26

the undersampling technique [35] when used to enhance classification processes [36].
Furthermore, this technique can be combined with advanced preprocessing techniques [37]
to obtain better results.

The second technique is a data augmentation method based on data reshaping. Data
augmentation works by increasing the number of available samples without increasing
the size of the dataset. It is frequently used to enhance deep learning algorithms that
use images [38,39]. The performance of these algorithms depends on the shape and
distribution of the input data. Thus, different reshaping techniques have been developed
to improve their effectiveness [40]. Studies have been performed on reshaping time-series
data. For example, acoustic signals have been reshaped as a matrix by following the same
principles used by deep learning algorithms with images [41], whereas multisensory time
series data have been reshaped for tool wear prediction [42]. A data-reshaping technique
for time series data was proposed based on these ideas. This technique is similar to the one
used with acoustic signals, which encapsulates the time series by creating a new matrix for
each time window to add more information to each observation without increasing the
size of the dataset. Several time window shapes are proposed to determine their effect on
each classification algorithm, and the most appropriate one for SCADA data are selected.
This technique can be used with the random oversampling technique if the data remain
imbalanced after processing. These techniques are described in detail below.

3.3.1. Random Oversampling

The random oversampling technique is widely used to solve the imbalanced data
problem because of its simplicity and effectiveness. It is a non-heuristic method that
replicates the observations of determinate characteristics from the minority class to balance
the dataset [43]. However, despite its simplicity, it must be used carefully because it can
lead to overfitting of ML algorithms [44].

The technique generates n− 1 synthetic observations from each observation of the
minority class by adding random Gaussian noise. This produces a vector of n ∈ N ob-
servations. The natural number n can be calculated using the ratio of the size of each
class to balance them and obtain a 50/50 proportion in the case of a binary classifica-
tion. Furthermore, it can be selected arbitrarily based on the requirements of the study.
Equations (12) and (13) describe the oversampling approach as

f̃ 1
ij = f̆ij, i = 1, . . . , N f , j = 1, . . . , p, (12)

f̃ k
ij = f̆ij + cεk, i = 1, . . . , N f , j = 1, . . . , p, k = 2, . . . , n, (13)

where εk, k = 2, . . . , n represents the realization of the random variable E → N(0, 1).
As stated in Equations (12) and (13), a standard Gaussian random noise is added to each
observation with a linear scale factor of c = 0.035. When introducing synthetic observations,
if the dataset is time-dependent, such as SCADA data, the time-dependence must not be
altered. The synthetic observations must be inserted immediately after they are generated
by the original observation to avoid altering this time-dependence.

In the initial test, n = 1000 was used. This selection allows the generation of a vector
with 29,000 synthetic faults, and it also includes the original faults, as described previously.
Figure 6 shows the distribution of the transformed data with fault oversampling.
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Figure 6. Projection of normalized data into the vector space spanned by the first three principal
components and the oversampled faulty data.

3.3.2. Data Reshaping

In the initial dataset described in Equation (1), we have N observations (or samples)
described by p features (or variables). To enhance the quality of information provided by
each sample, we propose data reshaping, which is a data processing technique that helps
the classifier extract as much information as possible from the studied event. The method
comprises four steps, and it is illustrated in Figure 7 using the distribution of one of the
variables of the dataset and its time-dependence.

• Step 1. Each feature xj, j = 1, . . . , p of the dataset described in Equation (1) is
divided into small pieces of data called windows Wk, k = 1, . . . , bN/Wszc, where
b·c represents the floor function. All windows must contain the same number of
observations. The number of observations captured by each window is called the
window size Wsz, which determines the amount of data captured. Therefore, it must
be selected carefully; if a large amount of data are captured, then important patterns
of the dataset may be removed when these are grouped over a single new sample.
In contrast, if insufficient data are captured, then the method will be ineffective
because the new sample will not be sufficiently rich to enhance the process. To avoid
these drawbacks, Wsz was carefully selected by considering the characteristics of
the dataset such as sampling time, amount of data, and physical variable behavior.
All data are collected such that, if the dataset is time-dependent, it will not mix any
observations to maintain its time-dependence and avoid data leakage.

• Step 2. All information inside the window Wk, k = 1, . . . , bN/Wszc, of size Wsz is
captured and stored as a new observation. All windows that contain at least one
faulty observation are relabeled as faulty.

• Step 3. Each new observation is stacked to create a new feature matrix with dimen-
sions bN/Wszc ×Wsz.

• Step 4. After reshaping the data, it can be split into training and testing sets to be
standardized and used to train and test the models.
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Figure 7. Graphical description of the data reshaping technique.

3.4. Machine Learning Classifiers

The ML algorithms selected to detect faults in WTs are two classical methods: kNN
and SVM. These two methods were compared with RUSBoost, which was designed to
deal with the imbalanced data problem. It is known for its excellent performance. In the
context of the present work, RUSBoost was used as the baseline to test the proposed data
preprocessing techniques, and it was applied with the classical methods to deal with the
imbalanced data problem.

3.4.1. k Nearest Neighbors (kNN)

kNN is one of the simplest ML algorithms [45]. Given a new data point to be classified,
this algorithm finds the closest k data points in the set, i.e., the so-called nearest neighbors.
The new data point is then classified based on multiple votes of the neighbors (majority
vote in the case of binary classification). This means that the studied point is classified into
the same class as the majority of its neighbors (see Figure 8a). The words nearest or closest
imply the measurement of the distance between the studied sample and its neighbors;
measuring this distance may lead to variations in this approach. The most common is the
Euclidean distance, which is a special case of the Minkowski distance, i.e., the Minkowski
distance of order 2 [46].

3.4.2. Support Vector Machines (SVM)

An SVM is a powerful ML algorithm that can perform linear and nonlinear classifica-
tion and regression, and it is well suited for complex, medium, or small datasets [47]. This
method, which is also called the maximum margin classifier, finds the widest gap between
classes. The data points that exceed the limits of the margin near the separator are called
support vectors as they hold up the separator (see Figure 8b). The kernel trick—a function
called a kernel is used to transform the data into a higher dimension to make it more
separable—is used to extrapolate this method to higher dimensions and more complex
data. The SVM combines the advantages of the nonparametric and parametric models,
which have the flexibility to represent complex functions but are resistant to overfitting [46].
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Figure 8. Graphical description of the kNN (a) and SVM (b) algorithms.

3.4.3. Random under Sampling Boost (RUSBoost)

RUSBoost belongs to the family of ensemble methods of ML, specifically those that use
hypothesis boosting. The boosting refers to any ensemble method that combines several
weak learners (other common ML algorithms) into a strong learner. The general idea
of most boosting methods is to train predictors sequentially and iteratively to improve
their predecessor [47]. This algorithm was specifically designed to work with imbalanced
datasets using undersampling. This involves taking N, the number of members in the class
with the least members in the training data, and taking only N observations of every other
class with more members in it. That is, if there are K classes, then, for each weak learner in
the ensemble, RUSBoost takes a subset of the data with N observations from each of the K
classes [48].

3.4.4. Performance Measures for Machine Learning Classifiers

Several indicators have been developed to measure the performance of ML algorithms.
These indicators are based on the capacity of the algorithm to classify the different objects
presented to them. The metrics calculation process uses a block of the dataset to train
the ML model (training data), and then the model is used to classify the remaining data
(testing data). This process generates a set of predicted labels that are compared with the
original data labels. The overall process is called supervised learning, and it can be used
for binary classification (two labels in the data) or multiclass classification (more than two
labels) [49]. The former is used in the present study. The comparison of real and predicted
labels enables the creation of a confusion matrix, as shown in Table 4.

In Table 4, tp denotes the number of observations classified as positive, and fp denotes
the number of observations that are classified as positive but are truly negative. Similarly, tn
represents the number of observations classified as negative, and fn represents the number
of observations that are classified as negative but are truly positive. All confusion matrices
in this study contain the information listed in Table 4 with a few additions for improved
analysis. The performance measures can be calculated as shown in Equations (14)–(21).
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Table 4. Confusion matrix for binary classification performance assessment.

Predicted Class
Negative Positive

True class
Negative True negative

(tn) a
False positive

(fp) a

Positive False negative
(fn) a

True positive
(tp) a

a Along with the number of true negatives (tn), a percentage is included that shows the negative predictive value
(npv). Along with the number of false negatives (fn), a percentage is included that represents the false omission
rate (for). The number of true positives is accompanied by a percentage that shows the positive predictive value
(ppv). Finally, the number of false positives (fp) is completed with the false discovery rate (fdr) percentage.

• Accuracy (acc). Measures the number of correct predictions made by the model over
the total number of observations.

acc =
tp+ tn

tp+ fp+ tn+ fn
. (14)

• Precision or positive predictive value (ppv). Measures the number of correctly clas-
sified positive class labels over the total number of positive-predicted labels, and it
describes the proportion of correctly predicted positive observations.

ppv =
tp

tp+ fp
. (15)

• False discovery rate (fdr). Measures the number of incorrectly classified positive class
labels over the total number of positive predicted labels, describes the proportion
of incorrectly predicted positive observations, and complements the information
obtained by the precision.

fdr = 1− ppv. (16)

• Negative predictive value (npv). Measures the number of correctly classified negative-
class labels over the total number of negative predicted labels, and it describes the
proportion of correctly predicted negative observations.

npv =
tn

tn+ fn
. (17)

• False omission rate (for). Measures the number of incorrectly classified negative-class
labels over the total number of negative predicted labels, describes the proportion of
incorrectly predicted negative observations, and it is complementary to the negative
predictive value.

for = 1− npv. (18)

• Sensitivity/Recall/True positive rate (tpr). Describes the fraction of correctly classified
positive observations.

rec =
tp

tp+ fn
. (19)

• F1 score (F1). It is the harmonic mean between precision and recall. It is calculated using

F1 = 2
ppv× rec

ppv+ rec
. (20)

• Specificity/False positive rate (fpr). The harmonic mean between precision and recall.

fpr =
tn

tn+ fp
. (21)
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3.5. Experimental Framework

Two tests were conducted to select the best fault detection method. A flowchart of
the proposed approach and how it is applied is given in Figure 9. The tests are defined
as follows:

SMARTIVE data

SCADA data

alarm logs

mean (var) 

median (var) 

Labeling
0 = no fault

1 = fault

Cleaning and labeling

Fill NaN

RUSBoost

kNN

SVM

tuning hyperparam
eters / F1 score

RESULTS

Time split

Reshaping

Standardize

PCA

Train/Test

Time split

Train/Test

Standardize

PCA

Figure 9. Flowchart of the proposed approach. SCADA data are first cleaned and labeled and then processed using two
strategies: time split and reshaping. After, rescaled and projected into the PCA model before the ML classifiers. ML
classifiers are tuned using the F1 Score to get the best possible results.

• Test 1. The dataset was split at an observation labeled as faulty. That observation was
strategically selected to ensure that the resulting subsets have sufficient healthy and
faulty information for the training and testing processes. Another reason to split the
dataset this way is to maintain its time-dependence and eliminate the risk of data
leakage. Therefore, this approach is called the time split. Afterwards, the data are
standardized and modeled with the PCA method. The RUSBoost algorithm was fed
with these data without any further processing to create a performance baseline. Then,
the training and testing datasets used to feed the kNN and SVM algorithms were
oversampled to create a balance using n = Nh − 1 or n = N f − 1, depending on which
one is the minority class. This method is illustrated in Figure 10.

• Test 2. The time series dataset was reshaped as detailed in Section 3.3.2. The new
observations with faults were identified, and the observations were modeled using
the PCA method. Then, the data were split using the method described in test 1
(time split). The RUSBoost algorithm was fed with reshaped data without any further
processing to obtain the performance baseline. The training and testing datasets used
to feed the kNN and SVM algorithms were oversampled; the oversampling method
became necessary as the data imbalance was worsened by reshaping. The balance is
generated using n = Nh − 1 or n = N f − 1, depending on which is the minority class.

For all tests, the ML algorithms were tuned by predicting the labels using the testing
dataset. Using these labels, the performance metrics were calculated and stored at each
iteration of the grid search algorithm. This algorithm sweeps over various previously
defined hyperparameters, and it selects the best one using the highest F1 score obtained
from all performed tests. The F1 score was considered because it reduces false positives
and false negatives by creating a trade-off between precision and recall; simultaneously, it
improves the detection of true positives.
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Figure 10. Graphical description of the time split method using the distribution of the used data set.

The hyperparameters selected to tune each algorithm are

• k-nearest neighbors. In this algorithm, the number of nearest neighbors swept is
between 1 and 200, and the Euclidean distance is used.

• SVM. The SVM is configured to function as a nonlinear separator using the radial
basis function. It is tuned using the kernel scale γ (commonly known as the gamma
factor) and a box constraint C (also known as the C factor or weighting factor) for the
misclassified data. To test soft and hard classification boundaries, the hyperparameters
were changed from small to large values. The number of PCs (#PC) selected for each
dataset was considered to tune the kernel scale. Furthermore, the kernel scale was
computed as the weighted square root of the number of PCs of the dataset used.

γ = α
√

#PC, α ∈ {1/6, 1/4, 1/2, 1, 2, 4, 6, 8, 10}
C ∈ {1, 5, 10, 50, 100, 500, 1000}

• RUSBoost. The hyperparameters of this algorithm are the maximum splits of the tree
MS, the number of learning cycles Lc, or iterations where the algorithm is going to
run to select the best tree by majority voting. The learning rate Lr that controls the
shrinkage of the contribution of each new base model added to the series via gradient
boosting is

MS ∈ {1, 2, 5, 10, 25, 50, 100, 250, 500, 1000}
Lc ∈ {10, 25, 50, 100, 250, 500, 1000, 1500, 2000, 3000, 5000}
Lr = 0.1

4. Results

Non-oversampled and oversampled datasets were split and transformed according to
the tests described in the previous section. The resulting data distributions are summarized
in Tables 5 and 6. In both tables, Obs denotes the number of observations.

Table 5. Non-oversampled dataset characteristics after applying the splitting techniques per test.

Test Approach
Window

Size
(Hours)

Window
Size

(Obs)
PCs

Training
Size

(Obs)

Training
Faults
(Obs)

Validation
Size

(Obs)

Validation
Faults
(Obs)

1 Time Split − − 6 28,895 18 593 11

2 Reshaping
0.5 3 10 9632 8 197 4
1 6 16 4816 5 98 2
3 18 31 1601 2 37 2
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Table 6. Oversampled data set characteristics after applying the splitting techniques per test.

Test Approach
Window

Size
(Hours)

Window
Size

(Obs)
PCs

Training
Size

(Obs)

Training
Faults
(Obs)

Validation
Size

(Obs)

Validation
Faults
(Obs)

1 Time Split − − 6 57,731 28,854 1143 561

2 Reshaping
0.5 3 10 19,240 9616 381 188
1 6 16 9616 4805 190 94
3 18 31 3195 1696 67 32

4.1. Test 1: Time Split
4.1.1. kNN Results

The optimal hyperparameters that yield the best possible classification results using
the kNN algorithm are k = 3 and k = 43 nearest neighbors for the non-oversampled and
oversampled data, respectively. The confusion matrices for the aforementioned cases are
shown in Figure 11.
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Figure 11. kNN confusion matrix using non-oversampled (left) and oversampled (right) data with
the time split (test 1).

Figure 11 demonstrates the effectiveness of the oversampling method technique when
time-splitting the data to train the kNN model. Time-splitting enables the detection of all
faults with only a 6% false discovery rate when oversampling.

4.1.2. SVM Results

The optimal hyperparameters that yield the best possible classification results using
the SVM algorithm are listed in Table 7.

Table 7. Optimal hyperparameters for the SVM in test 1.

Data Set Box Constraint Kernel Scale

non-oversampled 50 0.40
oversampled 1000 14.69

Figure 12 shows the confusion matrices for the SVM algorithm, where the oversam-
pling technique with time splitting is very effective. Furthermore, it allows the classification
of most faults with an fdr of 8% and for of 1% for the oversampled and non-oversampled
cases, respectively. This implies that the kNN algorithm achieves a slightly better perfor-
mance for this type of analysis.
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Figure 12. SVM confusion matrix using non-oversampled (left) and oversampled (right) data with
the time split (test 1).

4.1.3. RUSBoost Results

Table 8 lists the optimal hyperparameters obtained for the RUSBoost algorithm.

Table 8. Optimal hyperparameters for the RUSBoost in test 1.

Dataset Maximum Splits Learning Cycles

non-oversampled 5 1500

Figure 13 shows the RUSBoost results with the optimal hyperparameters to be used
as the baseline. Recall that this algorithm was specifically designed to handle highly
imbalanced datasets. In this specific dataset, all faulty samples can be correctly classified,
but with an fdr of 78%. These results demonstrate the effectiveness of the oversampling
technique compared with the undersampling method used by the RUSBoost algorithm for
this type of dataset. Oversampling empowers the kNN method to perform better than the
RUSBoost algorithm on the same initial dataset.
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Figure 13. RUSBoost confusion matrix using the non-oversampled data set with the time split (test 1).

4.1.4. Performance Charts

The performance charts (Table 9) summarize the performance metrics calculated for
each algorithm with the time-split data division. Recall that the hyperparameters of the
algorithms were tuned by optimizing the F1 score.

Table 9. Performance metrics comparison for results obtained with the time split (test 1).

Algorithm Data Set acc (%) ppv (%) rec (%) F1 (%) fpr (%)

kNN non-oversampled 98.65 100.00 27.27 42.85 100.00
oversampled 96.93 94.12 100.00 96.97 93.98

SVM non-oversampled 99.15 100.00 54.54 70.58 100.00
oversampled 95.36 91.50 99.82 95.48 91.06

RUSBoost non-oversampled 93.59 22.44 100.00 36.66 93.47
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Table 9 highlights the effect of the oversampling technique combined with the time
split for the time-dependent data.

RUSBoost achieved a sensitivity of 100%; however, it achieved a precision of only
22.44%. As expected, the non-oversampling strategies with kNN and SVM exhibited
poor performance with low sensitivities of 27% and 54%, respectively; the oversampling
strategies achieved high sensitivity and precision scores exceeding 91% in both cases.

Table 10 lists the training and prediction times for a single sample using each algorithm
on a laptop with 12 GB RAM, and an i7 processor running on a Microsoft Windows home
operating system, version 20H2. The table highlights another advantage of using the
oversampling technique, i.e., the training and prediction times of the algorithms fed with
oversampled data that are considerably lower than those of the RUSBoost method.

Table 10. Computation time per algorithm while training and predicting one single sample using
time split (test 1).

Algorithm Data Set Training Time (s) Prediction Time (s)

kNN non-oversampled 9.78 × 10−3 2.31 × 10−3

oversampled 1.17 × 10−2 3.61 × 10−3

SVM non-oversampled 5.97 × 10−1 5.60 × 10−4

oversampled 1.98 1.75 × 10−3

RUSBoost non-oversampled 15.64 7.78 × 10−1

4.2. Test 2: Data Reshaping
4.2.1. kNN Results

The optimal hyperparameters that yield the best model using the kNN algorithm are
listed in Table 11 for each time window considered.

Table 11. Optimal hyperparameter for kNN in test 2.

Window Size/Data Set Nonoversampled Oversampled

30 min 1 90
1 h 1 4
3 h 1 17

Figure 14 shows the confusion matrices obtained for the different reshaping window
sizes considered.
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Figure 14. kNN confusion matrices. Results without oversampling (top) and with oversampled data (bottom). Results with
a time windows of 30 min (left), 1 h(center), and 3 h (right).
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The optimal hyperparameters that yield the best possible classification results using422
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Figure 14. kNN confusion matrices. Results without oversampling (top) and with oversampled data
(bottom); results with a time windows of 30 min (left), 1 h (center), and 3 h (right).

The first row of plots in Figure 14 are related to the non-oversampled data, where the
imbalanced dataset clearly leads to poor sensitivity for all time windows (all or half of the
faulty samples were not detected). Figure 14 (left) shows the results obtained by feeding
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the kNN algorithm with the reshaped modeled data with a time window of 30 min with
and without oversampling. Using the oversampling technique significantly improved the
performance. Figure 14 (center) shows the results obtained using a time window of 1 h.
In the non-oversampled case, the performance decreased with an fdr and for of 75% and
1%, respectively, in contrast with the performance of the 30 min window. The oversampled
case obtained the best results; it reached an ppv of 95% with an fdr of 5% compared with
the previously shown time window. Finally, Figure 14 (right) shows the results obtained
with the 3 h time window, which were worse than the previous time reshapes.

4.2.2. SVM Results

The optimal hyperparameters that yield the best possible classification results using
the SVM algorithm are listed in Table 12.

Table 12. Optimal hyperparameters for SVM in test 2.

Nonoversampled Oversampled
Window Size Box Constraint Kernel Scale Box Constraint Kernel Scale

30 min 5 1.58 1 18.97
1 h 50 8.00 1 8.00
3 h 1 0.92 1 55.67

Figure 15 shows the confusion matrices calculated using the predicted labels.

Version March 15, 2021 submitted to Energies 21 of 27

Table 10: Optimal hyperparameters for SVM in test 2.

nonoversampled oversampled
Window size Box constraint Kernel scale Box constraint Kernel scale

30 min 5 1.58 1 18.97
1 h 50 8.00 1 8.00
3 h 1 0.92 1 55.67

Figure 15 shows the confusion matrices calculated using the predicted labels.424

0 193
99%

0
0%

1 2
1%

0

2
100%

1

Tr
ue

C
la

ss

Predicted Class

0 96
100%

0
0%

1 0
0%

0

2
100%

1

Tr
ue

C
la

ss

Predicted Class

0 35
95%

0
0%

1 2
5%

0

0
0%

1

Tr
ue

C
la

ss

Predicted Class

0 100
100%

93
33%

1 0
0%

0

188
67%

1

Tr
ue

C
la

ss

Predicted Class

0 86
100%

10
10%

1 0
0%

0

94
90%

1

Tr
ue

C
la

ss

Predicted Class

0 31
66%

4
20%

1 16
34%

0

16
80%

1

Tr
ue

C
la

ss

Predicted Class

Figure 15. SVM confusion matrices. Results without oversampling (top) and with oversampled data (bottom). Results with
a time window of 6 h (left), 12 h (middle), and 24 h (right).
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a time window of 1 h. It was observed that reshaping can enhance the classification428

process using the SVM when trained with imbalanced data because it leads to the correct429

classification of a pair of faulty samples among 98 observations with nonoversampled430

data. Further, oversampled data achieve good performance, showing an fdr of only 10%431
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obtained with this time window.434

4.2.3. RUSBoost Results435
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Table 11: Optimal hyperparameter for RUSBoost in test 2.

Window size Maximum splits Learning cycles

30 min 1 5000
1 h 1 1500
3 h 5 25

Figure 15. SVM confusion matrices. Results without oversampling (top) and with oversampled data
(bottom); results with a time window of 6 h (left), 12 h (middle), and 24 h (right).

Figure 15 (left) shows the results obtained by feeding the SVM algorithm with the
reshaped modeled data with a time window of 30 min. As expected, the oversampling
dramatically improved the results. Figure 15 (center) shows the results obtained using
a time window of 1 h. It was observed that reshaping can enhance the classification
process using the SVM when trained with imbalanced data because it leads to the correct
classification of a pair of faulty samples among 98 observations with non-oversampled data.
Furthermore, oversampled data achieve good performance, showing an fdr of only 10%
and the perfect classification of healthy data. Figure 15 (right) shows the results obtained
using a time window of 3 h. This is the same as that for the kNN; the worst results were
obtained with this time window.

4.2.3. RUSBoost Results

The optimal hyperparameters that yield the best classifier using the RUSBoost algo-
rithm are listed in Table 13.



Energies 2021, 14, 1728 21 of 26

Table 13. Optimal hyperparameter for RUSBoost in test 2.

Window Size Maximum Splits Learning Cycles

30 min 1 5000
1 h 1 1500
3 h 5 25

Figure 16 shows the confusion matrices calculated using the predicted labels.
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Figure 16. RUSBoost confusion matrix using data processed with a time window of 30 min (left), 1 h (center), and 3 h (right).

Figure 16 shows the results of feeding the RUSBoost algorithm with reshaped data
using time windows of 30 min (left), 1 h (center), and 3 h (right), respectively. In all cases,
the RUSBoost algorithm achieved a high sensitivity (100%) but with low precision; i.e., it
generated a significant number of false positives that produce fpr of 75% for the best case
(3 h window) and 92% for the worst case (1 h window).

4.2.4. Performance Charts

Tables 14 and 15 show the performance and execution times of the algorithms fed
with the reshaped and oversampled data.

Table 14. Performance metrics comparison (test 2) when using time windows of 0.5, 1, and 3 h.

Algorithm Windows Size Data Set acc (%) ppv (%) rec (%) F1 (%) fpr (%)

kNN 0.5 h non-oversampled 98.98 100.00 50.00 66.66 100.00
0.5 h oversampled 92.65 87.38 99.46 93.03 86.01

SVM 0.5 h non-oversampled 98.98 100.00 50.00 66.66 100.00
0.5 h oversampled 75.59 66.90 100.00 80.17 51.81

RUSBoost 0.5 h non-oversampled 88.32 14.81 100.00 25.80 88.08

kNN 1 h non-oversampled 95.92 25.00 50.00 33.33 96.87
1 h oversampled 97.37 94.95 100.00 97.41 94.79

SVM 1 h non-oversampled 100.00 100.00 100.00 100.00 100.00
1 h oversampled 94.73 90.38 100.00 94.94 89.58

RUSBoost 1 h non-oversampled 76.53 8.00 100.00 14.81 76.04

kNN 3 h non-oversampled 94.59 0.00 0.00 0.00 100.00
3 h oversampled 74.62 94.11 50.00 65.30 97.14

SVM 3 h non-oversampled 94.59 0.00 0.00 0.00 100.00
3 h oversampled 70.14 80.00 50.00 61.53 88.57

RUSBoost 3 h non-oversampled 83.78 25.00 100.00 40.00 82.85

Table 14 summarizes the performance of the proposed algorithms. First, it shows
that the performance of the 30 min time window is acceptable for both kNN and SVM;
however, it is poor for RUSBoost, where it achieves a precision of only 14.81%. The F1
score always improves when using the oversampling technique for kNN and SVM. Second,
the performance was further improved using the 1 h time window compared with the
30 min window, which makes it the best candidate for this application. For the 1 h time
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window, the performance of RUSBoost was unacceptable, with a precision of only 8%.
Finally, even when oversampling the data, the 3 h time window led to the poor performance
of the SVM and RUSBoost algorithms. The kNN algorithm achieved a precision of 94.11%
with oversampled data; however, it had a recall of 50%.

In terms of execution time, as summarized in Table 15, the main disadvantage of
the ensemble methods (e.g., RUSBoost algorithm) is the heavy computational burden;
hence, they are slower than other algorithms (even when other methods use reshaped and
oversampled data). The RUSBoost algorithm has a high degree of variability in terms of
execution time. For example, with time windows of 30 min, 1 h, and 3 h, the training times
are 31.83 s, 7.69 s, and 1.18× 10−1 s, respectively.

For the other algorithms, the execution times were consistent even when the number
of features increased because of the use of the reshaping technique.

Table 15. Computation time per algorithm (test 2) while training and predicting one single sample using processed data
with time windows of 0.5, 1, and 3 h.

Algorithm Windows Size Data Set Training Time (s) Prediction Time (s)

kNN 0.5 h non-oversampled 3.04× 10−2 6.31× 10−3

0.5 h oversampled 6.51 × 10−3 1.68 × 10−3

SVM 0.5 h non-oversampled 2.01 × 10−1 4.41 × 10−4

0.5 h oversampled 2.32 9.05 × 10−4

RUSBoost 0.5 h non-oversampled 31.83 2.24

kNN 1 h non-oversampled 2.67 × 10−1 5.21 × 10−2

1 h oversampled 2.79 × 10−2 5.00 × 10−3

SVM 1 h non-oversampled 6.72 × 10−2 4.52 × 10−4

1 h oversampled 3.31 × 10−1 5.71 × 10−4

RUSBoost 1 h non-oversampled 7.68 5.73 × 10−1

kNN 3 h non-oversampled 5.17 × 10−1 5.87 × 10−2

3 h oversampled 7.33 × 10−3 1.27 × 10−3

SVM 3 h non-oversampled 3.32 × 10−1 1.37 × 10−2

3 h oversampled 4.75 × 10−2 5.42 × 10−4

RUSBoost 3 h non-oversampled 1.18 × 10−1 9.94 × 10−3

5. Discussion

All tests showed that the classification process can be significantly enhanced by
properly preprocessing the data.

In this study, the first preprocessing technique was PCA, and it was used to gen-
erate a normal (healthy) model to project the faulty data using the same model. This
approach makes the faulty data more separable while significantly reducing the amount
of data required to obtain good performance classification results. Furthermore, another
advantage of PCA is that the training and prediction times are reduced because of the
feature reduction.

The second proposed preprocessing technique is random oversampling, which is
proven to be a simple yet efficient solution to deal with imbalanced data. With over-
sampling, the resulting metrics improved significantly, thereby enabling competition and
surpassing the effectiveness of the baseline algorithm RUSBoost. Furthermore, oversam-
pling on the highly imbalanced dataset presented in this study improved the training
and prediction execution times with respect to the baseline. When combined with the
time-split technique, oversampling significantly improves the effectiveness of the models.
Finally, the proposed data reshaping technique has a performance that is similar to that of
a simple time-split because of a major drawback of the specific available dataset, i.e., faulty
data were concentrated over a small time-frame at the end of the dataset. Thus, there are
limitations to splitting the data between the training and testing sets, and reshaping by
itself cannot balance the dataset. However, if fault observations are separated with longer
time intervals, the reshaping can improve the imbalanced data problem. In addition, when
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using reshaping, training and prediction times increased because of the expanded set of
features per sample. The tests performed identified the 1 h time window as the best for
this application.

6. Conclusions

Artificial intelligence is an exponentially growing field that is of great importance
in many fields of research. In the WT industry, it is a promising tool to optimize the
maintenance process as it can enable the early prediction of faults which can help ensure
energy production throughout the year. In this study, three data preprocessing strategies
were tested to enhance the fault detection process when using a highly imbalanced dataset.
These strategies are PCA for data modeling and reduction; a random oversampling tech-
nique to deal with the imbalanced data problem; and the data reshaping technique for data
augmentation to increase the amount of information per sample. A time split was used to
avoid corrupting the time structure of the dataset (when the data are time-dependent) and
to prevent data leakage when training the ML algorithms. The combination of these data
preprocessing techniques leads to the excellent performance of classification algorithms.
The results surpassed those obtained with RUSBoost to deal with data imbalance. Fur-
thermore, the results showed F1 scores of at least 95%, thereby fulfilling one of the main
objectives of the study. The random oversampling technique improved all results, and it
can be tuned for a specific dataset using a variable scaling factor. Even when the reshaping
technique performance was weaker than expected, it had a great potential. It enriched the
information contained in each observation; for example, it enabled algorithms to classify a
single faulty observation among a pool of healthy ones. Furthermore, it is important to
note that the window size must be carefully selected depending on the nature of the data
because it can cause a considerable difference in capturing data patterns or trends.

The feasible practical application of the proposed methodology is noteworthy. First,
the required SCADA data are available in all industrial sized wind turbines. Second,
but directly related to the previous point, no extra equipment is needed to be installed, thus
the methodology is cost-effective as it has a very low deployment cost. Third, the computa-
tional complexity (computational time and required storage) to estimate new predictions is
low and can be done on real-time at each wind turbine (on-site) or at the wind park data
center. Finally, the stated strategy works under all regions of operation of the wind turbine
(below the rated wind speed, and above the rated wind speed), thus the wind turbine is
always under supervision.

In the future work, the proposed techniques should be implemented using a larger
dataset containing more error frames (distributed and separated between them in time)
to be detected, which will allow a more comprehensive testing of the effectiveness of the
reshaping technique.
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The following abbreviations are used in the manuscript:

acc Accuracy
CPVE Cumulative proportion of variance explained
F1 F1 score
fdr False discovery rate
fn False negative
for False omission rate
fp False positive
fpr False positive rate
kNN k-nearest neighbors
npv Negative predictive value
Obs Observations
OS Operating system
PC Principal component
PCA Principal component analysis
ppv Positive predictive value
PVE Proportion of variance explained
RUSBoost Random under sampling boost
SCADA Supervisory control and data acquisition
SVM Support vector machine
tn True negative
tp True positive
tpr True positive rate
WT Wind turbine
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