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Abstract: The access of large-scale electric vehicles (EVs) will increase the network loss of medium
voltage distribution network, which can be alleviated by adjusting the network structure and orderly
charging for EVs. However, it is difficult to accurately evaluate the charging efficiency in the
orderly charging of electric vehicle (EV), which will cause the scheduling model to be insufficiently
accurate. Therefore, this paper proposes an EV double-layer scheduling model based on the isolated
bidirectional DC–DC (IBDC) converter optimal efficiency model, and establishes the hierarchical and
partitioned optimization model with feeder–branch–load layer. Firstly, based on the actual topology
of medium voltage distribution network, a dynamic reconfiguration model between switching
stations is established with the goal of load balancing. Secondly, with the goal of minimizing the
branch layer network loss, a dynamic reconstruction model under the switch station is established,
and the chaotic niche particle swarm optimization is proposed to improve the global search capability
and iteration speed. Finally, the power transmission loss model of IBDC converter is established,
and the optimal phase shift parameter is determined to formulate the double-layer collaborative
optimization operation strategy of electric vehicles. The example verifies that the above model
can improve the system load balancing degree and reduce the operation loss of medium voltage
distribution network.

Keywords: medium voltage distribution network; switch station; electric vehicle; DC–DC converter;
reconfiguration; orderly charging

1. Introduction

In recent years, due to the large-scale access of distributed new energy sources and
electric vehicles (EVs), the economy and reliability of the distribution network have been
severely challenged [1,2]; especially with the surge of electric vehicle (EV) users, disor-
derly charging behavior will aggravate the imbalance of the distribution network load [3].
Therefore, there are usually two solutions to the above problems. The first is distribution
network reconstruction [4,5], that is, the topology of the distribution network is adjusted,
and then the power flow direction is adjusted by changing the closing and opening of
switches. The other is optimal scheduling for controllable load.

Nowadays, relying on the rapid development of information collection, communica-
tion, and processing technology, the active distribution network can collect a large amount
of data to provide a data basis for the distribution network reconfiguration plan. Thus, by
changing the switch combination state, load balance can be achieved, system loss can be
reduced, and the economic reliability of the distribution network can be improved [6,7].
Taking into account the temporal and spatial characteristics of loads such as EVs, and the
uncertainty of the charging time, it is necessary to dynamically adjust the switch state to
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adapt to the impact of this uncertainty [8]. Some articles have researched dynamic recon-
struction [9–11]. Furthermore, in the actual distribution network, the switching station
is a facility that connects or cuts the user’s electrical equipment selectively through the
switching device, which is usually taken as the research object. The topological structure
under the switch station is also complicated. There may be a contact relationship between
the ring network cabinets under a certain switch station, and there may also be a contact
relationship between the ring network cabinets under different switch stations [12]. Few
people have established an optimization model under the switch station. If the topology
reconstruction of the branch layer under the switch station is not considered, the line loss
problem under the switch station is still not solved. Therefore, not only the reconstruction
between the switch stations, but also the reconstruction under the switch station must
be considered.

On the other hand, after the optimization of topology is completed, orderly charging
optimization scheduling for EVs can be performed to further optimize the line loss in the
branch layer [13–15]. However, in the process of dispatching EVs, there are two problems
that need to be solved urgently. The first one is the optimization of the dispatching method.
The traditional method is mostly direct dispatch, that is, the dispatching center directly
dispatches all EVs under the transformer area. Considering the increasing number of
EVs in the future, the solution dimension and difficulty of this method gradually increase.
Therefore, a new scheduling method should be established to reduce the difficulty of
solving [16,17]. The second one is the determination of charging efficiency parameters.
The charging efficiency is affected by the converter and heat dissipation. The loss of
an isolated bidirectional DC–DC (IBDC) converter under dual-phase-shift (DPS) control
mainly includes switching loss [18], on-state loss, copper loss, and iron loss caused [19].
Previous studies only roughly estimated the charging efficiency. Modeling and analysis
of these main factors are required to achieve the optimal charging efficiency. Once the
optimal charging efficiency is determined, an orderly charging optimization model can be
established more accurately.

Therefore, this paper establishes a power transmission loss model in the IBDC con-
verter, and the loss is minimized by adjusting parameters. Then, this paper calculates
the optimal charging efficiency and applies it to the orderly charging model. Prior to
this, this paper proposes a method of topology dynamic reconstruction, which not only
optimizes the switch state between switch stations, but also optimizes the specific topology
structure under the switch station. The main contributions of this paper can be summarized
as follows:

1. Compared with most previous researches on dynamic reconstruction, this paper
takes the switch station as the research object. This paper not only establishes a
dynamic reconfiguration model between switch stations, but also proposes a dynamic
reconfiguration model under a certain switch station. Especially, in the branch layer
optimization, the chaotic niche particle swarm optimization (CNPSO) is proposed to
speed up the solution convergence speed and prevent falling into the local optimum.

2. In order to reduce the solving difficulty of dispatch, this paper proposes a double-
layer distributed optimization scheduling model. Specifically, multiple aggregators
are set under a switch station, and the multi-level information interaction mechanism
of network–aggregator–vehicle is established to formulate the charging strategy of
electric vehicles.

3. This paper innovatively proposes an orderly charging model for electric vehicles con-
sidering isolated bidirectional DC–DC converter optimal efficiency model. Specifically,
the power loss model of the IBDC converter is established to determine the optimal
shift ratio parameter for a given transmission power, and the optimal efficiency is
applied to the ordered charging model.

The rest of this paper is organized as follows: In Section 2, medium voltage distribution
network dynamic reconfiguration model with EV is established. Specifically, a dynamic
reconstruction model between switch stations is established and an internal dynamic
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reconfiguration model under a switch station is established. Subsequently, not only the
principle of dual phase shift control is analyzed, but the transmission power loss model is
established in Section 3. Furthermore, the orderly charging model of EV considering IBDC
converter optimal efficiency is set up in Section 4. Simulation analysis is implemented in
Section 5, and some useful conclusions are finally drawn in Section 6.

2. Distribution Network Dynamic Reconfiguration Model with EV

In Figure 1, A~N represent the switch station. The reconstruction between switch
stations described in this paper means to change the state of disconnect switches and tie
switches in the network to achieve regional load balance. The lower part of the arrow
represents the location information of the specific load node under the switch station. The
ring network cabinet adopts the interval power supply mode, and its branches can be
directly connected to the distribution transformer, that is, directly supply power to the
low voltage transformer area, and can also be connected to the ring network cabinet for
external distribution.
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Figure 1. Topological structure of medium-voltage distribution network with EV.

The feeder voltage level in the structure diagram described in Figure 1 is 10 kV.
Different numbers of EVs are installed under different distribution transformers. In view
of the large number of electric vehicles in the future, this paper gives priority to optimizing
the topological structure, and then sets up multiple aggregators under the switch station to
guide the charging time of a specific electric vehicle.

In this paper, the DC charging pile is used to charge the electric vehicle. The control
panel in the charging pile is used to collect the battery capacity of the electric vehicle and
upload the next day’s travel demand. The charging module uses IBDC converter to supply
power to the high voltage distribution box in the vehicle. The structure of specific load
layer is shown in Figure 2.
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The driving circuit acts on the power switch to convert the DC voltage after rectifier
filtering into AC voltage. Then, the AC voltage is isolated by the high frequency transformer,
and the DC pulse is obtained by rectification filtering, thus charging the battery pack.
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In this paper, the optimization between switching stations is defined as the feeder
layer optimization, the optimization within the switching station is defined as the branch
layer optimization, and the charging optimization for electric vehicles is defined as the
load layer optimization.

2.1. Dynamic Reconstruction Model between Switch Station Groups

For the optimization of switch stations in feeder layer, it is necessary to analyze
the connection mode of 10 kV distribution network, and derive different constraints for
different connection modes. The actual typical connection types of 10 kV distribution
network are single power supply, series supply, T-type series supply, etc. The feeder layer
in Figure 1 is a series connection mode, this paper focuses on the analysis of T-type series
supply wiring mode, which is more complicated. The specific connection mode is as
follows.

Taking the switch topology of Figure 3 as an example, the power supply demand
guarantee constraints are as follows:

Pt
G,A1

=
j−1
∑

i=1
St

i Pl,i

Pt
G,A2

=
n
∑

i=k+1
St

i Pl,i−1

Pt
G,A3

=
n+n1

∑
i=n+1

St
i Pl,i +

k
∑

i=j+1
St

i Pl,i−1

(1)

where Pt
G,A1

and Pt
G,A2

represent all loads supplied by A1 and A2, respectively. Pl,i denotes
the total load under the switching station after the i-th switch. St

i represents the state of the
i-th switch. t represents time.
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Three active power equality constraints ensure the power supply demand of each
switch station. For the other two topologies, it is only equivalent to the change of power
supply position. In the left graph of Figure 4, the original topology can be obtained by
exchanging the position of A2 point and A3 point. In the right graph of Figure 4, the
original topology can be obtained by exchanging the position of A1 point and A3 point.
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where yBr is the switch state of branch Br, 0 means open, 1 means close; UBr is the voltage 
value at the beginning of branch; PBr and QBr represent the injected active power and re-
active power of the first node.  

In addition, the power flow equation equality constraints, voltage amplitude con-
straints and line capacity constraints should be satisfied. The formula is as follows: 

Figure 4. T-type series supply disconnect switch position.
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For T-type serial supply structure, topology constraint is established:

n+n1
∑

i=1
St

i = n + n1 − 2

n− 2 ≤
n
∑

i=1
St

i ≤ n− 1

n1 − 3 + r ≤
r−1
∑

i=1
St

i +
n+n1

∑
i=n+1

St
i ≤ n1 − 2 + r

n1 + n− r− 1 ≤
n
∑

i=r
St

i +
n+n1

∑
i=n+1

St
i ≤ n1 + n− r

(2)

Three inequality constraints ensure that there must be one or two disconnected
switches between two power points, and equality constraints determine the number
of disconnected switches in the T-type series supply structure. The three networks with
different switch positions satisfy the constraint condition of Formula (2).

Therefore, according to the typical topology and connection mode of 10 kV main feeder,
the total prediction load curve of each switch station is obtained. Taking the minimum load
fluctuation level in the region as the goal, the reconstruction scheme between switching
stations is established. The objective function is as follows:

f = min
24

∑
t=1

[(
Pt

G,A1
− Pt

G,A2

)2
+
(

Pt
G,A1
− Pt

G,A3

)2
+
(

Pt
G,A3
− Pt

G,A2

)2
]

(3)

Considering the high cost of breaking the switch, this paper needs to calculate the
load balancing index to determine whether to perform the switch action.

2.2. Internal Dynamic Reconfiguration Model of Switch Station
2.2.1. Branch Layer Reconstruction Model

After the feeder layer topology optimization is completed, it is necessary to analyze
the load in each switch station to realize the branch layer autonomous optimization.

In this paper, the load curve of each ring network cabinet in the switching station is
analyzed, and the minimum loss is achieved by changing the switch state between the ring
network cabinets. At a single time level, the objective function of minimizing network loss
is as follows:

floss,i =
N−1

∑
Br=1

yBrrBr
P2

Br + Q2
Br

U2
Br

(4)

where yBr is the switch state of branch Br, 0 means open, 1 means close; UBr is the voltage
value at the beginning of branch; PBr and QBr represent the injected active power and
reactive power of the first node.

In addition, the power flow equation equality constraints, voltage amplitude con-
straints and line capacity constraints should be satisfied. The formula is as follows:

Psum,i = Ui
N
∑

j=2
Uj(Gij cos θij + Bij sin θij)

Qsum,i = Ui
N
∑

j=2
Uj(Gij cos θij + Bij sin θij)

Ui,min ≤ Ui ≤ Ui,max
S2

Br ≤ S2
Br,max

(5)

where SBr,max is the maximum line capacity, Ui,max is the maximum node voltage.
In addition to the above constraints, the model also needs to meet the network topol-

ogy operation constraints. In this paper, through network coding and simplification, a
single-loop matrix is formed, which constitutes a radial constraint and a connected con-
straint, so as to determine the infeasible optimization solution.
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The switches in each loop network are coded, and the single loop matrix is formed by
searching the path from each node to the parent node. Each row in the single loop matrix
represents a loop. The optimization variable in the reconstruction scheme is a switch in
each row of the matrix. In order to make the solution satisfy the constraint of no-island and
no-ring network, this paper uses SL correlation matrix and upper node search to determine
the feasibility of each solution.

SL correlation matrix is defined as follows:

SL =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 (6)

where aij represents the membership relationship between the j-th dimension solution
and the i-th loop in the SL correlation matrix. If the solution belongs to this loop, it is 1,
otherwise it is 0.

The principle of no-island judgment method is that if two rows are the same in the SL
matrix, the solution of the j-dimension belongs to two loops at the same time. At this time,
the system has a loop, and the infeasible solution must be eliminated.

The principle of upper node search is that the upper node of each node in turn is
found, putting the result into a matrix, and finally it is judged whether there are 0 elements
in the matrix except for the first column. If it exists, it means that there are islands in the
network, and the infeasible solution must be eliminated.

Considering the high cost of the switch, this paper analyzes the difference between
the network loss value before optimization and the optimized network loss value. Once
the difference is less than a threshold, the switch optimization action is not performed.

2.2.2. Reconstruction Method Based on CNPSO Algorithm

Aiming at the branch layer dynamic reconstruction model, and in order to prevent
particle swarm algorithm from falling into local optimum and accelerate the iterative speed,
this paper improves the traditional particle swarm optimization algorithm by introducing
logistic chaotic equation and niche elite retention algorithm. Refer to Appendix B for
dynamic updates of inertia weights.

To solve the problem of local optimum, by adding a mixed disturbance near the group
extremum, the solution space near the optimal solution is searched and the local search is
strengthened. The specific steps are as follows:

Step 1: The global optimal solution of the n-th iteration output is mapped to the
definition domain of the logistic equation to generate the chaotic variable znj. The formula
is as follows:

zn
j =

xn
j − xmin,j

xmax,j − xmin,j
, j = 1, 2, . . . . . . d (7)

where xj is the global optimal particle, that is, the disconnected switch combination of
loops, n is the number of iterations; xmax, j and xmin, j represent the upper and lower bounds
of the j-th dimensional variable, respectively.

Step 2: Using logistic mapping equation to generate d chaotic sequences, and then the
chaotic variables are inversed to the original solution space to obtain new optimization
variables. The formula is as follows:

zn+1
j = µzn

j (1− zn
j ), j = 1, 2, . . . . . . d (8)

xn+1
j = xmin,j + zn+1

j
(
xmax,j − xmin,j

)
, j = 1, 2, . . . . . . d (9)

Step 3: The fitness function value of the new optimization variable is calculated and
compared with the fitness value of the original solution xj. If it is better than the original
solution or reaches the maximum number of iterations, the position of the original particle
is replaced by the position of the new particle. Otherwise, let n = n + 1, and turn to Step 2.
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In addition to the local optimal problem, once the population is too large, it will affect
the iteration speed. In this paper, the niche technology of sharing fitness mechanism is
used to solve, that is, by calculating the sharing degree of individual particles in the group.
The greater the degree of sharing, the higher the degree of closeness with other particles.

In this paper, the Euclidean distance between each particle is calculated, and the niche
radius of the current population is calculated. The sharing degree of each individual is
sorted, and the whole population is pruned. The individuals with higher sharing degree
are deleted to ensure the uniform distribution of the solution. The number of all particles
in the initial population is Nsh, and the shared fitness function is defined as follows:

Fi =
1

Nsh
∑

j=1
1−

( Dij
σshare

)α
, i, j ∈ ΩNsh (10)

where ΩNsh represents the whole group space, σshare represents the niche radius, Dij repre-
sents the Euclidean distance between individual xi and xj, and d represents dimension of
decision variables.

Dij = ‖Xi − Xj‖ =
√

m

∑
d=1

(
xid − xjd

)2
i, j ∈ ΩNsh (11)

σshare =
1

Nsh

Nsh

∑
i=1

min
(

Dij
)

i 6= j , i, j ∈ ΩNsh (12)

3. Isolated Bidirectional DC–DC Converter Optimal Efficiency Model

According to the topological structure of the medium voltage distribution network
group, after determining the topological structure of the feeder layer and the branch layer,
the orderly charging modeling of electric vehicles in each switch station is carried out.
However, the charging efficiency of electric vehicles is affected by the transmission loss
of the DC–DC converter, which further affects the accuracy of formulating the charging
timing strategy for electric vehicles. It is assumed that the charging power is 12 kW and
the battery capacity is 80 kWh. If the charging efficiency is increased by 5%, an additional
3 kW can be charged. In some scenarios, the next-day travel demand of EVs can be met in
advance, and the charging load at that time at the branch layer can be reduced.

Therefore, aiming at the problem of peak current and return power when single-phase-
shift (SPS) control IBDC converter, this paper adopts dual-phase-shift control (DPS) method
to establish an optimal efficiency calculation model.

3.1. Principle of Dual-Phase-Shift Control

As shown in Figure 5, a typical IBDC converter circuit consists of two symmetrical
H-bridges and high-frequency transformers. Compared with the traditional SPS control,
DPS control is to introduce a new phase shift duty cycle between the two diagonal switch
tubes of the full bridge on the primary side or on the secondary side. In this paper, the shift
ratio D1 of the primary side in a half period is defined as the internal shift ratio, and the
shift ratio D2 between the two sides in the half period is defined as the external shift ratio.
When the internal shift ratio D1 = 0, DPS control becomes traditional SPS control.
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Figure 6 describes the working state of the converter in a switching cycle, such as the
conduction time of the switch tube and diode, and the voltage change. Due to the symmetry
of control, the system waveform of t0–t4 period is taken as the research object, and the
working mode of converter can be divided into five states. According to the analysis of
the working status of these five stages in turn, it can be found that the inductance current
formula in the t0–t4 period is a piecewise linear formula.
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When 0 ≤ D1 ≤ D2 ≤ 1, set t0 = 0, and then other time point can be expressed
as t1 = D1Ths, t2 = D2Ths, t3 = (D1 + D2)Ths, t4 = Ths, t5 = (1 + D1)Ths, t6 = (1 + D2)Ths,
and t7 = (1 + D1 +D2)Ths. Voltage regulation ratio was set to k = V1/(nV2), and switching
frequency was set to f s = 1/(2Ths). According to the symmetry, iL(t0) = −iL(t4) can be
obtained, so the inductance current iL(t) in each time period can be obtained, and then the
following transmission power formula is derived by the inductance current formula:

P =
1

Ths

∫ Ths

0
vh1 iL(t)dt =

nV1V2

2 fsL

[
D2(1− D2)−

1
2

D2
1

]
(13)

3.2. Transmission Power Loss Model of IBDC Converter

The loss of an IBDC converter under DPS control mainly includes switching loss,
conduction loss caused by switching devices, copper loss, and iron loss caused by magnetic
components. The loss generated by the switching device is related to its on-state voltage
drop and switching frequency. The loss generated by the magnetic element is related to the
effective value of the inductance current and the winding resistance.
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3.2.1. Switching Loss Model

When the switch tube works in soft switching mode, switching losses can be ignored.
When the switch tube is in a hard switching state, due to the overlap of voltage wave-
form and current waveform in the transient process of opening and closing, the loss is
generated [20]. The turn-off loss and turn-on loss are:

Po f f =
fsto f f

2

(V1 + VF) ∑
ts∈Ωs

|iL(ts)|+ n(V2 + VF) ∑
tQ∈ΩQ

∣∣iL
(
tQ
)∣∣ (14)

Pon =
fston

2
n(V2 + VF)(|iL(t2)|+ |iL(t6)|) (15)

where toff and ton are switch turn-off time and turn-on time, respectively, and VF is the
forward voltage drop of diode. Ωs and ΩQ indicate the set of turn-off moments.

3.2.2. Conduction Loss Model

Since both the switch tube and the diode have a forward voltage drop when they are
turned on, the on-state loss will be generated when the current flows, which is manifested
in the form of heat.

Based on the odd symmetry of the converter working waveform and the conduction
state of the switches and diodes in each stage, the conduction loss of IGBT and diode can
be obtained [21]:

PI =
Vsat

Ths

(∫ t

to
|iL(t)|dt + 2

∫ t

t′
2

|iL(t)|dt+
∫ t3

t2

n|iL(t)|dt

)
(16)

Pd =
VF
Ths

[∫ t1

to
|iL(t)|dt + 2

∫ t′
2

t1

|iL(t)|dt + 2
∫ t2

t0

n|iL(t)|dt+
∫ t3

t2
n|iL(t)|dt + 2

∫ t4

t3
n|iL(t)|dt] (17)

where Vsat represents the on-state voltage drop of IGBT, which is a constant.

3.2.3. Magnetic Components Loss Model

Magnetic components mainly include transformers and auxiliary inductance, and
the loss that produced during their work are mainly composed of copper loss and iron
loss [22].

During the whole switching period, the current iL flows through the transformer and
the auxiliary inductance, and the copper loss is related to the root mean square of the
current iL:

Pcop = (Rtr + Rau)I2
rms (18)

where Rtr and Rau are winding resistance of the transformer and auxiliary inductor, respec-
tively, which are constants. Irms represents the root mean square of the current iL.

Iron loss of magnetic components is mainly composed of hysteresis loss, eddy current
loss, and residual loss. The calculation formula is as follows:

Piron =
2m fsµ2

0N2Ve

g2 I2
rms (19)

where m is the iron loss coefficient, µ0 is the vacuum permeability, g is the air gap, N is the
turns of the coil, and Ve is the effective volume. These parameters can be found from the
parameter table [23].

3.3. Optimal Efficiency Calculation Model

According to Formulas (14)–(19), the switching loss PSW, conduction loss PCON, and
transformer and auxiliary inductance loss PTA of the IBDC converter can be obtained, so
the total loss Ploss can be obtained. The detailed formula derivation is reflected in the
Appendix A.
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Ploss = PSW + PCON + PTA (20)

Therefore, the total loss Ploss under the control of DPS is related to the internal shift
ratio D1 and the external shift ratio D2. This paper establishes an optimal efficiency model
to select the optimal parameters D1 and D2 for a specific transmission power.

The efficiency of IBDC converter is defined as the percentage of the ratio of output
power to input power:

η =
P

P + Ploss
(21)

It can be seen from Formula (13) that the given transmission power P0 can be obtained
by various combinations of D1 and D2, but the total loss of the converter is different under
each combination, so its efficiency is also different. In order to obtain the combination of
D1, D2 corresponding to the minimum total loss of the converter, the Lagrange function
can be established:

L(D1, D2, λ) = Ploss(D1, D2) + λ[P(D1, D2)− P0] (22)

Formula (22) is solved to find the optimal total loss value. The calculation formula is
as follows: 

∂L
∂D1

= ∂PSW
∂D1

+ ∂pCON
∂D1

+ ∂pTA
∂D1

+ λ
∂p

∂D1
= 0

∂L
∂D2

= ∂PSW
∂D2

+ ∂PCON
∂D2

+ ∂PTA
∂D2

+ λ ∂P
∂D2

= 0
∂L
∂λ = P(D1, D2)− P0 = 0

(23)

By substituting Formulas (13) and (19) into Formula (23) and solving the root of the
above equations, the optimal combination (D1, D2), and the efficiency of the IBDC converter
reaches the maximum.

4. Orderly Charging Model of EV Considering IBDC Converter Optimal Efficiency

At the load layer, this paper takes the electric vehicles under the switch station as
the research object. In this paper, a double-layer optimal scheduling model for EVs is
established based on the distributed scheduling architecture.

4.1. Multi-Level Information Interaction Mechanism

The principle of distributed scheduling is as follows: each switch station can further
decompose all transformer area into several areas according to their geographic location,
each area is dispatched by aggregators, and all aggregators accept the instructions of the
dispatch center.

As shown in Figure 7, under the switch station, electric vehicle aggregators spanning
multiple transformer areas are set up as an information bridge between a single electric
vehicle and the dispatch center. It not only implements the instructions of the upper-level
dispatch center, but also guides the lower-level specific electric vehicle charging time. The
aggregators autonomy model facilitates centralized management of electric vehicles in the
same area, avoiding the problems of low efficiency and huge data volume caused by the
direct dispatch of each electric vehicle by the dispatch center.

The steps of the multi-level interaction mechanism are as follows:
Step 1: The user’s charging pile uploads the daily time when the electric vehicle is

connected to the system, the state of charge at the time of connection, and the time when
the user is expected to leave the system to the aggregator.

Step 2: Each aggregator obtains information about all electric vehicles in the area
under its jurisdiction, and the dispatch center formulates demand targets according to the
data integration of each aggregator so as to issue a dispatch plan for each time period to
each aggregator.

Step 3: Based on the data uploaded by each electric vehicle, each aggregator’s schedul-
ing goal not only requires the minimum variance of the load level under the switch station,
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but also requires the minimum sum of deviations between the actual scheduling results of
each aggregator and the scheduling plan determined by the scheduling center.

Step 4: Under each aggregator, by controlling the charging time of all electric vehicles
in the area, the deviation between the upper-level scheduling plan and the actual scheduling
results of the lower-level electric vehicles is minimized, and step 4 is returned until the
given convergence condition is reached.
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4.2. Upper-Level Dispatch Model Considering Load Balance under the Switch Station

The upper-level dispatch model fully considers the overall load fluctuation level under
the switch station, and realizes peak-shaving and valley-filling by formulating a reasonable
dispatch plan. Therefore, for the topological structure of the branch layer, the upper-level
objective function is established. The specific expression is as follows:

Fup =
1
T

T

∑
t=1

(
PL,t +

N

∑
j=1

xj,t −
1
T

T

∑
t=1

(
PL,t +

N0

∑
j=1

xj,t

))2

+ λ
N

∑
j=1

(
T

∑
t=1

(
Pj,t − xj,t

)2
)

(24)

where PL,t represents the original load level at time t in the network; xj,t represents the
scheduling plan of the j-th aggregator at the branch layer at time t; Pj,t represents the actual
scheduling result of j-th aggregator; N represents the total number of aggregators in a
certain switch station; and λ represents the penalty coefficient, which is used to restrict the
deviation between the actual scheduling result and the scheduling plan.

In addition to satisfying power flow equation constraints and voltage constraints, the
other upper-level model constraints are as follows:

0 ≤ xj,t ≤
n

∑
i=1

Pj,i,chyj,i,t ∀t ∈ [1, T] (25)

where Pj,i,ch represents the charging power of the i-th electric vehicle under the j-th aggrega-
tor; yj,i,t represents the state of the i-th electric vehicle under the j-th aggregator connecting
to the network at time t; the value is 1 when it is connected (may participate in the operation
of the distribution network or not), and 0 when it is not connected.

4.3. Lower-Level Scheduling Model

In the lower-level dispatch model, this article considers the transmission power
loss of the IBDC converter, and selects the optimal parameters D1 and D2 for a specific
transmission power. In addition, the target of the lower model is taken as a part of the
objective function of the upper-level. Each aggregator receives the dispatching instructions
from the dispatch center, and the objective is to minimize the deviation between the actual
dispatching results of all electric vehicles, which under the jurisdiction of each aggregator
and the dispatching plan. For the j-th aggregator, the objective function is as follows:

Flow =
T

∑
t=1

(
n

∑
i=1

Pj,i,chyj,i,t − xj,t

)2

(26)
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where Pj,i,ch represents the rated charging power of the i-th electric vehicle under the
j-th aggregator; yj,i,t represents whether the i-th electric vehicle under the j-th aggregator
participates in the dispatching of the distribution network at time t.

The constraints are as follows:

yj,i,t = 0 t > tj,i,dep ‖ t < tj,i,arr (27)

where tj,i,dep and tj,i,arr, respectively, represent the time when the i-th electric vehicle
under the j-th aggregator is connected to the system on the same day (may participate
in the distribution network operation or not), and the time when it is off the grid the
next day is used to restrict off-grid electric vehicles from participating in distribution
network dispatching.

Sj,i,tdep
≥ 0.9Sev,max (28)

0 6 Sj,i,t 6 Sev,max (29)

where Sev,max represents the maximum capacity of electric vehicles. Formula (28) is to meet
the next day’s driving capacity demand, and Formula (29) is to prevent electric vehicles
from overcharging.

Sj,i,t+1 = Sj,i,t + ηchPj,i,ch∆t (30)

where Sj,i,t represents the SOC of the i-th electric vehicle at time t; ∆t represents a period of
time, the value is 1; ηch represents the charging efficiency, and this parameter is determined
by Formula (23) in Section 3. With a given transmission power, find the optimal D1 and
D2 to minimize the power transmission loss of the IBDC converter and obtain the optimal
efficiency ηch.

4.4. Overall Flow Chart of Hierarchical and Partitioned Optimization

This paper proposes an EV double-layer scheduling model based on the IBDC con-
verter optimal efficiency model, and establishes the hierarchical and partitioned optimiza-
tion model of the feeder–branch–load layer. The specific flow chart is shown in Figure 8:
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5. Case Study 
In order to verify the effectiveness of the proposed dynamic reconfiguration and elec-

tric vehicle scheduling model, this paper analyzes the cases in Figure 9 and Figure 10 on 
MATLAB R2014b. The system structure diagram is 10 kV medium voltage distribution 
network diagram. In Figure 9, the power point is 35 kV substation, and the shadow part 
is different switching stations. The network contains five switches on the main feeder. In 
the initial state, the black switch represents the closed state, and the white switch repre-
sents the breaking state. In Figure 10, the switch station contains 13 segmented switches 
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5. Case Study

In order to verify the effectiveness of the proposed dynamic reconfiguration and
electric vehicle scheduling model, this paper analyzes the cases in Figures 9 and 10 on
MATLAB R2014b. The system structure diagram is 10 kV medium voltage distribution
network diagram. In Figure 9, the power point is 35 kV substation, and the shadow part is
different switching stations. The network contains five switches on the main feeder. In the
initial state, the black switch represents the closed state, and the white switch represents
the breaking state. In Figure 10, the switch station contains 13 segmented switches and
three tie switches, and three dispatching aggregators are configured. The dispatching
aggregators manage 100 electric vehicles, respectively, and the tie switches 14, 15, and 16
are all disconnected before optimization.
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The parameters of electric vehicle are as follows: the average charging power is 12 kW,
the charging efficiency is 90%, the average battery capacity is 60 kWh, the upper limit of
battery SOC is 95%, and the lower limit is 5%. For the calculation process and results of the
orderly charging model of electric vehicles, this paper adopts the per unit (pu) value to
facilitate calculation and explanation.

5.1. Optimization Results of Feeder Layer Reconstruction

The structure is powered by T-type series connection, and the Gurobi solver is called
for optimization by analyzing the total load of each switch station in each period. In the
actual simulation, the switch station near the substation is generally not used as the transfer
object. The final switching operation number is 8, which can achieve load balancing of
three substations. The results are shown in Table 1. Therefore, the load balancing level
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is improved by adjusting the switching state between switching stations, and the load
difference of the three substations is minimized in one day.

Table 1. Comparison of feeder layer load balance.

Scenes Time Load Balance Degree Switch State

Before optimization 10:00 26.285 MW —

20:00 28.466 MW —

After optimization 10:00 24.922 MW S2, S7 closed
S3, S6 open

20:00 16.235 MW S3, S6 closed
S2, S7 open

5.2. Topology Reconstruction Results under Switch Station

Population sizepop = 100; iteration number N = 100; inertia weight is dynamic param-
eters. The threshold value is 0.1. It can be seen from Table 2 that after optimization, the
switches 13, 14, and 15 are open during the period of 5:00 to 12:00, the switches 5, 10, and
15 are open during the period of 12:00 to 21:00, and the switches 11, 15, and 16 are open
during the period of 21:00~24:00.

Table 2. Switch action before and after reconstruction.

Scenes Time Open Switch Number

Before reconfiguration whole day 14, 15, 16

5:00 14, 15, 12

After reconfiguration 12:00 5, 10, 15

21:00 11, 15, 16

Assuming that the load connected to the lines numbered 4 and 5 in the original
diagram are office buildings and other loads, the load is large during the day, so the
network loss on lines 4 and 5 during the period after 12:00 is relatively large. At this time,
it is necessary to open the line switch and the part of the load is transferred to the rest of
the line for power supply.

Table 3 shows the changes in the network loss before and after optimization. The
network loss is reduced by 17.42%, which shows that the network loss of the branch layer
can also be reduced by adjusting the switch state.

Table 3. Switch action before and after reconstruction.

Scenes Value of Network Loss Improvement Rate

Before reconfiguration 202.5193 kWh —

After reconfiguration 139.5191 kWh 31.11%

It can be seen from Figure 11 that the traditional particle swarm optimization algorithm
may fall into local optimum and the iteration speed is slow. However, in the case of
increasing the population size, the algorithm proposed in this paper makes iterative speed
faster by deleting individuals with a higher degree of sharing. The average number of
iterations can reach convergence at about 10 times. Moreover, while ensuring the speed, the
global optimal solution is ensured by adding a mixed disturbance near the group extreme
value. Therefore, the improved algorithm in this paper is more accurate and efficient.
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5.3. Orderly Charging Results of Electric Vehicles

The simulation parameters of the converter in this article are as follows: load R = 100 Ω,
DC capacitance C1 = C2 = 2200 µF, switching frequency fs = 20 kHz, and transformer leak-
age inductance L = 7.7 µH. It can be seen from Figure 12 that when the power of 60 kW
is given, D1 = 0.14, and the efficiency reaches the highest. The output voltage of electric
vehicle is 300 V in this paper, so the optimal efficiency in the ordered charging model in
this paper is 96.2%.
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The switch station is mostly residential areas. It can be seen from the Figure 13 that
electric vehicles were originally charged from 16:00 to 22:00, that is, the electric vehicles are
charged immediately when residents arrive home. At this time, it is superimposed with
other original loads, resulting in a large load under the switch station during this period of
time. In addition, residents use less electricity at night, and electric vehicles are already
fully charged, so the load is very small from 0:00 to 5:00, resulting in a large peak-to-valley
difference in a day. After optimization, it can be seen from Figure 13 that the peak–valley
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difference is reduced from the original 16.5026 to 13.3174, which greatly improves the load
stability of the branch layer and alleviates the phenomenon of adding peaks on the peak.
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Figure 13. Load level changes before and after EV orderly charging.

Figure 14 shows the initial capacity and the capacity after the final optimization of all
electric vehicles in aggregator 1. In this paper, the travel scenarios of electric vehicles are
divided into three types by analyzing the arrival time and expected travel time of electric
vehicles. Figure 14 illustrates that no matter when the electric vehicle is connected, the
optimization model in this article can guarantee the travel demand of the electric vehicle
the next day.
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After the aggregator receives the dispatching instruction from the dispatch center,
through double-layer optimization iteration, the actual dispatch results of the three ag-
gregators is shown in Figure 15. The low cost of electricity at night and low load levels
cause the charging behavior to be more frequent from 0:00 to 10:00 and after 22:00. By
formulating a reasonable orderly charging strategy, the original disordered state of “plug
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and play” is changed. On the premise of meeting the demand of all EVs on the next day,
the EVs connected during the peak power consumption period are arranged to be charged
at night, which not only improves the load level at night, but also eases the power shortage
during the peak power consumption period.

Energies 2021, 14, x FOR PEER REVIEW 18 of 21 
 

 

night, which not only improves the load level at night, but also eases the power shortage 
during the peak power consumption period. 

 
Figure 15. The actual scheduling results of three aggregators. 

6. Conclusions 
With the access of large-scale EVs in the future, it will inevitably increase the network 

loss of the medium-voltage distribution network and aggravate the imbalance of the dis-
tribution network load. In order to improve this situation, this paper proposes a three-
layer optimization model from the perspectives of network structure and load itself. Each 
layer has its own findings with different priorities. The specific conclusions are as follows.  

Firstly, at the feeder layer, this paper takes the connection relationship between 
switching stations as the research object, and establishes the dynamic reconstruction 
model between stations. By solving this model, it realizes the equalization of the load car-
ried by the substation and avoids the occurrence of continuous heavy load in a certain 
substation. Secondly, at the branch layer, this paper takes the topology structure under a 
certain switch station as the research object, and a dynamic reconstruction plan is formu-
lated for the topology structure. By solving this model, the branch layer network loss is 
effectively reduced, and the loss reduction rate reaches 31.11%. At the same time, this 
paper adopts the CNPSO algorithm to adapt to the larger branch topology scale in the 
future. This algorithm avoids the algorithm trapped in local optimum and improves the 
iterative speed by nearly 20%. Finally, at the load layer, this paper takes the electric vehi-
cles under the switch station as the research object. The first step is to establish an IBDC 
converter optimal efficiency model, accurately calculating the charging power of electric 
vehicles in each period. The second step is to establish a double-layer distributed optimi-
zation scheduling model, which not only effectively reduces the difficulty of directly dis-
patching large-scale electric vehicles by dispatch center, but also formulates a reasonable 
charging strategy, achieving a 19.3% reduction in peak-to-valley difference. The findings 
of this paper are based on the consideration of all the major links in the medium-voltage 
distribution network, including branch layer network loss and optimal charging effi-
ciency, which are rarely studied before. All of these should be present when solving the 
problems of medium-voltage distribution network loss and load fluctuation. 

Author Contributions: The individual contributions of the authors are specified as follows: concep-
tualization: Q.Z. and J.Z. (Jian Zhao); methodology: Q.Z.; software: H.J.; validation: L.T., J.Z. (Jian 
Zhao), and H.J.; formal analysis: H.J.; writing—original draft preparation: Q.Z. and H.J.; writing—

Figure 15. The actual scheduling results of three aggregators.

6. Conclusions

With the access of large-scale EVs in the future, it will inevitably increase the network
loss of the medium-voltage distribution network and aggravate the imbalance of the
distribution network load. In order to improve this situation, this paper proposes a three-
layer optimization model from the perspectives of network structure and load itself. Each
layer has its own findings with different priorities. The specific conclusions are as follows.

Firstly, at the feeder layer, this paper takes the connection relationship between switch-
ing stations as the research object, and establishes the dynamic reconstruction model
between stations. By solving this model, it realizes the equalization of the load carried by
the substation and avoids the occurrence of continuous heavy load in a certain substation.
Secondly, at the branch layer, this paper takes the topology structure under a certain switch
station as the research object, and a dynamic reconstruction plan is formulated for the
topology structure. By solving this model, the branch layer network loss is effectively
reduced, and the loss reduction rate reaches 31.11%. At the same time, this paper adopts the
CNPSO algorithm to adapt to the larger branch topology scale in the future. This algorithm
avoids the algorithm trapped in local optimum and improves the iterative speed by nearly
20%. Finally, at the load layer, this paper takes the electric vehicles under the switch station
as the research object. The first step is to establish an IBDC converter optimal efficiency
model, accurately calculating the charging power of electric vehicles in each period. The
second step is to establish a double-layer distributed optimization scheduling model, which
not only effectively reduces the difficulty of directly dispatching large-scale electric vehi-
cles by dispatch center, but also formulates a reasonable charging strategy, achieving a
19.3% reduction in peak-to-valley difference. The findings of this paper are based on the
consideration of all the major links in the medium-voltage distribution network, including
branch layer network loss and optimal charging efficiency, which are rarely studied before.
All of these should be present when solving the problems of medium-voltage distribution
network loss and load fluctuation.
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Appendix A

The detailed formulas the switching loss PSW, conduction loss PCON, and transformer
and auxiliary inductance loss PTA are as follows:

PSW = m1{m2[k(1− D1) + 2D2 − 1] + m3[k(D1 − 2D2 + 1)−m4D1 + m5(D1 − 1)]}
PCON = h1

[
h2D2

1 + h3D2
2 + h4D2(1− D1 − D2) + h5(1− D2)(D2 − D1) + 2D2

]
PTA = w1

[
(k− 1)2(1 + 2D1)(1− D1)

2 − 4kD2
2(3D1 + D2 − 3) + 4k(D1 − D2)

3
] (A1)

where m1–m5, h1–h5 and w1 are constants that obtained by formulas (14)–(19).

m1 = nV2
4L

m2 = 2(V1 + VF)to f f
m3 = n(V2 + VF)
m4 = 2kto f f
m5 = to f f + ton

(A2)



h1 = nV2
2 fs L

h2 = (n+1)k
4

h3 = (1− k)VF
h4 = (k + 1)(Vsat + nVF)
h5 = 2n(k− 1)

(A3)

w1 =
n2V2

2

48 fsL2

(
Rtr + Rau +

2m fsµ0
2N2Ve

g2

)
(A4)

where toff and ton are switch turn-off time and turn-on time, respectively, and VF is the
forward voltage drop of diode. Rtr and Rau are winding resistance of the transformer and
auxiliary inductor, respectively. Ve is the effective volume. Vsat represents the on-state
voltage drop of IGBT. The remaining parameters are the device’s own parameters, which
have also been explained in the main text.

Appendix B

The value of the inertia weight value will affect the particle motion state. In order
to prevent falling into the local optimum, it is necessary to continuously adjust the value
according to the particle fitness value to increase the diversity of the particles. The specific
steps are as follows:

Step 1: Calculate the fitness value of all particles, from which the entropy value
between the particles is calculated, which is used to evaluate the distribution state between
the particles. The formula for solving the entropy is as follows:
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∆ =
n

∑
i=1

(
f it(xi)− E( f it)

pu

)
(A5)

where fit(x) represents the fitness function; E(fit) represents the average fitness value of all
particles; and pu is the normalization factor.

Step 2: When the entropy value is less than a given value, the concentration of particles
is large, and the inertia weight needs to be adjusted to reduce the particle concentration.
The update formula is as follows:

ω(t) =


S(t) = 1− 1

1+e
t
T

ωmax − (ωmax −ωmin)× S(t) ∆ > 0.5
ωmax − (ωmax −ωmin)× S(t) + ω× r ∆ ≤ 0.5

(A6)

where T is the maximum number of iterations; t is the current iteration; ω is the average of
the maximum and minimum inertia weights.
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