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Abstract: Cooling systems play a key role in maintaining human comfort inside buildings. The
key challenges that are facing conventional cooling systems are the rapid growth of total cooling
energy and annual electricity consumption in commercial buildings. This is even more significant
in countries with an arid climate, where the cooling systems are typically working 80% of the year.
Thus, there has been growing interest in developing smart control models to assign optimal cooling
setpoints in recent years. In the present work, we propose an occupancy-based control model that is
based on a non-linear optimization algorithm to efficiently reduce energy consumption and costs. The
model utilizes a Monte-Carlo method to determine the approximate occupancy schedule for building
thermal zones. We compare our proposed model to three different strategies, namely: always-on
thermostat, schedule-based model, and a rule-based occupancy-driven model. Unlike these three
rule-based algorithms, the proposed optimization approach is a white-box model that considers
the thermodynamic relationships in the cooling system to find the optimal cooling setpoints. For
comparison, different case studies in five cities around the world were investigated. Our findings
illustrate that the proposed optimization algorithm is able to noticeably reduce the cooling energy
consumption of the buildings. Significantly, in cities that were located in severe hot regions, such as
Doha and Phoenix, cooling energy consumption can be reduced by 14.71% and 15.19%, respectively.

Keywords: smart control; occupancy; cooling systems; energy efficiency; non-linear optimization;
Monte-Carlo simulation

1. Introduction

The International Energy Agency (IEA) reported that the final energy use in the
building sector grew 240 million tons of oil equivalent (Mtoe) from 2010 to 2018, while
the share of fossil fuels only decreased slightly, from 38% in 2010 to 36% in 2018 [1]. This
growth in energy consumption has a noticeable impact on the environment through the
need to deplete more fossil fuels that increase greenhouse gases. Additionally, retail and
office buildings are the most energy-intensive typologies within the non-domestic building
sector, typically accounting for over 50% of the total energy consumption for non-domestic
buildings [2]. The need to develop efficient and practical models to improve energy use in
these buildings is paramount.

According to IEA reports, cooling is the fastest-growing end-use in buildings, with
its energy demand more tripling between 1990 and 2018 [1]. The United States has many
cities with a hot and humid climate, where buildings consume a tremendous amount of
energy for cooling purposes. The same is true for southern Europe, the Mediterranean
region, and the Middle East. For example, Qatar, as the world’s highest per capita emitter
of CO2 emission, seeks to promote sustainable development [3]. Population growth and
climate change impact have undermined this improvement. Cooling systems consume
more than 65% of Qatar’s electricity, which is the most significant energy consumption
share due to the permanent need to cool down the building zones [4]. Generally speaking,
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cooling systems in buildings that are located in arid climates typically operate more than
80% of the year to maintain human comfort and office buildings in these climates are
excellent opportunities to apply smart controls. In particular, smart occupancy-driven
control methods for space cooling systems can reduce the energy demand and mitigate
environmental problems.

Fortunately, in recent years, reducing the environmental impacts and improving the
energy efficiency of the Heating, Ventilation, and Air Conditioning (HVAC) systems in
buildings have been at the center of smart city acts. The common practice of controlling
HVAC systems is to use fixed setpoint temperatures. However, this method has two main
disadvantages. First, the range of thermal comfort for each person and in each zone is
different, and it also depends on exogenous variables, such as weather characteristics.
Second, this method does not take the occupancy or vacancy of a zone into account,
and it always consumes energy to cool down or heat up the building unless the HVAC
systems are turned off manually. Recently, researchers’ attention has been drawn to
optimizing temperature setpoints for cooling and heating systems. An efficient temperature
setpoint control system in buildings is a practical and effective approach for managing
and controlling building load [5]. In [6], the authors introduced a systematic approach for
identifying the influential factors on HVAC energy consumption and quantified the savings
from annual and daily setpoint selection strategies. They found that the setpoints’ choice
becomes very significant (up to 30% of energy savings), where the outdoor temperatures
are slightly outside of 8 ◦C to 11 ◦C in either direction. Lakeridou et al. [7] imposed limits
on summer setpoints in the United Kingdom by distributing an online survey to facility
managers responsible for temperature regulation in UK air-conditioned offices. They
recommended that public sector organizations lead a way to increase minimum summer
setpoints to reduce energy consumption while maintaining human comfort. In [8], a new
notion of the Bayesian approach was proposed to predict the indoor environmental comfort
setting via a single environmental parameter setpoint for air-conditioned buildings in a
humid and subtropical climate.

Different control methods for HVAC systems are being used to output the optimal
setpoint temperatures. These methods include white-box models (utilizing thermodynamic
equations for thermal analysis of HVAC systems and building zones) [9–13], statistical
and data-driven methods [14–17], model predictive control algorithms [18–21], and arti-
ficial intelligence models [18,22–24]. Ghofrani and Jafari presented a physical-statistical
approach to optimally control a commercial building air-conditioning operation that is
based on building thermal physics and human behavior [25]. In [26], a model predictive
control (MPC) scheme was implemented to determine the optimal thermostat setpoints
that minimize the entire community’s peak electricity demand through centralized control.
The authors in [27] proposed a novel random neural network (RNN)-based smart controller
for HVAC systems in order to estimate the number of occupants and the predicted mean
vote (PMV)-based set points for cooling and heating.

The impact of designing control methods based on user occupancy on energy con-
sumption is remarkable. Smart control methods optimize thermostat setpoints according to
the occupancy schedule of a zone. The occupancy schedule is defined based on the percent-
age of occupants that occupy a particular thermal zone at a given time. If an office zone is
90% occupied in working hours and, if the peak occupancy for this zone is ten, nine people
usually work in the zone during those specific time-steps. The vacancy/occupancy states
can be defined while using different thresholds. In most recent research works, the value of
60% is tossed as a reasonable number to describe a vacant or occupied zone. Wang et al. pre-
sented a co-simulation platform to assess the occupancy-driven thermostat’s energy-saving
impact and economic benefits in a typical single-family residential building [28]. They
devised an occupancy simulator and utilized it to consider the occupancy’s random nature
based on three types of thermostats (always on, schedule-based, and occupancy-driven).
In [29], a new occupancy-based MPC algorithm was developed to minimize building
electricity consumption and maximize the building occupants’ comfort at the same time.
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Aftab et al. designed and implemented an occupancy-predictive HVAC control system in a
low-cost, yet powerful, embedded system [30]. There have been more research works done
on occupancy prediction and its application to smart HVAC control [31–34].

Most of the literature has used simplified building hygrothermal models or black-box
algorithms that would not show HVAC systems’ exact dynamics in the buildings. In this
paper, four different setpoint controls are investigated for cooling systems in commercial
buildings. These methods include: (i) an always-on model, (ii) a schedule-based approach,
(iii) an occupancy-based model, and (iv) a non-linear optimization algorithm. The first three
models are rule-based cooling control algorithms that use either day time or occupancy
presence to make decisions for the cooling setpoint temperature. These models are applied
to a simulated commercial building. This building is designed based on a large office
building that was validated by US-DOE (Department of Energy of the United States).

This paper’s main contribution is the non-linear optimization model that aims to
minimize the total energy costs while maintaining the occupants’ comfort level and con-
sidering the occupant schedules. This model is a white-box algorithm, meaning that the
thermodynamic relationships for the building cooling system are clearly explained. The
proposed optimization model uses a probabilistic occupancy schedule, weather informa-
tion, building characteristics, and the electricity pricing profile to calculate the optimal
cooling setpoint temperatures for all of the building zones. A Monte-Carlo simulation
method is used to develop the probabilistic occupancy schedule. The optimization algo-
rithm results are compared to the other three models for a commercial building in different
cities in arid climates.

Section 2 introduces the problem statement and preliminaries. Section 3 mentions the
details of the simulated building used in this article. Section 4 introduces all four cooling
control models. The rule-based occupancy model and the proposed non-linear optimization
algorithm are explained entirely. Section 5 presents and discusses the implementation of
these models on the simulated building. In the end, Section 6 outlines the conclusion of
the work.

2. Problem Statement and Preliminaries

In this work, four different models are used for HVAC systems to see their impacts on
energy and cost-saving. These models can be seen in Figure 1. The first model is the most
basic thermostat in an office building. These thermostats continuously operate to maintain
the space temperature at a fixed setpoint for heating and cooling purposes. The second
model shows a thermostat schedule that is being used in most commercial buildings in
arid climates. The heating and cooling setpoints and their schedules are constant, unless
they are manually changed. Based on the working hour in a typical office building, the
thermostats maintain the human comfort temperature between 7 a.m. to 4 p.m. In other
times of the day, the setpoints are different than the working hours to reduce energy
consumption while having a reasonable deviation from the comfort temperature range to
decrease the ramping temperature. It is evident that this schedule is not optimal for all of
the buildings in arid climates, since building characteristics and occupancy schedules are
dissimilar. The third model is an occupancy-based model that uses the occupancy profile to
assign the appropriate heating and cooling setpoints to the building zones. The occupancy
schedule is given ahead of time by the building manager or can be forecasted by statistical
methods or artificial intelligence models for each zone. This algorithm uses the occupancy
percentage as a measure for describing a zone as occupied or vacant. If this value is greater
than 60%, then the setpoint temperatures are 19 ◦C and 21 ◦C for heating and cooling,
respectively. If it is less than 10%, the zone is assumed to be vacant and the HVAC systems
can be turned off. Because some thermostats do not allow turning off, the heating and
cooling setpoints are 17 ◦C and 27 ◦C in this case. If the percentage of the occupants’
presence is between 10% to 60%, the zone is semi-occupied and the heating and cooling
setpoint temperatures are 19 ◦C and 23 ◦C, respectively. The deadband between heating
and cooling setpoints has been taken into account to choose the proper setpoints for the
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first three algorithms. The deadband is a temperature range in which neither the heating
nor the cooling system turns on, and it also does not let the thermostat activate heating and
cooling in rapid succession. If this range is too narrow, both heating and cooling systems
may be running simultaneously. Accordingly, at least a 2 ◦C difference between heating
and cooling setpoints are considered in the proposed models to respect the deadband.
The last model is an occupancy-based optimization algorithm that considers the building
characteristics, weather conditions, electricity price, and the occupancy profile to minimize
total electricity cost and output the optimal cooling setpoint. The proposed model uses
the Monte-Carlo simulation method to find the probabilistic occupancy presence profile.
Additionally, it is able to capture thermodynamic relationships for building zones. These
algorithms tested on a simulated office building to see the effect of optimal cooling control
on energy and cost-saving while aiming to simultaneously maintain human comfort. The
first three control models can be used for both heating and cooling systems; however, the
last one is only designed for cooling systems.
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3. HVAC Control Models

In this section, the proposed HVAC control models are presented. The first model
is a simple always-on model used in office buildings with traditional cooling systems, as
discussed before. The second model is a control algorithm implemented in most office
buildings located in countries with hot weather, such as Qatar. This model is a schedule-
based algorithm that depends on the day’s time to assign setpoints, as shown in Figure 1.
During working hours, the cooling and heating setpoints are 21 ◦C and 19 ◦C, respectively;
otherwise, they are 27 ◦C and 17 ◦C. These two models are simple control algorithms
that are used for the sake of comparison with the other two models. The third model
is an occupancy-based model that takes the occupancy schedule of a zone into account
in order to assign the appropriate setpoint temperature. The last model is a non-linear
programming model, which is a modified version of the work Pinzon et al. [12] conducted.
They presented a mixed-integer non-linear programming model to optimize the buildings’
operation in a microgrid using the management of cooling systems. In this work, an
optimization model is proposed based on the revised version of their algorithm while
using the occupancy schedule as one of this model’s inputs that affects the constraints
and changes the optimal setpoint temperatures for each zone. In the following, detailed
explanations and formulations of the third and fourth models are discussed.
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3.1. Occupancy-Based Model

Occupancy data are difficult to acquire and precise ground truth values are rare, as
most buildings do not have sufficient infrastructure to sense people accurately throughout
the building [35]. The proposed occupancy-based model operates according to the current
occupancy information. It uses the occupancy presence profile for describing the vacancy of
a zone to come up with an appropriate setpoint for HVAC systems based on the following
flowchart:

Figure 2 illustrates that each zone’s occupancy profile feeds the EnergyPlus model of
the office building. The model then makes decisions to assign setpoint temperatures to
each zone that are based on the occupants’ presence percentage.
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3.2. Non-Linear Programming Model

The optimal setpoints are usually different than the setpoints that come from the
rule-based algorithms. This may cause a considerable waste of energy and money. A more
reliable and accurate model is required to calculate each zone’s optimal setpoint that is
based on the probabilistic occupancy schedule while maintaining human comfort. In this
section, an NLP model is proposed to deal with the thermodynamic equations of a single
building’s cooling system. The proposed model includes a cooling system for each zone
comprised of a single-speed cooling coil and a constant volume fan. This model is able to
assign the optimal day-ahead and near real-time cooling setpoints for each thermal zone
of the building based on the occupancy schedule profile. In this model, the Monte-Carlo
simulation method is used to determine the occupants’ presence profile. The optimization
makes the control system decide at what time of the day to switch to lower or higher
setpoint temperatures. The occupancy schedule profile is used twice in the mathematical
formulations; first, in one of the constraints (Equation (15)) to calculate the sensible heat
gain from the occupants; and, second, it is used to define the thresholds for the minimum
and maximum allowable setpoint temperatures according to the presence of the people.
Building characteristics, electricity costs, and weather data are the other inputs of this
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model. Figure 3 shows the flowchart of the NLP model. In the following, the Monte-Carlo
method that is used to find the occupancy schedule is introduced first, and the optimization
algorithm is then explained.
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3.2.1. The Monte-Carlo Simulation Method for Determining the Occupancy Schedule

There are already several works in the literature considering probabilistic models for
the occupancy presence profile in buildings. The work that Page et al. presented is one
of the most prominent models in this field [36]. They proposed a generalized stochastic
model for the occupancy simulation while using the presence probability and a parameter
of mobility. This parameter is defined as the ratio between the probability of change of the
state of presence over that of no change. In this article, we use the Page model to determine
the commercial building’s occupancy presence profile. This profile will then be fed into the
optimization model to obtain the optimal cooling setpoints. They developed their models
based on the hypothesis that the probability of an occupant’s presence at the next time-step
only depends on their presence at the current time-step. Accordingly, there is a general
case of an inhomogeneous Markov chain with discrete states and discrete time-steps. The
probability that an occupant is present at time-step t + 1 equals to:

P(t + 1) = P(t)T11(t) + (1− P(t))T01(t). (1)

P(t + 1) and P(t) are the probabilities of being present at time-steps t + 1 and t,
respectively, as stated before. Page et al. defined the parameter of mobility to help them
determine the values of T01(t) and T11(t) for all time-steps:

µ(t) =
T01(t) + T10(t)
T00(t) + T11(t)

. (2)

In this equation, Tij(t) is the transition probability from state i to state j at the time step
t. Additionally, index 0 belongs to the absence state and index 1 introduces the presence
state. For example, T01(t) is the transition probability from absence to the presence state at
the time step t. They assumed that µ(t) is constant to simplify the inputs to the model. By
considering this assumption and Equations (1) and (2), the transition probabilities can be
determined by:

T01(t) =
µ− 1
µ + 1

P(t) + P(t + 1), (3)
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T01(t) =
P(t)− 1

P(t)

(
µ− 1
µ + 1

P(t) + P(t + 1)
)
+

P(t + 1)
P(t)

. (4)

Additionally, we know that the other transition probabilities can be obtained by:

T00(t) + T01(t) = 1, (5)

T10(t) + T11(t) = 1. (6)

The inputs of the Page model are the presence probability profile and the parameter
of mobility. One-hundred run periods of the Page model are simulated using the Monte-
Carlo simulation method to develop an occupancy presence profile in this work. These
simulations were implemented in MATLAB (R2018a, MathWorks, Torrance, CA, USA).
After performing these runs, the occupants’ presence profiles are obtained by averaging
the simulated runs’ hourly occupied ratio.

3.2.2. The Optimization Algorithm
Objective Function

The NLP model aims to minimize the total cooling energy cost, as follows:

Min

{
τ

∑
t=1

ct·Pt

}
. (7)

In Equation (7), ct is the real-time price of electricity and Pt is total imported electricity
from the main grid that equals to:

Pt = Pt
b +

(
Z

∑
i=1

Qt
i

)
/∆t. (8)

Accordingly, the objective function can be revised, as follows:

Min

{
τ

∑
t=1

ct·
(

Pt
b +

(
Z

∑
i=1

Qt
i

)
/∆t

)}
. (9)

Constraints

Pt
b is the baseload of the building in time t and Qt

i is the required cooling energy. This
energy is consumed to cool down the building zones while considering the occupants’
presence percentage. The cooling system of a zone includes an electric chiller with a cooling
fan. The required energy for cooling a zone is calculated by:

Qt
i =

(
CCt

i ϕt
i µ

t
i + Pt

fani

)
∆t. (10)

In Equation (10), CCt
i is the total cooling capacity, ϕt

i is energy input ratio, µt
i is the

fraction of the time step during which the unit works at full capacity, and Pt
fani

is the
fan power. In this equation, CCt

i and ϕt
i are adjusted to the real operating conditions.

These conditions are described in Equations (11) and (12) based on the performance curves
that are explained in [36] while using cooling capacity modifier factors and energy input
ratio factors.

CCt
i = CCTt

i RQi, (11)

ϕt
i = EITt

i /COPi. (12)

In these equations, CCTt
i and EITt

i are the factors to simulate the real operating
conditions of the cooling system. Both of the factors are functions of outdoor dry-bulb
temperature entering the cooling system and the average indoor wet-bulb temperature
in the thermal zone. In Equation (10), the required cooling energy is calculated based on
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the total cooling capacity (CCt
i ) and energy input ratio (ϕt

i ). The modifier factors CCTt
i

and EITt
i in Equations (11) and (12) are used to reflect the effect of weather conditions

(e.g., outdoor temperature, and humidity) on the nominal cooling capacity (RQi) and the
coefficient of performance (COPi). These factors are calculated based on the formulation
that is presented in [35].

Besides, Equation (13) illustrates that the required cooling energy should be between
the minimum and maximum cooling power capacity.

Pmin∆t ≤ Qt
i ≤ Pmax∆t. (13)

The cooling load of each zone, ambient weather, and building characteristics are
the main elements that affect HVAC energy consumption. Equation (14) shows how to
calculate the cooling load (CLt

i ) that is based on the sensible heat gains (SHGt
i ), the air

volume thermal inertia (QSAt
i ), the infiltration heat gain (QIt

i ), and the heat through the
surfaces (QSt

i ).
CLt

i = SHGt
i −QSAt

i + QIt
i + QSt

i . (14)

The sensible heat gain is the heat that is generated by internal heat sources such as
building occupants. Equation (15) describes this heat source, where αt

i is the occupants’
schedule for each zone at each time-step, NPi is the peak occupancy for each zone, and hp
is the average heat gain for each person.

SHGt
i = αt

i NPihp. (15)

The air volume thermal inertia and the infiltration heat gain are expressed by
Equations (16) and (17).

QSAt
i = ρaircpair Vi

(
Tt

i − Tt−1
i

)
/∆t, (16)

QIt
i = ρaircpair

.
Vinfi

(
Tt

amb − Tt
i
)
. (17)

The comfort index is defined by Equation (18) in order to address the human comfort
conditions inside the zones. In this equation, CTi is the comfortable temperature setpoints
and ∆Tt

i is the difference between the actual setpoint and comfortable setpoint [37].

CFTt
i = 1−

(
∆Tt

i /CTi
)2, (18)

∆Tt
i = Tt

i − CTi. (19)

The average comfort index during the total occupied period of each zone ω αt
i should

be greater than a threshold, as shown in Equation (20). Additionally, based on what was
recommended in [37], Equation (21) ensures that Tt

i is within the minimum and maximum
comfortable temperature setpoints.

CFTt
i ≥ CFTmin, (20)

CTmini ≤ Tt
i ≤ CTmaxi , (21)

Based on the occupancy schedule for each zone, CTmini and CTmaxi will vary for
different percentages of occupants’ presence. Table 1 describes these values for cooling.

The objective function (Equation (9)) should be solved when considering the con-
straints 10–21 in order to find the optimal setpoints for each zone. However, solving
such a non-linear problem is very complicated and non-linearities should be removed
by approximation.
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Table 1. The range of setpoint temperature of cooling systems for different occupancy presence
percentage.

Occupants’ Presence Percentage CTmini (◦C) CTmaxi (◦C)

p ≥ 60% 21 23
10% ≤ p < 60% 23 26

p < 10% 26 31

Linearization Methods

In this article, the proposed method in [9] is used to linearize the non-linear equa-
tions. The non-linear constraints of this problem include Equations (11), (12), (14), and
(18). The first two equations are non-linear due to the modifier factors that are quadratic
functions. These factors depend on the operating conditions of the HVAC unit. These
values can usually be found based on cooling performance curves. Additionally, another
non-linearity comes from Equation (14) because of the nature of the heat through the
surfaces (QSt

i ). This heat can be found if the initial values for the surface heat and the
temperature setpoint are known. These values can be calculated by using EnergyPlus for
the simulated building. Hence, QSt

i for the first iteration and the later iterations can be
found by Equations (22) and (23), respectively.

QSt
i = QS′i +

(
T′i − Tt

i
)
δQSi, (22)

QSt+1
i = QSt

i +
(

Tt
i − Tt+1

i

)
δQSi, (23)

where QS′i is the initial surface heat, T′i is the initial temperature setpoint, and δQSi is the
heat increment that is used for the calculation of heat surface. Moreover, the run time
fraction of the HVAC system is approximated based on the linear relationship with the
part-load ratio of the cooling system (θt

i ), as in Equation (24) [36].

µt
i = 0.991θt

i + 0.039. (24)

θt
i in Equation (24) can be described by Equations (25)–(27). In these equations, QVt

i
is the ventilation heat gain, QLt

i is the thermal fan loss, SHRt
i is the sensible heat ratio

modifier that can be found from [38], NSHRt
i is the nominal sensible heat ratio, and ηfan is

the efficiency of the fan.

θt
i =

CLt
i + QVt

i + QLt
i

SHRt
i NSHRt

i CCt
i

(25)

QVt
i = ρaircpair

.
Vfani

(
Tt

amb − Tt
i
)

(26)

QLt
i = (1− ηfan)Pt

fani
(27)

Note that Equation (25) is a linear constraint, since CCt
i becomes constant after approx-

imation of CCTt
i . Moreover, Equations (28)–(31) present a piecewise linearization of the

quadratic term of
(
∆Tt

i
)2 in Equation (18).

∆Tt
i =

N

∑
n=1

δTt
i,n (28)

0 ≤ δTt
i,n ≤ δTi (29)

γi,n = (2n− 1)δTi (30)

δTi =
(
CTmaxi − CTmini

)
/N (31)
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Hence, Equation (18) is rewritten based on Equation (32).

CFTt
i = 1−

((
N

∑
n=1

γi,n δTt
i,n

)
/(CTi)

2

)
(32)

Solution Methodology

In the above, we approximated the original NLP model by a linear programming
(LP) model. This model requires the building’s physical characteristics, weather infor-
mation, and the occupancy schedule profile. The linearized optimization problem has
(Equation (9)) for its objective and Equations (10)–(17) and (20)–(32) for its constraints. The
LP model is solved while using the MOSEK solver (MOSEK ApS, Copenhagen, Denmark)
in MATLAB [39].

4. Simulated Building

This article’s case study is constructed based on a large office building that is validated
by US-DOE. The first three HVAC control algorithms are based on EnergyPlus building
simulation models [36]. These rule-based methods feed the pre-defined criteria into the
simulation. On the other hand, the fourth model employs the simulation results to generate
the initial inputs and then uses this information in the proposed optimization approach.
This 12-story building has 61 controlled thermal zones and a floor area of 46,320 m2. These
zones include a basement, and five zones (as shown in Figure 4) for each floor. Each zone
has a specific temperature profile, since its direction is different. For example, Perimeter
Zone 1 is an east-facing zone that definitely has a different daily temperature profile than
Perimeter Zone 3, which is a west-facing zone.
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Figure 4 presents the original and X-ray geometry of this building. The aspect ratio,
which is the overall length in the east-west direction divided by the overall length in the
north-south direction, of this building is 1.5 [40]. Moreover, the building envelope was
modified according to typical building characteristics that are located in countries with hot
and humid weather conditions.

5. Results and Discussion

The proposed models for cooling control are applied to several case studies and
the results are presented here. This section draws two general comparisons. First, the
results for implementing different models to the simulated office building (Figure 4) in
Doha are comprehensively shown and discussed. All of the control models are then
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implemented in the same building in four more cities: Phoenix, Miami, Barcelona, and
Melbourne. The effectiveness of the proposed models on various case studies is then
discussed and compared.

5.1. The Case Study of Doha

An office building in Doha is investigated in this section. The weather in Doha is
blazing hot, with humid summer temperatures and mild winters. The city lies in the
subtropical zone with a desert climate. Table 2 illustrates the weather data of Doha. These
characteristics make its building need to operate their cooling systems almost all year,
and smart control algorithms should be implemented to reduce the significant amount of
energy that is used for cooling.

Table 2. Climate data of Doha [41] *.

Month
Minimum

Temperature
(◦C)

Maximum
Temperature

(◦C)

Average
Temperature

(◦C)

Average
Relative

Humidity (%)

Total
Rainfall

(mm)

January 13.7 21.7 17.7 65 12
February 14.4 23.4 18.8 60 12

March 16.9 27.3 22.2 51 12
April 21.2 32.3 26.9 45 4
May 25.8 37.8 32.1 38 0
June 27.7 40.1 34.2 38 0
July 29.3 41.0 35.4 44 0

August 29.3 40.7 35.2 53 0
September 27.2 38.7 33.1 53 0
October 24.3 35.1 29.8 56 0

November 20.5 28.8 24.7 60 7
December 15.9 23.6 19.7 67 15

*: Copyright permission is based on what the website said about their licensing policy: https://en.climate-data.
org/info/licensing/ (accessed on 14 March 2021).

5.1.1. Cooling Control Models and Building Indoor Temperature

The control models mentioned above were applied to the case study that was described
previously. This office building is located in Doha, Qatar, and the simulations are done
in EnergyPlus. Figure 5 shows the ambient temperature and the indoor temperature of
one of the building’s plenum zones during a year under the four control schemes. In this
study, the base case is the schedule-based model, because it is currently being used in
Doha’s office buildings. The results of other models will be compared to this model to
describe their effectiveness in terms of cooling energy reduction and the total electricity
and cost savings.

Figure 5a describes that the temperature of the zone is always around the cooling
setpoint, and the deviation from the desired temperature is very low. Figure 5b illustrates
a steadier indoor temperature during the cooling months. since the cooling systems are
operating almost all the time. On the other hand, Figure 5c,d show that indoor temperature
variation is noticeable when cooling control methods that are based on occupancy presence
are used.

The results of the four cooling control models are also investigated for a typical
summer day. Figure 6 shows the weather information for this representative day.

Figure 6 emphasizes the low humidity and high temperature of summers in Qatar.
Accordingly, the need to use reliable and efficient cooling systems is inevitable. Each of
the above four control algorithms has a specific effect on the building zones temperature,
depending on the occupancy schedule and the zone location. Figures 7 and 8 illustrate
the occupancy schedule, cooling setpoints, and indoor temperature for four representative
zones for schedule-based and occupancy-driven methods, respectively. Each representative
zone is facing a specific direction.

https://en.climate-data.org/info/licensing/
https://en.climate-data.org/info/licensing/
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Each zone’s thermal response is not very sensible to the occupancy pattern, as shown
in Figure 7. Most of the zones have a relatively low indoor temperature, even if there are
no occupants in the zone. On the other hand, Figure 8 shows that, as the occupant arrives
in the morning to the selected zones, the assigned setpoint drops and thermal comfort
are satisfied. On the other hand, after the zones become vacant, the setpoint grows and
the indoor temperature increases accordingly by lowering the air conditioning system
operation. Note that the outdoor temperature and humidity have an undeniable effect on
the indoor temperature. For example, in the late afternoons and evenings, although the
cooling setpoint is increased, the indoor temperature goes down a little bit first because
of the outside temperature drop, and then it adjusts for the cooling setpoint increase.
In this method and the NLP model, the average temperature is usually the same as the
assigned setpoint, because the setpoint temperature assignment is based on zone thermal
behavior prediction.

5.1.2. The Impact of Near Real-Time Occupancy Schedule on Cooling Setpoint Temperatures

In this section, the proposed optimization model is used to determine the impact
of the building’s near real-time schedule on the cooling setpoints. It is assumed that the
occupancy schedule for the simulated building is updated each hour during the days. For
example, the system receives the occupants’ presence schedule in each office from 10 a.m.
to 11 a.m. at 9 a.m. Subsequently, this updated occupancy information feeds into the
models for near-real-time cooling control. Figure 9 shows the schedule for a central zone
of the office building for a representative summer week, along with the assigned cooling
setpoints from the optimization model.
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In this Figure, it can be seen that the optimization model is able to capture the oc-
cupancy schedule variation by assigning appropriate setpoint temperatures to maintain
human comfort while minimizing the cooling energy consumption. Additionally, the
setpoint slopes in the optimization model are reasonable. In this model, the following con-
straint (Equation (21)) helps to reduce the allowable range for the optimal setpoint based
on the occupancy schedule, leading to a reduction in the setpoint temperature variation.

CTmini ≤ Tt
i ≤ CTmaxi

This can remarkably affect the cooling energy consumption, since a sudden change of
the setpoint results in more energy to overcome the zone’s thermal inertial to reduce or
increase the average indoor temperature.
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5.1.3. Cooling Energy Consumption in All Cooling Control Models

Figure 10 describes the effect of all four cooling control models on the total electricity
consumption during a representative week in summer. This figure reveals that the non-
linear optimization model has the lowest energy consumption during the time that zones
are mostly unoccupied. Besides, it can be seen that energy consumption noticeably increases
because of the occupant behavior that results in longer cooling operation time and lowering
the cooling setpoint. Another interesting takeaway is that the always-on thermostat works
more efficiently than the schedule-based control and it makes the building consume less
energy. One of the main reasons for that is that it reduces the need for sudden increases
and drops of indoor temperatures. These prompt variations require a great deal of energy
to meet the human comfort level inside the buildings.
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5.1.4. Comparison between All Control Strategies

The energy consumption is significantly dependent on the cooling control methods,
especially in Qatar, where the buildings need to run the cooling system almost 80% of
the year. Figure 11 shows the comparison of annual electricity consumption and yearly
cooling energy between the four control models. One of this study’s goals is to determine
how the occupant schedule affects cooling energy and the total electricity consumption
of an office building if zone setpoints are based on the occupant presence schedule. The
optimization approach illustrates a noticeable advantage when compared to the current
cooling control method (schedule-based technique) in Doha’s simulated office building.
This figure describes that even a deterministic day-ahead occupancy-driven model can
hugely reduce this building’s energy consumption.

5.2. The Implementation of the Control Models on the Building in Different Cities

This section analyzes the impacts of the proposed cooling control strategies on the
same office building as Section 5.1, but it is located in different cities. This will help to eval-
uate the effect of different weather conditions and geographical locations on cooling energy
consumption. These cities include Miami and Phoenix in the United States, Barcelona in
Spain, and Melbourne in Australia. The results for these four cities as well as the results for
Doha, which were shown in the last section, are compared and the impact of the applied
methods is discussed.
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Figure 12 shows the cooling energy consumption after applying each model to the
mentioned office building that is located in each city. It can be seen that the schedule-
based model makes the building consume the highest amount of cooling energy in all
case studies. This model does not consider thermal inertial in the building zones, and the
cooling system is turned on or off only according to pre-defined schedules, which are not
obviously optimal. Another interesting takeaway is that the optimization approach is able
to minimize cooling energy consumption in all five case studies. The reduction amount is
different for each case, due to the difference in weather conditions. For example, the NLP
model’s impact on a building in Doha or Phoenix is noticeable due to the severe warm
conditions in these cities and the need to implement more accurate cooling control methods.
On the other hand, Melbourne and Barcelona have moderate weather characteristics on
most days, which diminishes the possible saving effect of these models on the case studies
in these cities.

The schedule-based model, which makes the building consume the highest amount
of energy, is taken as a base case for all cities, in order to have a reasonable criterion for
comparing the impact of the proposed models on the mentioned case studies. Subsequently,
the percentage of saving in cooling energy consumption for all other models is compared
with the base case for each case study, as illustrated in Table 3.

This table proves the effectiveness of the optimization model. This approach is capable
of reducing the cooling energy consumption up to 15.19% in an office building in the city
of Phoenix. Moreover, Table 3 demonstrates that the always-on thermostat would work
better than the schedule-based in all cases. It happens due to the reduction of increases and
drops of building indoor temperature that saves energy. Additionally, it can be seen that
the proposed optimization model is able to save energy around 15% annually in an office
building located in Doha and Phoenix, which is noticeable and it can play a significant role
in the total energy consumption of building sectors if it will be applied to several office
buildings in those locations.

Table 3. The percentage of saving in cooling energy consumption for different control models
compared to the schedule-based model for each case study.

Different Cities
Different Cooling Control Models

Always-On Occupancy-Based Optimization Model

Doha 5.69% 8.77% 14.71%
Melbourne 6.06% 5.98% 8.11%
Barcelona 2.87% 3.86% 7.14%

Miami 1.44% 4.99% 8.35%
Phoenix 5.11% 8.39% 15.19%



Energies 2021, 14, 1722 17 of 20

Energies 2021, 14, x FOR PEER REVIEW 18 of 23 
 

 

5.2. The Implementation of the Control Models on the Building in Different Cities 
This section analyzes the impacts of the proposed cooling control strategies on the 

same office building as Section 5.1, but it is located in different cities. This will help to 
evaluate the effect of different weather conditions and geographical locations on cooling 
energy consumption. These cities include Miami and Phoenix in the United States, Barce-
lona in Spain, and Melbourne in Australia. The results for these four cities as well as the 
results for Doha, which were shown in the last section, are compared and the impact of 
the applied methods is discussed. 

Figure 12 shows the cooling energy consumption after applying each model to the 
mentioned office building that is located in each city. It can be seen that the schedule-
based model makes the building consume the highest amount of cooling energy in all case 
studies. This model does not consider thermal inertial in the building zones, and the cool-
ing system is turned on or off only according to pre-defined schedules, which are not ob-
viously optimal. Another interesting takeaway is that the optimization approach is able 
to minimize cooling energy consumption in all five case studies. The reduction amount is 
different for each case, due to the difference in weather conditions. For example, the NLP 
model’s impact on a building in Doha or Phoenix is noticeable due to the severe warm 
conditions in these cities and the need to implement more accurate cooling control meth-
ods. On the other hand, Melbourne and Barcelona have moderate weather characteristics 
on most days, which diminishes the possible saving effect of these models on the case 
studies in these cities. 

 
Figure 12. Annual cooling energy consumption for the simulated building located in each city after applying all introduced 
models. 

The schedule-based model, which makes the building consume the highest amount 
of energy, is taken as a base case for all cities, in order to have a reasonable criterion for 
comparing the impact of the proposed models on the mentioned case studies. Subse-
quently, the percentage of saving in cooling energy consumption for all other models is 
compared with the base case for each case study, as illustrated in Table 3. 

Figure 12. Annual cooling energy consumption for the simulated building located in each city after applying all introduced
models.

5.3. Discussion

The simulated building in this paper is designed to be very similar to an actual office
building in arid climates, so the proposed models can be applied to the existing commercial
buildings. However, using a single office building may limit the generalizability of the
results that are illustrated in this paper. Although occupants’ presence and human comfort
are considered in this study, the dynamic nature of occupants’ behavior will make a
remarkable variation in their needs to lower or increase the setpoint temperatures. Note
that several works, including this article, assumed that each zone could have a separate
setpoint temperature and follow a different HVAC control algorithm to help the building
minimize its total energy consumption. In order to use these control systems, the buildings
are required to be designed when considering these assumptions with a smart HVAC
control system. Currently, connecting a central HVAC control system that can optimize the
zone setpoints to the Building Automation System (BAS) is becoming more popular in new
commercial buildings. This connection makes the facility more energy-efficient without
the need to manually change the zone setpoints by the building engineers.

Occupant surveys are a good source of information for data collection in order to
develop reliable control models. Another important fact is that the expectations of temper-
ature and relative humidity in different climates notably impact people’s perceptions of
their environment. For example, in subtropical regions, people may accept higher cooling
setpoint temperatures when they compare the indoor temperature with the ambient tem-
perature that could be very hot and humid and unbearable. Hence, it may result in higher
cooling setpoint temperatures, which leads to energy and cost-saving.

6. Conclusions

In this paper, a non-linear optimization approach was proposed for smart cooling
control of the buildings in order to minimize the total energy costs while maintaining
the occupants’ comfort level. The proposed optimization model used the Monte-Carlo
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simulation method to determine the probabilistic occupancy schedule. It also considers the
weather information, building characteristics, and the electricity pricing profile to calculate
the optimal cooling setpoint temperatures for all building zones. This model was then
compared with three other cooling control models, including the always-on thermostat, the
schedule-based model, and the rule-based occupancy-driven model. These methods were
implemented in a simulated office building, and the results showed considerable energy
saving through cooling energy systems.

In this work, the Monte-Carlo method was used to predict the occupancy schedule. Fu-
ture studies can focus on applying different stochastic models to the proposed optimization
approach to provide more accurate insight into the random variation in people’s presence
in building zones over time. Additionally, the results presented here are drawn based on
the simulation of an office building. However, the investigation of the impact of different
cooling control systems on real buildings will be helpful, since building energy simulation
can suffer from various errors, such as weather data deviation and the simplification used
in the building simulation software.
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Nomenclature
Parameters
ct Electricity cost at time t
Pmin The minimum power of the cooling system (W)
Pmax The maximum power of the cooling system (W)
∆t Time-step duration
RQi Rated total cooling capacity for the cooling system of zone i (W)
COPi Coefficient of performance for the cooling system of zone i
.

Vfan The volume flow rate of the fan (m3/s)
SHGt

i The sensible heat gains from people inside zone i (W)
NPi The maximum number of people in zone i
hp The average heat gain for each person (W)
Vi The volume of zone i (m3)
.

Vinfi
The volume flow rate of infiltration (m3/s)

cpair The specific heat of air (J/gr. ◦C)
ρair The density of air (kg/m3)
Tt

amb The ambient temperature (◦C)
CTi The comfortable temperature setpoint (◦C)
CFTmin The minimum comfort index
CTmini The minimum allowable temperature (◦C)
CTmaxi The maximum allowable temperature (◦C)
QS′i The initial surface heat gain (W)
T′i The initial temperature setpoint (◦C)
δQSi Heat increment to define QSi (W)
ηfan The efficiency of the fan
δTt

i,n Discretization steps of the piecewise linearization for ∆Tt
i

N Number of blocks for the piecewise formulation
γi,n The slope of the nth block in piecewise linearization for ∆Tt

i
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Decision variables
αt

i Occupancy schedule at time t for zone i
Pt Total cooling electricity consumption at time t (W)
Pt

b Base-load at time t (W)
Qt

i Cooling energy for zone i at time t (J)
CCt

i Total cooling capacity for zone i at time t (W)
ϕt

i Energy input ratio of cooling system for zone i at time t
µt

i Run time fraction of cooling system for zone i at time t
Pt

fani
Fan power for VAV system in zone i at time t (W)

CCTt
i Cooling capacity modifier factor

EITt
i Energy input ratio modifier factor

CLt
i The sensible cooling load (W)

QSAt
i The air volume thermal inertia (W)

QIt
i The infiltration heat gain (W)

QSt
i The surface heat (W)

CFTt
i The comfort index

θt
i Part-load ratio of cooling system

QVt
i The ventilation heat gain (W)

QLt
i The thermal fan loss (W)

Indices
i Index of zones
t Index of time
n Index of blocks used for the piecewise linearization
Sets
ΩT Set of time-steps
ΩZ Set of zones
ΩN Set of blocks for piecewise linearization
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