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Abstract: This study has compared Japan’s major electricity and gas companies in terms of their
corporate performance measures from 2002 to 2018 using three types of Data Envelopment Analysis
(DEA) approaches. We develop a new type of efficiency measures and indexes for DEA and then
compare the performance of major electric power companies and city gas companies by examining a
recent data set that include years after the Fukushima Daiichi Nuclear Power Plant accident. The
data set incorporates the number of patents as an output that represents companies’ capability for
technology innovation to investigate intertemporal changes of efficiency through index measures.
The results provide us with two important findings. First, the electricity industry has experienced
long-term difficulty due to the nuclear plant disaster; while the gas industry experienced less difficulty
from the accident. Second, both industries have been gradually improving performance measures in
recent years. However, the gas industry has outperformed the electricity industry. From the results,
this study discusses important policy implications for Japan’s energy utility industry and academic
research on the industry.

Keywords: efficiency assessment; electricity; gas; synergy effect; data envelopment analysis

1. Introduction

Electricity and gas supply companies are classified into the utility sector that provides
public services for people, including water, sewage, electricity, and gas. Traditionally, these
utility companies were investor-owned companies regulated by governments or, in some
cases, state-owned entities, because of the public nature of their services.

Since the 1990s, liberalization and deregulation of electricity and gas supply industries
started in many nations. Nations have been following the famous, early example of
deregulation and privatization of electricity and gas by a market reform conducted under
the Thatcher administration in the United Kingdom started in the 1980s [1]. Many European
and other nations followed the trend of electricity and gas market liberalization [2]. Such a
change in energy markets created opportunities for electricity and gas companies to enter
each other’s markets by acquiring firms. Energy mergers changed corporate strategies to
accept new market competition. Previous studies [3,4] provide detailed descriptions on
mergers in Europe and the United States.

In line with the global trend, Japan gradually liberalized electricity and gas markets
beginning in 1995. The nation first introduced partial competition into the electricity
generation market, starting with competitive bidding for new generation capacities. Retail
competition began in the gas supply service for large consumers, followed by retail market
liberalization of electricity and gas [5].
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Japanese utility services have two unique features that are not found in other indus-
trial countries such as the United States and European nations. First, after a series of market
reforms, Japan did not experience significant changes in both electricity and gas markets
until the Great East Japan Earthquake (GEJE) and the subsequent disaster at the Fukushima
Daiichi Nuclear Power Plant on 11 March 2011. After the huge disaster, electricity and gas
market reforms gained momentum, and the Japanese government started to implement
drastic reforms. The second unique feature is that, although electricity and gas companies
have experienced different market reforms, they have predominantly progressed in a paral-
lel framework for retail market liberalization, because the two industries belong to energy
utility services. Both have large social infrastructures under similar government regulation.
In addition, the Japanese government, specifically the Agency for Natural Resources and
Energy (ANRE) under the Ministry of Economy, Trade, and Industry (MEIT), expects that
integrated electricity and gas energy companies will support resilient domestic energy sup-
ply, and enter foreign energy markets by fully utilizing scale benefits, efficient operations,
and technological capabilities [6,7]. Therefore, assessment of corporate efficiency of energy
companies provides fundamental information for corporate managers and policy makers
to realize the future plan.

The purpose of this study is to compare Japanese electricity and gas firms using
the new type of DEA performance measures (i.e., efficiencies and indexes). The nuclear
disaster at Fukushima in 2011 produced economic damages on the national economy and
changed electricity and gas market reforms. We examine the influence on these measures
to discuss implications for corporate management of energy companies. To attain the aim,
this study uses Data Envelopment Analysis (DEA) to measure and compare performances
of two groups of utility firms. The DEA approach avoids the specification of a functional
form that describes relationship among production factors. It belongs to a non-parametric
approach to calculate efficiency measures of various organizations. However, the DEA
does not have statistical inference; therefore, we cannot conduct statistical tests at the
level of econometrics. This study discusses a new type of DEA assessment concerning a
performance change over time and then describes non-parametric statistical tests applicable
to DEA-based performance measures. As discussed in [8], which provides a detailed survey
on previous DEA studies applied to energy and environment, DEA has been a practical
and effective tool for performance assessment for energy companies.

The structure of this research is organized as follows: Section 2 summarizes a literature
review related to this study and specifies the position of this research. Section 3 describes
methodological features of the newly proposed DEA approach. Section 4 documents our
empirical results. Section 5 summarizes this study along with future research tasks. Finally,
this article lists Abbreviations and Nomenclature.

2. Literature Review

An economic assertion long believed by many researchers (e.g., [9]) is that “there
are similarities between electricity and gas services in the utility industry. They have a
synergy effect between them.” Studies [10,11] have empirically investigated the assertion
by comparing electricity specialized and diversified firms in the United States(US). Using
DEA and DEA-DA (Discriminant Analysis) as methodological tools, they concluded that
the two utility services did not have technological similarities at the level that gas service
had received the benefit of a synergy effect with electricity. The core business concentration
was more effective for electric firms than corporate diversification under US deregulation.

This study extends previous research efforts [9–11] by changing the region of investi-
gation from the US to Japan. There are two rationales on why Japanese utility firms must
be investigated. First, the Japanese electricity industry has been influenced by the 2011
disaster of Fukushima Daiich Nuclear Power Plants. Therefore, it is of interest for not only
researchers but also policy makers and utility managers to analyze temporal performance
changes and impacts of the accident using the updated data set. Second, the two utility
industries have been regulated by the Japanese government, not the US. We expect to find
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new implications on corporate management and industrial policy from operational effi-
ciency assessment under energy market liberalization in Japan, which would be different
from previous studies analyzing energy companies in the US. These reasons motivate the
research direction of this study.

In addition, with current technology, we may expect business similarities between the
two utility services, particularly in a vertically related business structure from upstream
to downstream functions. For example, industries have vast networks from production,
transportation (i.e., operation of transmission and distribution networks and gas conduit
facilities), and retail functions. As discussed by the research [9], there may be a synergy
effect in operations toward integrated energy companies in Japan. Thus, we discuss
potential synergy effect and implications for corporate strategy from comparative analysis
of operational efficiency measures and indexes between electricity and gas companies.

In reviewing previous DEA applications in recent years, there are some studies that
examine productivity or operational performance of electric power companies. For ex-
ample, ref. [12] proposed a dynamic slack-based DEA model to measure the electricity
generation sector’s efficiency of 24 Latin American and Caribbean countries under consid-
eration of undesirable outputs in the period 2000–2016. Ref. [13] proposed a combination
model with DEA and Malmquist index to evaluate the total-factor energy efficiency in
thermal power industry. Some other studies measure energy efficiency and environmental
sustainability of various entities using DEA. Those studies include [14], which has showed
the link between energy efficiency and sustainable economic and financial development
in Organization for Economic Co-operation and Development (OECD) countries for the
period 2000–2018 by using DEA and regression analysis, and [15], which employed DEA
of the slack-based measurement for bad output to assess the transport energy efficiency of
19 countries. The study [16] summarized the latest research on DEA in the field of energy
efficiency and discusses the overall situation of related literature published in 2011–2019.
The research in [17] examined the environmental sustainability of road transport for a
group of OECD countries over the period 2000–2014. However, there was no research
that conducts electricity and gas companies’ comparative performance assessment using
a long-term updated data set, although this study discusses the similarity of business
structures and deregulation processes between them from the perspective of synergy effect.

The position of this study is as follows. Examining existing literature and shifting
our focus to Japan’s energy market, we can indicate that the studies on efficiency of the
Japanese power sector have used relatively old data sets. For instance, ref. [18] used data
from 1981–1995, and ref. [19] used data from 2004–2008. An exception was [20], which
compared the electric power sectors between Japan and South Korea over five years from
2014–2018, but the study did not incorporate gas companies for the efficiency assessment
and the study period was relatively short. In addition, efficiency analysis of Japan’s city gas
companies has not drawn attention from researchers. One reason for the academic gap is
that the city gas companies operate in limited metropolitan areas (e.g., Tokyo metropolitan
areas) and firm sizes are relatively small, compared to electricity utility companies whose
business areas cover the whole of Japan. Thus, there are only two large gas companies (i.e.,
Tokyo Gas Co., Ltd., Tokyo, Japan and Osaka Gas Co., Ltd., Osaka, Japan) and they are
supposed to be vertically unbundled between gas transportation and other functions from
production to retailing in 2022, following the vertical separation in electricity companies
in 2020. In view of these previous studies, this study attempts to update the performance
assessment of electricity and gas companies under the ongoing drastic progress of energy
market liberalization in Japan. In this regard, this study seeks to add new empirical values
to the existing DEA applications to Japanese utility sectors, along with a methodological
contribution to them by proposing new DEA approaches. We consider (a) developing
a new type of DEA approaches over time and (b) comparing the performance of major
electric power companies and city gas companies, examining a recent data set after game-
changing events (the Fukushima Daiichi Nuclear Power Plant accident) and a series of
market reforms. In addition, we incorporate variables that represent technology innovation,
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patents to elucidate intertemporal changes of holistic efficiency by newly proposed index
measures of electricity and gas utility companies. The use of such research features indicates
the contribution of this study.

3. Method of Three DEA Approaches

This study uses three DEA approaches to measure (a) operational efficiency, (b) win-
dow analysis for efficiency, and (c) window analysis for index. They provide different
analytical implications related to Japanese utility services. Since the window analysis has
not been widely used in previous research on energy utilities, we formulate this approach
along with a description on differences between efficiency and index measures.

3.1. Visual Descriptions
3.1.1. Differences in Efficiency and Index Measures

Figure 1 depicts how to determine the degree of efficiency and index measure on the
two coordinates (g1/x and g2/x). For illustration, consider a window with two periods in
the figure, and in this case, the window contains two observations (i.e., Ct−1 in the t− 1
th period and Ct in the tth period). The index measure additionally considers Ct+1 in the
t + 1 th period. The window shifts to the next adjacent periods (e.g., t and t + 1). The
projected point of Ct locates Ce

t on the efficiency frontier of the tth period. This description
is also applicable to the case of the previous (t− 1) period. Such a case implies that Ct−1
projects onto Ce

t−1 in Figure 1. The window with the two periods combines the efficiency
frontiers of the t− 1 and tth periods. Therefore, Cet

t−1&t becomes a projected point of Ct on
an efficiency frontier to cover the two frontiers.

Figure 1. Visual Description of Efficiency and Index Measures (Three Periods). Note: The win-
dow analysis prepares a single frontier even if multiple frontiers cross over each other. This is a
methodological benefit.

A benefit of the window analysis is that it avoids a difficulty in finding an overlap
occurrence between t− 1 th and tth periods (and more periods). The efficiency frontier
of the t− 1 th and the tth covers all observations in the two periods. The frontier can be
considered as the best group of efficient performers within the two periods. This type
of treatment handles an overlap between multiple periods, for example, in the utility
industries. The industry’s operations consist of a large-scale production process with
matured technology in which we cannot identify fast growing technology innovation,
thereby yielding the overlap. Moreover, the corporate value of utility companies is mainly
due to stock prices. Hence, their values often fluctuate depending on the strength of the
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economy. Thus, the overlap or retreat among efficiency frontiers may occur in any periods.
See [21], which provides a detailed description of DEA window analysis.

The window approach used in this study measures the degree of operational efficiency
(OE) of the kth decision-making unit (DMU) based on multiple (e.g., the t − 1 & tth)
frontiers. In addition, this study describes how to measure the level of operational index
(OI) from the frontier. This is a new type of application of the DEA-window analysis.
In Figure 1, we measure OE by OCt/OCet

t−1&t, so that it is less than or equal to unity.
Meanwhile, OI of the t + 1 th period is determined by OCt+1/OCet+1

t−1&t, so that it may
be greater than unity (due to technology development) or less than unity (because of no
development). The index of the t + 1 th period implies how much the performance of t + 1
th period operationally (or technologically) proceeds from the efficiency frontier of the
t− 1 and the tth combined period. Such a difference often exists between the OE and OI
measures on the kth DMU at the tth and the t + 1 th period as well.

3.1.2. Window Analysis

Figure 2 describes the window analysis with three annual periods. After visually
discussing differences between OE and OI measures in Figure 1, we describe the structure
of Figure 2 that depicts the measurement with three periods.

Figure 2. Structure of Window Analysis (with Three Periods). Note: The first window (W3) uses
decision-making units (DMUs) under the three periods (1, 2, and 3) for measurement. The window
analysis measures the performance of the k th DMU in the third period as the starting point. The
window shifts the length by one period. The index measurement starts DMUs in the fourth period.
The window consists of the three periods (1, 2, and 3), and measures the DMU performance in the
fourth period.

The first window consists of observations in the first, second, and third periods in
Figure 2. First, we start measuring the degree of OE of the kth DMU from the third period,
indicated as W3. The index measure starts from the kth DMU in the fourth period using
W3, for a total of four periods in the index analysis. Second, the window consists of the
second, third, and fourth periods (W4). In the second window, we measure OE of the kth
DMU from the fourth period and index measure for the performance of the DMU in the
fifth period. The time shift continues until the window reaches the last period. In that case,
the window consists of the T-2 th, T-1 th, and T th periods. We measure the efficiency of
the kth DMU at the T th period by Wt consisting of T-2 th, T-1 th, and T th periods, and
the index measure stops at using the frontier Wt-1 consisting of T-3 th, T-2 th, and T-1 th
periods for the T th performance measurement The description may extend to more than
three periods.

There are two other unique features of the index measurement. First, the observations
at the t + 1 th period may be located outside the observed data range of the window,
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comprising the t − 2, t − 1, and tth groups of observations (i.e., DMUs). A difficulty
is that the measurement may produce “infeasibility” in a computer code. To avoid the
computational difficulty, this study incorporates “constant RTS (Returns to Scale: outputs
proportionally increase with inputs.” Second, there are many DEA models (e.g., radial,
non-radial, and intermediate). This research uses “radial” measure under constant RTS to
attain computational feasibility in the window-based index measurement.

3.2. Cross-Sectional Operational Efficiency (CSOE)

As the first measure among the three approaches, we assess the OE of utility firms by
pooling all observations in a cross-sectional structure. The measure serves as the basis for
comparison of the proposed methods. The measurement examines differences in OE and
OI among multiple groups and periods. A benefit of the measurement is that it links to
statistical (e.g., rank sum) tests that will be discussed in Section 3.6.

This research evaluates each entity as a DMU (a decision making unit, such as a utility
firm). In each DMU, the production technology transforms X with m components into G
with s components. This study proposes a new type of “radial approach” that determines
the levels of OE and OI on the specific kth DMU at the tth period (t = 1, . . . , T).

Given the observed Xkt and Gkt, we evaluate the performance of each DMU. The
following formulation measures the degree of (CSOEc

kt) on the kth DMU at the tth period:

Maximize ξ + εs

(
∑m

i=1 Rx
i dx

it + ∑s
r=1 Rg

r dg
rt

)
s.t. ∑T

t=1 ∑n
j=1 xijtλjt + dx

it + ξxikt = xikt (i = 1, . . . , m & t : speci f ic),
∑T

t=1 ∑n
j=1 grjtλjt − dg

rt − ξgrkt = grkt (r = 1, . . . , s & t : speci f ic),
λjt ≥ 0 (j = 1, . . . , n & t = 1, . . . , T), ξ : URS
dx

it ≥ 0 (i = 1, . . . , m & t = 1, . . . , T) &
dg

rt ≥ 0 (r = 1, . . . , s & t = 1, . . . , T)

(1)

It is important to note that the symbol (t) in the left hand side of Model (1) is used to
function for the sum of t = 1, . . . , T (all periods). Meanwhile, the symbol of the right hand
side indicates a “specific” period (t = 1, . . . , T) to be examined by Model (1). Thus, both
are different as found in the two symbols (j: all DMUs and k: a specific DMU). It may be
better for us to use “z”, not “t” to specify the period to be examined. However, to maintain
academic consistency with previous studies, we use “specific” in the right hand side of
Model (1).

This study specifies the following two types of data ranges (R) according to the upper
and lower bounds of production factors:

Rx
i = (m + s)−1(maxj, t

{
xijt
∣∣j = 1, . . . , n & t = 1, . . . , T

}
−minj, t

{
xijt
∣∣j = 1, . . . , n & t = 1, . . . , T

})−1 and
Rg

r = (m + s)−1(maxj, t
{

grjt
∣∣j = 1, . . . , n & t = 1, . . . , T

}
−minj, t

{
grjt
∣∣j = 1, . . . , n & t = 1, . . . , T

})−1

The purpose of these ranges is that DEA results can avoid an occurrence of zero in
multipliers. Such an occurrence implies that corresponding production factors (X and G)
are not fully utilized in the evaluation. The subscript (j), not k th, is used to express all
DMUs (j = 1, . . . , n). Meanwhile, the subscript (k) indicates the specific DMU currently
evaluated as mentioned previously. The shape of Model (1) forms constant RTS because it
does not incorporate ∑n

j=1 λjt = 1 as a side constraint in Model (1).
The degree of CSOEc

it of the kth DMU in the tth period is measured by:

CSOEc
kt = 1−

[
ξ∗ + εs

(
∑m

i=1 Rx
i dx∗

it + ∑s
r=1 Rg

r dg∗
rt

)]
, (2)

where the superscript (c) stands for “constant RTS.” The inefficiency measure (ξ) and all
slack variables (dx

it and dg
rt) are determined on the optimality (*) of Model (1). We obtain the

equation within the parenthesis from the optimality of Model (1). The degree is obtained
by subtracting the degree from unity as specified in Equation (2).
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3.3. Window Analysis for Operational Efficiency (WOE)

A difficulty of the OE measurement is that all firms are assumed to access an efficiency
frontier in the future, which indicates a problem. For example, the structure of Model (1)
accepts that utility firms in 2002 may access technology in 2018. Usually, the assumption is
unacceptable, thereby indicating a drawback of Model (1).

To overcome the drawback, we modify Model (1) by considering a recent time horizon
called a “window.” As the second measure, this study proposes the following window-
based formulation to measure the level of WOEc

kt on the kth DMU at the tth period:

Maximize ξ + εs

(
∑m

i=1 Rx
i dx

it + ∑s
r=1 Rg

r dg
rt

)
s.t. ∑j∈Wt xijtλjt + dx

it + ξxikt = xikt (i = 1, . . . , m & t : speci f ic),
∑j∈Wt grjtλjt − dg

rt − ξgrkt = grkt (r = 1, . . . , s & t : speci f ic),
λjt ≥ 0 (j = 1, . . . , n & t : speci f ic), ξ : URS,
dx

it ≥ 0 (i = 1, . . . , m & t : speci f ic) &
dg

rt ≥ 0 (r = 1, . . . , s & t : speci f ic).

(3)

The Wt is referred to as a “window length” that indicates multiple periods before the
specific tth period, as depicted in Figure 2. The left side (i.e., ∑j∈Wt xijtλjt and ∑j∈Wt grjtλjt)
of Model (3) indicates an efficiency frontier in the window (Wt).

The degree of WOEc
kt of the kth DMU at the t period is measured by:

WOEc
kt = 1−

[
ξ∗ + εs

(
∑m

i=1 Rx
i dx∗

it + ∑s
r=1 Rg

r dg∗
rt

)]
, (4)

where the inefficiency measure (ξ) and all slack variables (dx
it and dg

rt) within the parenthesis
are determined on the optimality (*) of Model (3). Equation (4) determines the degree of
efficiency by subtracting the level from unity.

3.4. Window Analysis for Operational Index (WOI)

As the last measure among three, we propose the following formulation to measure
the degree of WOIc

kt on the kth DMU at the t + 1 th period:

Maximize ξ + εs

(
∑m

i=1 Rx
i dx

it+1 + ∑s
r=1 Rg

r dg
rt+1

)
s.t. ∑j∈Wt xijtλjt + dx

it+1 + ξxikt+1 = xikt+1 (i = 1, . . . , m & t : speci f ic),
∑j∈Wt grjtλjt − dg

rt+1 − ξgrkt+1 = grkt+1 (r = 1, . . . , s & t : speci f ic),
λjt ≥ 0 (j = 1, . . . , n & t : speci f ic), ξ : URS,
dx

it+1 ≥ 0 (i = 1, . . . , m & t : speci f ic) &
dg

rt+1 ≥ 0 (r = 1, . . . , s & t : speci f ic).

(5)

Model (5) replaces the production factors by xikt+1 and grkt+1 of the t + 1 th period. There
is no other difference between Models (3) and (5). The purpose of Model (5) is to measure
the degree of index (OI) of the kth DMU at the t + 1 th period. Model (5) evaluates
the performance of DMUs at the t + 1 th period by using the efficiency frontier in the
window, which is a combined frontier with three periods among the t− 2 th, t− 1 th, and
t th periods.

Model (5) determines the degree of WOIc
kt+1 as follows:

WOIc
kt+1 = 1−

[
ξ∗ + εs

(
∑m

i=1 Rx
i dx∗

it+1 + ∑s
r=1 Rg

r dg∗
rt+1

)]
, (6)

The inefficiency measure and all slack variables are determined on the optimal-
ity of Model (5). The equation within the parenthesis is obtained from the optimality
of Model (5).

There are two noteworthy comments on Model (5). First, since ξ∗ is unrestricted,
the value in the parenthesis may be negative. In that case, WOIc

kt+1 becomes greater
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than unity in the degree. Meanwhile, WOEc
kt is always less than or equal to unity. The

degree of WOIc
kt+1, greater than unity indicates an economic and/or technological progress

in the production process by a shift from the tth to the t + 1 th period. Second, the
proposed three models do not consider variable RTS in their structures. In particular, the
index measurement needs to assume constant RTS. Without the assumption, the index
measurement of Model (5) may produce an infeasible solution. To avoid this, we assume
constant RTS in the index measurement and the treatment extends to all models that do
not have ∑j∈Wt λjt = 1, implying variable RTS, in their formulations.

3.5. Analytical Features

This research has developed the three new DEA approaches over time. They are
different from standard DEA models, as found in unique features. Some of them are
specified as follows:

(a) Data ranges: The proposed three approaches incorporate the two types of data ranges
(R) into the objective function of their formulations. Meanwhile, the standard models
often do not have any influence (i.e., ranges) from slacks in their efficiency measures.
An exception is the incorporation of a non-Archimedean small number. A problem of
the standard models is that dual variable, or so called multipliers (implying weights
among inputs and outputs), may become “zero”. This indicates that production
factors are not fully used in the standard assessment. This is unacceptable. It is true
that if we include the non-Archimedean small number, then we can solve the difficulty.
However, none can determine the reasonable magnitude of the small number. This is
another problem. The proposed approaches can solve the difficulty.

(b) Unique projection: A benefit of the proposed approaches is that they have a unique
projection from inefficiency to efficiency because their projections are specified by
a directional vector (xikt, grkt). Meanwhile, the standard models may suffer from a
possible occurrence of multiple projections (so, multiple reference sets as well).

(c) OE measures: The standard models are usually classified into input or output-based
measures so that both produce different degrees in OE measures, while the proposed
approaches do not have such classification, or orientation, to determine the level of
OE in Models (1) and (3) by combing inputs and outputs with the inefficiency score (ξ).
This is an innovative approach that provides a degree of the OE measure (as CSOE
and WOE), not depending on the type (input or output orientation) of production
factors. The feature may be applicable to WOI, as well.

(d) Degree of measures: The proposed approaches measure the degree of inefficiency with
the score (ξ), hence the degree of CSOE, WOE, and WOI is obtained by subtracting
the level of inefficiency from unity. This feature is different from the standard models
that measure the degree of efficiency (not inefficiency).

(e) Difference among (3) and (5): As an alternative of Model (1), the other two approaches
calculate the degree of inefficiency (Model (3)) and that of index (Model (5)). Both be-
long to the window analysis with different features. For example, Model (3) produces
the degree of WOE between 0 and 1, while Model (5) measures that of WOI which
may become more than 1, indicating a technological progress. The other difference
can be found in the directional vectors in different periods. For instance, Model
(3) incorporates the directional vector (xikt, grkt) of the tth period while Model (5)
incorporates the vector (xikt+1, grkt+1) of the t + 1 th period, as specified in the right
hands of these formulations. Thus, WOE measures an efficiency shift while WOI
measures total measure, including the technology progress over time.

(f) Efficiency shift: Standard models measure a frontier shift among multiple periods by
assuming that DMUs in the past can access technology in the future. The assumption
may be slightly acceptable. On the other hand, the approaches employed by Models
(3) and (5) measure an efficiency shift, not the frontier shift, so that we can avoid
the assumption.
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(g) Computational concerns: First, the score (ξ) is unrestricted so that the index mea-
sure (6) can produce a degree more than unity. Second, the three approaches drop
∑n

j=1 λjt = 1 as a side constraint to avoid computational infeasibility. What happens
if we incorporate the constraint? For example, Model (5) may produce an infeasible
solution on a computer code. Hence, we need to assume constant RTS in measuring
WOI. Models (1) and (3) do not have such a computational difficulty in measuring
both CSOE and WOE. If necessary, we can solve both models under variable RTS.

(h) Discriminant capability: When a sample size is relatively small, the standard models
usually produce many efficient DMUs so that they do not have any discriminant
capability. The drawback is applicable to the proposed models ((1), (3), and (5)).
An approach to handle the difficulty is that we take their dual formulations and
then allocate restriction on dual variables (i.e., multipliers), by prior or mathematical
information. This type of research will be an important future task.

Thus, Models (1), (3), and (5) provide us with novel efficiency and index measures as
new approaches, which cannot be found in previous studies. However, such an extension
is only one step toward our methodological betterment in DEA.

3.6. Rank Sum Tests

A difficulty in applying DEA to real world situations is that it does not have statistical
inference, because it does not have a statistical capability. That is a shortcoming. To
overcome the difficulty, we utilize two rank sum tests.

First, to examine the null hypothesis (i.e., no difference between two groups), we
use the Mann–Whitney rank sum test for electricity and gas firms in terms of operational
efficiencies (i.e., CSOE). In the test, all firms are ranked by their CSOEc

kt scores from greatest
to least. The equations used for the test are as follows:

U = (n1× n2) +
n1(n1 + 1)

2
−∑ R1 or U = (n1× n2) +

n2(n2 + 1)
2

−∑ R2, (7)

where n1 and n2 represent the number of firms in the first and second group, respectively,
and ∑ R1 and ∑ R2 indicate the sum of the ranks, respectively.

It is mathematically approximated that each group follows a normal distribution that
has a mean expressed as n1n2/2 and a variance expressed as n1n2(n1 + n2 + 1)/12. The
test statistic becomes as follows:

µ =

[
U − n1n2

2

]
/
√

n1n2(n1 + n2 + 1)/12. (8)

It follows a standard normal distribution N(0, 1).
To examine the other null hypothesis (e.g., no difference among multiple periods), we

use the Kruskal–Wallis rank sum test. In the test, the entire observed periods are separated
into T periods to examine whether there is difference among multiple periods. We apply
the rank sum test based on efficiency scores.

To compute the Kruskal–Wallis statistic (H score), we combine all observations
(n = ∑T

t=1 nt) in T th periods to examine annual differences among them. The n stands
for the number, and the subscript (t) indicates the tth period. Then, we rank them from
greatest to least by these efficiency scores over the entire period. Let Rjt denote the rank
of the jth company in the tth period. The rank sum of all companies in the tth period is
Rt = ∑nt

j=1 Rjt. The H score is determined by:

H =
12

n(n + 1) ∑T
t=1

R2
t

nt
− 3(n + 1). (9)

The statistic (H) follows the χ2 distribution with a degree of freedom (d f = T − 1).



Energies 2021, 14, 1705 10 of 18

4. Empirical Study

This study has sampled nine electricity and two gas companies in Japan as util-
ity companies. The number of observations is 11 firms over 17 years that becomes
187 DMUs as like cross-sectional data in Model (1), and 33 DMUs in a three-year win-
dow in Models (3) and (5). Each sample has seven production factors (i.e., three inputs and
four outputs).

The source of the data set was S&P Capital IQ, except the number of patent applica-
tions, which were obtained from World Intellectual Property Organization, Patentscope.
Sample periods were fiscal years 2002–2018.

The nine electricity companies were the Hokkaido Electric Power Company, Tohoku
Electric Power Company, Tokyo Electric Power Company, Chubu Electric Power Com-
pany, Hokuriku Electric Power Company, Kansai Electric Power Company, Chugoku
Electric Power Company, Shikoku Electric Power Company, and the Kyushu Electric Power
Company. The two gas companies were the Tokyo Gas Company and Osaka Gas Company.

All firms were evaluated by inputs and outputs. Inputs were total assets (million
Japanese Yen (JPY)), capital expenditure (million JPY), and total operating expenditure
(million JPY). Outputs were total revenue (million JPY), Earnings Before Interest, Taxes,
Depreciation, and Amortization (EBITDA) (million JPY), total enterprise value (million
JPY), and number (#) of patent applications. The number of patent applications is an output
because it expresses future growth potential for companies by technological development.

It is important to note the following three concerns on the selection of these production
factors: First, the operating expenditure contains the cost of fuel to generate electricity and
gas, which is a major intermediate consumption in the production process of electricity
and gas industries. On the other hand, the total revenue shows the gross amount of total
sales. It serves as an output. Thus, by balancing both as an input and an output, we
implicitly incorporate the concept of “operating profit” in our assessment. In the selection
process, we avoid a data item with zero and negative values, which sometimes appear in
the operating profit and cause a computational difficulty in DEA. The proposed selection of
data is useful to avoid such difficulty. Second, it is necessary to discuss that the EBITDA is
very important for performance assessment of electricity and gas industries. The EBITDA
is a profit account of firms and represents earning power in their core business, because it is
calculated as the operating profit plus depreciation/amortization of plants and equipment.
The rationale on why the depreciation/amortization is added back to the operating profit
is that it is a non-expendable expense so that it can be considered as part of earning power
of firms. In addition, the depreciation/amortization generally becomes a large amount
in electricity and gas industries since they are a traditional equipment industry, usually
investing in large amount capital assets to establish production processes, thereby it is not
negligible in the assessment of the industries. Furthermore, EBITDA and total revenue are
related each other, but they are not in a double counting relationship because the former is
a kind of profit (net account) and the latter is a total sales (gross account), both of which
provide useful information for our performance assessment.

Finally, the total enterprise value is not included in SNA (System of National Accounts).
The measure is usually not considered as an output. However, we treat it as the output
because it represents the expectation of a stock market for future growth potential of firms.
The expectation becomes more influential on corporate management than before under the
globalized financial market. Therefore, the incorporation is acceptable and important for
the proposed performance assessment.

Table 1 summarizes the descriptive statistics on the data set. Table 2 summarizes the
CSOEc

kt score of 11 utility firms measured by Model (1). We pooled all annual periods
(2002–2018) and treated it as cross-sectional data. Figure 3 depicts the average trends of
the two groups of utility firms, showing that the operational efficiencies of gas companies
have outperformed those of electric power companies. In particular, this research notes
the CSOEc

kt of electric power companies from 2011 to 2013. The disaster of the Fukushima
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Daiichi Nuclear Power Plant significantly impacted their efficiency measures. The gas
industry did not experience a similar influence in the observed periods.

Table 1. Descriptive Statistics (2002–2018).

Production Factors Total
Revenue EBITDA

Total
Enterprise

Value

Number
of

Patents

Total
Assets

Capital
Expenditure

Total
Operating

Cost

Unit Million
JPY

Million
JPY

Million
JPY # Million

JPY Million JPY Million JPY

Hokkaido
EPCo

Avg. 597,872 121,082 1,284,276 12 1,626,006 116,017 570,678
Max. 733,050 177,371 1,477,960 20 1,915,908 165,091 710,509
Min. 517,204 (17,921) 1,120,832 2 1,435,924 86,544 433,945
S.D. 74,723 55,947 107,186 4 158,169 24,272 106,652

Tohoku
EPCo

Avg. 1,805,100 360,395 3,188,605 37 4,134,503 254,681 1,701,958
Max. 2,182,075 527,271 3,628,550 60 4,299,782 293,809 2,012,335
Min. 1,562,752 95,163 2,534,132 25 3,918,574 199,853 1,383,789
S.D. 193,292 106,463 310,357 10 102,072 31,054 210,256

Tokyo
EPCo

Avg. 5,551,127 1,052,909 9,299,157 272 13,930,729 650,586 5,246,243
Max. 6,802,464 1,612,370 12,367,949 432 15,536,456 894,572 6,485,929
Min. 4,853,826 399,092 5,674,767 79 12,277,600 544,157 4,364,821
S.D. 569,903 349,280 2,641,280 132 844,034 94,858 713,832

Chubu
EPCo

Avg. 2,462,990 518,257 4,415,322 82 5,711,112 268,401 2,276,672
Max. 3,103,604 797,704 5,623,518 156 6,435,215 416,631 2,996,435
Min. 2,101,072 218,054 3,427,955 21 5,299,976 145,364 1,766,659
S.D. 308,374 185,945 903,724 46 310,920 67,216 403,232

Hokuriku
EPCo

Avg. 502,634 129,657 1,228,138 16 1,502,855 77,039 461,850
Max. 596,283 194,133 1,533,038 29 1,603,728 117,322 581,457
Min. 451,466 75,382 979,338 5 1,381,163 41,131 393,071
S.D. 35,613 38,337 217,075 9 79,656 22,634 52,225

Kansai
EPCo

Avg. 2,837,997 580,919 5,290,014 136 7,218,646 387,658 2,678,693
Max. 3,406,030 850,255 6,114,891 272 7,777,519 491,956 3,484,630
Min. 2,540,155 75,095 4,610,550 20 6,789,605 276,629 2,190,663
S.D. 282,716 233,938 411,357 92 342,731 67,222 424,838

Chugoku
EPCo

Avg. 1,130,802 204,435 2,336,463 643 2,862,839 154,007 1,065,660
Max. 1,314,967 312,215 2,514,105 1,108 3,179,442 214,038 1,275,341
Min. 967,056 108,836 2,109,853 67 2,636,363 101,092 867,470
S.D. 109,437 65,625 114,573 284 168,658 35,347 142,432

Shikoku
EPCo

Avg. 611,512 125,519 1,166,296 11 1,400,364 69,957 572,919
Max. 731,775 193,851 1,419,244 20 1,515,185 89,063 702,510
Min. 545,393 19,125 926,906 3 1,301,267 57,429 501,905
S.D. 50,387 46,662 174,309 6 48,813 8,618 63,608
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Table 1. Cont.

Production Factors Total
Revenue EBITDA

Total
Enterprise

Value

Number
of

Patents

Total
Assets

Capital
Expenditure

Total
Operating

Cost

Unit Million
JPY

Million
JPY

Million
JPY # Million

JPY Million JPY Million JPY

Kyushu
EPCo

Avg. 1,574,684 316,301 3,235,075 29 4,326,199 253,889 1,502,311
Max. 1,960,359 492,172 3,572,286 65 4,784,735 352,763 1,916,782
Min. 1,391,684 (86,693) 2,670,354 4 4,038,838 183,922 1,192,718
S.D. 195,845 165,269 280,627 19 272,244 49,874 273,621

Tokyo
GasCo

Avg. 1,566,680 265,282 1,765,412 198 1,902,742 137,596 1,444,546
Max. 2,292,548 337,195 2,148,394 343 2,334,721 195,060 2,120,793
Min. 1,097,589 202,714 1,472,495 118 1,666,828 94,084 986,981
S.D. 355,171 38,847 219,173 64 247,957 31,644 346,360

Osaka
GasCo

Avg. 1,203,236 183,553 1,230,712 368 1,512,380 88,161 1,110,533
Max. 1,528,164 238,792 1,490,790 700 1,905,215 115,244 1,423,098
Min. 947,978 153,482 870,287 253 1,199,229 64,800 859,228
S.D. 184,583 17,750 159,494 113 241,272 16,697 184,110

Note: The statistics are obtained from the performance of each firm during 2002–2018. For example, the Avg. (average) is obtained from the
periods. Mix, Min and S.D. stand for maximum, minimum and standard deviation. The number of DMUs is 11 firms over 17 years that
becomes 187 in total. Each sample has seven production factors (i.e., three inputs and four outputs).

Table 2. Cross-Sectional Operational Efficiencies (CSOE) of Utility Companies: Pooled Data.

Company 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Avg.

Hokkaido
EPCo 0.980 0.984 0.999 1.000 0.977 0.983 0.956 0.904 0.943 0.952 0.921 0.869 0.863 0.922 0.948 0.937 0.940 0.946

Tohoku
EPCo 0.981 0.981 0.975 0.969 0.950 0.959 0.944 0.923 0.947 0.954 0.882 0.906 0.945 0.965 0.971 0.957 0.950 0.950

Tokyo
EPCo 0.979 0.968 0.966 0.973 0.973 0.973 0.932 0.927 0.946 0.953 0.892 0.903 0.937 0.950 0.953 0.946 0.948 0.948

Chubu
EPCo 0.992 0.989 0.998 1.000 1.000 0.989 0.956 0.959 0.965 0.959 0.915 0.920 0.917 0.949 0.976 0.950 0.949 0.964

Hokuriku
EPCo 1.000 1.000 1.000 1.000 1.000 0.984 1.000 0.953 0.957 0.966 0.928 0.927 0.935 0.953 0.950 0.925 0.929 0.965

Kansai
EPCo 0.976 0.979 0.987 0.994 0.982 0.970 0.953 0.925 0.959 0.966 0.881 0.869 0.912 0.912 0.961 0.958 0.958 0.950

Chugoku
EPCo 0.975 0.985 0.984 1.000 1.000 0.986 0.970 0.941 0.968 0.952 0.952 0.927 0.932 0.953 0.945 0.936 0.938 0.961

Shikoku
EPCo 0.978 0.979 0.973 0.974 0.980 0.988 0.977 0.969 0.959 0.972 0.926 0.881 0.925 0.946 0.942 0.941 0.947 0.956

Kyushu
EPCo 0.983 0.978 0.988 0.993 0.976 0.971 0.951 0.944 0.949 0.948 0.861 0.836 0.895 0.908 0.950 0.952 0.946 0.943

Tokyo
GasCo 0.986 0.990 1.000 1.000 0.996 1.000 0.976 0.979 0.969 0.986 1.000 0.997 0.998 1.000 0.996 0.954 0.972 0.988

Osaka
GasCo 1.000 1.000 1.000 1.000 0.988 1.000 0.982 1.000 0.984 1.000 1.000 1.000 0.996 0.988 0.994 0.983 1.000 0.995

Avg.
EPCo 0.983 0.983 0.985 0.989 0.982 0.978 0.960 0.938 0.955 0.958 0.906 0.893 0.918 0.940 0.955 0.945 0.945 0.954

Avg.
GasCo 0.993 0.995 1.000 1.000 0.992 1.000 0.979 0.990 0.977 0.993 1.000 0.998 0.997 0.994 0.995 0.969 0.986 0.992

Total
Avg. 0.985 0.985 0.988 0.991 0.984 0.982 0.963 0.948 0.959 0.964 0.923 0.912 0.932 0.950 0.962 0.949 0.953 0.961

Note: (a) EPCo stands for an electric power company. GasCo stands for a gas company. Avg stands for the average of CSOE measures on
each industry. (b)The results presented in this table are calculated by using 187 decision-making units (DMUs) as a cross-sectional data
structure in Model (1). This is a strong assumption on technological progress over periods from 2002 to 2018, showing a serious drawback
of Model (1). This study uses the structure for our statistical tests.
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Figure 3. Operational Efficiencies (CSOE) of Utility Companies: Pooled Data. Note: See the bottom
of Table 2.

Table 3 measures the window-based operational efficiencies (WOEc
kt) of the utility

firms. In the investigation, we prepared a window with three annual periods and gradually
shifted the window each year. The first window comprises the first three years, so that the
windows shift from 2004 (2002–2004) to 2018 (2016–2018). Figure 4 presents the average
time trend of WOEc

kt and indicates almost no change in the gas industry. In contrast, the
electric power company displayed a change (i.e., decreasing and increasing) from 2005
to 2011 and another change from 2011 to 2016. The first change indicates that the retail
market competition due to deregulation and the global financial crisis of 2008 affected the
electric power industry. The second change indicates that the industry suffered damage
due to the nuclear disaster.

Table 3. Operational Efficiencies (WOE) of Utility Firms: Window Analysis.

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Avg.

Hokkaido
EPCo 1.000 1.000 0.977 0.983 0.962 0.918 0.984 0.986 0.950 1.000 0.982 1.000 0.993 1.000 0.997 0.982

Tohoku
EPCo 0.978 0.969 0.950 0.961 0.950 0.934 0.981 0.982 0.911 0.972 0.997 1.000 1.000 0.991 0.980 0.970

Tokyo
EPCo 0.968 0.973 0.973 0.973 0.938 0.943 0.984 0.985 0.922 0.934 0.978 0.984 0.974 0.970 0.968 0.965

Chubu
EPCo 1.000 1.000 1.000 0.989 0.961 0.974 1.000 0.987 0.944 0.947 0.961 0.982 1.000 0.978 0.975 0.980

Hokuriku
EPCo 1.000 1.000 1.000 0.985 1.000 0.966 1.000 1.000 0.964 1.000 1.000 1.000 1.000 0.969 0.973 0.990

Kansai
EPCo 0.989 0.994 0.982 0.971 0.960 0.938 1.000 0.999 0.909 0.932 0.959 0.952 0.998 1.000 0.996 0.972

Chugoku
EPCo 1.000 1.000 1.000 0.986 0.974 0.957 1.000 0.983 0.982 1.000 0.998 1.000 0.998 1.000 1.000 0.992

Shikoku
EPCo 0.975 0.974 0.982 0.988 0.977 0.982 0.995 1.000 0.958 1.000 0.976 1.000 0.972 0.978 0.977 0.982

Kyushu
EPCo 0.990 0.993 0.976 0.971 0.958 0.959 0.989 0.981 0.889 1.000 0.968 0.968 0.994 1.000 0.988 0.975

Tokyo
GasCo 1.000 1.000 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Osaka
GasCo 1.000 1.000 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Avg.
EPCo 0.989 0.989 0.982 0.979 0.965 0.952 0.993 0.989 0.937 0.976 0.980 0.987 0.992 0.987 0.984 0.979

Avg.
GasCo 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Total Avg. 0.991 0.991 0.985 0.983 0.971 0.961 0.994 0.991 0.948 0.980 0.984 0.990 0.994 0.990 0.987 0.983

Note: Avg stands for the average WOE measures on each industry.
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Figure 4. Operational Efficiency (WOE) of Utility Companies: Window Analysis. Note: See the
bottom of Tables 2 and 3.

Table 4 summarizes the window-based operational index (WOIc
kt+1) of 11 utility firms

from 2005 to 2018. The study uses a window with three annual periods from 2004 to
2017 that measures the performance of the period from 2005 to 2018. Figure 5 illustrates
fluctuations in the averages of the electricity and gas firms. The gas industry exhibited
greater than unity in most periods, while the electricity industry showed less than unity.

Table 4. Operational Index (WOI) of Utility Companies: Index Measurement.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Avg.

Hokkaido
EPCo 1.003 0.977 0.983 0.957 0.910 0.962 0.994 0.949 0.953 0.975 1.020 0.993 1.011 0.995 0.977

Tohoku
EPCo 0.972 0.951 0.959 0.947 0.929 0.960 0.988 0.910 0.941 0.979 1.043 1.067 0.991 0.979 0.973

Tokyo
EPCo 0.984 0.973 0.974 0.934 0.933 0.965 0.992 0.922 0.934 0.969 0.984 0.991 0.970 0.968 0.964

Chubu
EPCo 1.277 1.016 0.990 0.958 0.965 0.983 0.992 0.944 0.947 0.945 0.986 1.079 0.978 0.975 1.003

Hokuriku
EPCo 1.045 1.049 0.985 1.010 0.953 0.985 1.026 0.964 0.963 0.989 1.073 1.009 0.970 0.972 0.999

Kansai
EPCo 0.997 0.982 0.970 0.955 0.931 0.977 1.007 0.909 0.904 0.939 0.960 1.037 1.036 0.996 0.971

Chugoku
EPCo 1.214 1.017 0.988 0.970 0.946 1.004 0.984 0.982 1.017 0.995 1.012 0.997 1.005 0.995 1.009

Shikoku
EPCo 0.982 0.997 0.992 0.977 0.971 0.976 1.041 0.955 0.964 0.962 1.039 0.979 0.982 0.972 0.985

Kyushu
EPCo 0.996 0.976 0.971 0.952 0.950 0.967 0.988 0.889 0.926 0.960 0.979 0.994 1.019 0.987 0.968

Tokyo
GasCo 1.025 1.069 1.052 1.022 1.037 0.970 1.083 1.020 1.063 1.005 1.023 1.096 0.997 1.022 1.035

Osaka
GasCo 1.039 0.993 1.022 1.005 1.060 1.020 1.168 1.007 1.034 1.005 1.003 1.138 1.082 1.101 1.048

Avg.
EPCo 1.052 0.993 0.979 0.962 0.943 0.975 1.001 0.936 0.950 0.968 1.011 1.016 0.996 0.982 0.983

Avg.
GasCo 1.032 1.031 1.037 1.013 1.049 0.995 1.125 1.013 1.048 1.005 1.013 1.117 1.040 1.062 1.041

Total Avg. 1.049 1.000 0.990 0.971 0.962 0.979 1.024 0.950 0.968 0.975 1.011 1.035 1.004 0.997 0.994

Note: Avg stands for the average WOI measures on each industry.
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Figure 5. Operational Index (WOI) of Utility Companies: Index Measurement. Note: See the bottom
of Tables 2–4.

This kind of difference is not found in the other efficiency measures (CSOEc
kt and

WOEc
kt). This finding implies that the gas industry showed technological progress under

the economic growth, but the electric power industry did not have such progress in
their operations. After 2012, the electric power industry gradually recovered from the
nuclear disaster, but it did not achieve enough WOIc

kt+1 that was slightly over unity in
2015 and 2016.

Statistical Tests: To examine the null hypothesis (e.g., no difference between electricity
and gas companies), we apply the Mann–Whitney U test to CSOEc

kt. The µ score measured
by Equation (8) equals−7.034, which rejects the null hypothesis at the 1% significance level,
concluding there was a difference between the two utility firms. We apply the Kruskal–
Wallis rank sum test to CSOEc

kt to examine the null hypothesis for multiple periods. The H
score measured by Equation (9) equals 85.980 with 16 degrees of freedom, which rejects
the null hypothesis at the 1% significance level, implying a difference on performance of
electricity and gas companies among the observed periods.

5. Conclusions

This study compared between Japanese electricity and gas companies in terms of their
operational efficiencies and indexes from 2002 to 2018 using the three DEA approaches.
We provided two findings from the results. First, compared with the gas industry, the
electricity industry was negatively affected by the progress of market reforms and disaster
of Fukushima Daiichi Nuclear Power Plant. The damage of the nuclear disaster caused
major difficulties in the operations of electricity companies. Second, both industries have
been gradually improving their performance measures in most recent years, but the gas
industry has outperformed the electricity industry. This may be partly explained by a
time lag of market liberalization between them; gas market reforms are slightly behind
electricity reforms in Japan. Such a regulatory situation is unmanageable for corporate
leaders, but it is shown that electricity companies have more room to increase efficiency.
Furthermore, the Japanese government envisions industrial policy to promote mutual
competition between electricity and gas companies to enter each other’s market that may
produce strong and efficient integrated energy companies through market liberalization.
Such a government vision could be more beneficial for the electricity companies than city
gas companies, because the former has scale benefits with larger capital than the latter.

Methodologically, this study developed the three new types of DEA approaches to
evaluate corporate performances and intertemporal changes of efficiency that are brought
about technology innovation of the two utility industries. We have computed CSOE, WOE,
and WOI measures, which have served as efficiency and index measure assessments in a
time horizon. These approaches have not been explored in the previous studies. We used
the proposed approaches to avoid a “methodological bias”, or limitation (i.e., different
methods produce different results) often found in many empirical studies to guide large
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policy issues. In particular, DEA suffers from this type of problem, because it is for weight
estimation (thus, nonparametric) among production factors. This difficulty requires that it
is necessary for us to compare several methods and then to conclude policy suggestions on
large issues such as energy and environment.

Academic Implications: The economic assertion believed by [9] assumes, “there are
similarities between electricity and gas services in the utility industry so that they have a
synergy effect between them.” Previous studies [10,11] have empirically investigated the
assertion by comparing electricity-specialized and diversified firms in the US, concluding
that the two utility services do not have technological similarities at the level of receiving
synergy effect between gas and electricity under US deregulation. Although this study
does not directly examine synergy effects between electricity and city gas businesses, we
have confirmed from the empirical results that there are significant differences in corporate
performance between the two industries over the observed periods, thereby seeking the
synergy effect under a new business model may be a significant business issue for corporate
leaders in electricity companies with lower efficiency measures.

Policy Implication: Compared to the electricity companies, the gas companies had lim-
ited influence from competition because of the lagged schedule of market reforms in Japan.
They were also not directly impacted by the nuclear disaster. In contrast, the electricity
companies had a significant negative effect from the disaster. Consequently, gas companies
outperformed electricity companies in all three measures in most observed periods. From
the results, the government policy suggestion for integrated energy companies may be a
more beneficial strategy for electricity companies than gas companies, because the former
have greater business sizes with larger sales and capital assets. Moreover, it is generally ex-
pected that deregulation reduces utility service prices via market competition that increases
benefits for consumers. Our empirical study did not directly examine the electricity and
gas utility service prices. Rather, we were interested in more fundamental factors measured
by operational efficiencies (CSOE and WOE) and technology innovation index (WOI) over
time because improved OE and OI might lead to decreased prices through the improved
corporate performance of the two utility industries. Thus, this study recommends that the
Japanese government needs to examine the level of business competition by considering
that the merger between electricity and gas services is most effective for utility companies
in terms of their operational efficiency improvements and new technology innovations.

As an extension, this study leads to the consideration of two future research tasks.
First, we should consider theoretical linkages between DEA approaches and statistical tests
under multiple solutions (e.g., multiple projections, multiple reference sets, and multiple
supporting hyperplanes). DEA usually suffers from an occurrence of such multiple solu-
tions. Second, we must consider other applications on energy industries (e.g., petroleum
and renewable energy [22–24]), whose assessments include environmental factors, such as
polluted water and CO2 emissions, in their production processes.

In conclusion, it is hoped that we make a contribution in DEA applied to the energy
utility industry. We look forward to seeing future extensions as discussed in this study.
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Abbreviations

CSOE Cross-Sectional Operational Efficiency
DEA Data Envelopment Analysis
DEA-DA DEA-Discriminant Analysis
DMU Decision-Making Unit
EBITDA Earnings Before Interest, Taxes, Depreciation, and Amortization
JPY Japanese Yen
OE Operational Efficiency
OI Operational Index
RTS Returns to Scale
SNA System of National Accounts
WOE Window-based Operational Efficiency
WOI Window-based Operational Index
URS Unrestricted
US United States

Abbreviations

X: a column vector of m inputs and G: a column vector of s outputs. xijt is the observed ith input of
the jth DMU (i = 1, . . . , m & j = 1, ..., n) at the tth period, grjt is the observed r th output of the j th
DMU (r = 1, ..., s & j = 1, ..., n) at the t th period, ξ is an inefficiency score, dx

it is an unknown slack
variable of the i th input at the t th period, dg

rt is an unknown slack variable of the r th output at the t
th period, Rx

i is the data range on the i th input, and Rg
r is the data range on the r th output. λjt is an

unknown intensity (or structural) variable of the j th DMU at the t th period, s.t. means subject to,
and εs is a prescribed very small number.
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