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Abstract: Energy storage system (ESS) has been advocated as one of the key elements for the
future energy system by the fast power regulation and energy transfer capabilities. In particular,
for distribution networks with high penetration of renewables, ESS plays an important role in
bridging the gap between the supply and demand, maximizing the benefits of renewables and
providing various types of ancillary services to cope the intermittences and fluctuations, consequently
improving the resilience, reliability and flexibility. To solve the voltage fluctuations caused by the
high permeability of renewables in distribution networks, an optimal capacity allocation strategy
of ESS is proposed in this paper. Taking the life cycle cost, arbitrage income and the benefit of
reducing network losses into consideration, a bilevel optimization model of ESS capacity allocation
is established, the coordination between active/reactive power of associate power conversion system
is considered, and the large scale nonlinear programming problem is solved using genetic algorithm,
simulated annealing and mixed integer second-order cone programming method. The feasibility and
effectiveness of the proposed algorithm have been verified.

Keywords: energy storage; life cycle cost; genetic algorithm; mixed integer second-order cone programming

1. Introduction

The inevitable energy revolution inflicted by the depletion of fossil fuels and global
warming has attracted significant attention worldwide. In order to maintain the sustainable
development of power system, the penetration of renewable distributed generation (DG)
in the power system is increasing continuously. The uncertainty, variability and non-
dispatchability nature of the renewables have challenged the secure and reliable operation
of power systems, in particular on distribution networks (DNs) [1–3]. In order to mitigate
the negative impacts rendered by the integration of DG without unnecessary DG power
curtailment and load shedding, energy storage systems (ESSs) have been identified [3].
With proper planning and management, the ESSs also can offer diverse applications
in DNs, including (i) peak shifting and load leveling [4,5], (ii) renewable power output
smoothing and time shifting [6], (iii) frequency modulation [7], (iv) dynamic reactive power
compensation and voltage regulation [8], (v) grid expansion and upgrade deferral [9], (vi)
network congestion management [10], (vii) network reconfiguration/islanding [11,12],
(viii) black start and reserve [13], etc. Among various means of energy storage technologies,
battery has been selected as the energy storage unit in this study due to the technology
maturity and applicability. At present, the main obstacle to the large-scale deployment of
batteries is the relatively low cycle time and high cost. Therefore, the optimal planning of
ESS capacity has attracted considerable attention worldwide [14,15]. With the emerging
technology development, cost reduction, life extension and energy conversion efficiency
improvement, the economy of battery technology will gradually become prominent [16].
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The capacity allocation and operation optimization of ESS are interdependent. In
recent years, research has been conducted and some valuable outcomes have been achieved.
Taking the prediction error effect on ESS capacity determination into consideration, setting
the total investment income model with the maximum economic benefit as the objective
function, an optimal allocation scheme was developed using a dual complementary topo-
logical structure [17]. Reference [18] optimized the ESS capacity configuration from the
perspective of voltage quality improvement, line losses reduction, and DG permeability
promotion. In [19–21], capacity optimization models considering ESS cost minimization
and life extension were established. In particular, the ESS capacity obtained by the opti-
mization methods proposed in [21] was designed to meet the requirements of smoothing
wind power output while maximizing the economic benefits gained from selling the dis-
patched power to the grid against the cost of the storage. An optimal ESS configuration
model considering the benefits of ESS in energy conservation, network loss reduction and
environmental protection was proposed in [22] to achieve the maximum revenue during
the lifetime of the ESS. A sensitivity based algorithm was proposed for optimal sitting and
sizing of the ESS to reduce the power losses on DNs. However, the daily power fluctua-
tions of DG were not taking into account, therefore the characteristics of DG intermittency
cannot be fully reflected [23]. The research mentioned above mainly concentrated on the
ESS allocation methods from the perspective of the ESS cost minimization or revenue
maximization, the impact of the optimal operation of the ESS, in particular the reactive
power of the ESS has not been fully studied.

The power conversion system (PCS) of ESS can generate or absorb reactive power,
which can be considered as an effective approach for reactive power compensation of
DNs. In order to exploit the ESS’s potential capability of voltage regulations in DNs, an
active/reactive power coordinated optimization method was proposed in [8] utilizing
the particle swarm algorithm to realize power losses reduction and voltage fluctuation
minimization in DNs. In [24], a multiobjective optimization method for battery sitting and
sizing on low voltage DNs was proposed from the perspective of voltage regulation, peak
power reduction and annual cost minimization. The method was taking the active and
reactive power from batteries and inverters into consideration on a near-future scenario for
a real residential feeder. Optimal operation methods with coordination between active and
reactive power of DG and ESSs were also developed to improve the economy of the overall
DNs [25–27]. It is worth noting that the reactive power regulations play important roles
in optimal operation strategy development considering the possible ancillary services in
DNs, therefore affecting the network configuration, operation and the life cycle cost (LCC),
further studies are required to investigate the cooperation between the active and reactive
power from the overall life time of the system.

The operation of ESS has been considered as location and time specific, and the
dimension for solving the optimization problem increases rapidly with the duration of
time and the number of installed locations. Therefore, the operation optimization of ESS
becomes a large-scale nonlinear programming problem. At present, the general reduced
gradient method [28], dynamic programming recursive method [29], genetic algorithm [30]
and Pareto optimal algorithm [31] are used to solve the problem. However, the time and
difficulty of calculation are closely related to the size and spatial dimension of the DNs.
The convex relaxation of power flow equations can usually reduce the computational
burden [32]. In [33,34], the relaxation of the power flow equation to a second-order cone
has been explained theoretically and mathematically, and the accuracy of the relaxation has
been proved. In [32,35] the authors explored the process of the sitting and sizing of storage
units through relaxed power flow equations without considering the influence of ESS’s
reactive power, and the charging/discharging model is relatively simple, which cannot
fully reflect the efficiency of the PCS.

Consequently, an interactive bilevel planning strategy that determines the optimal
operation and the capacity of the ESS in DNs, utilizing the genetic algorithm (GA) and
simulated annealing (SA) combined with mixed integer second-order cone programming
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(MISOCP) is presented in this paper. With active/reactive power support from the ESSs in
four quadrants, the proposed ESS planning method can both reduce the LCC and increase
arbitrage revenue while providing ancillary services of voltage support in DNs.

The main contributions and salient features of this paper can be highlighted as:
(1) A bilevel ESS optimal capacity allocation model for DNs is proposed to suppress

voltage fluctuations and line losses caused by photovoltaic (PV) integration, and to ac-
commodate the increasing penetration level of renewables in the near future. From the
perspective of life cycle, the proposed method considers overall cost, arbitrage income and
the benefit of reducing line losses simultaneously to quantify the system economics.

(2) The active/reactive power coordination strategy through PCS can manage the
voltage fluctuations without additional investment whilst exploiting the arbitrage income,
which is relatively rare in recent literature.

(3) The iterative solving method utilizing GA and SA combined with MISOCP is
proposed to ensure the efficiency and accuracy of the entire complicated calculation process.

The remainder of this paper is organized as follows: the overall system model includ-
ing charging/discharging model, LCC model, economic benefit model and capacity fading
model of the ESS, and the Distflow power flow calculation are introduced in Section 2.
Section 3 presents the bilevel ESS optimization model with the active/reactive coordi-
nated operation strategy of ESS. Case studies are carried out in Section 4, and the relevant
concluding remarks are delivered in Section 5.

2. System Modeling
2.1. ESS Modeling

Due to the high energy density, long life-cycle, low self-discharging rate and high
comprehensive efficiency, the Li-ion battery has been chosen as the energy storage device
in this paper [36]. In order to simulate the charging and discharging characteristics of ESS
accurately and quantify the cost and benefit of ESS precisely, charging/discharging model,
LCC model, economic benefit model and capacity fading model of the ESS are established
as follows.

2.1.1. The Charging/Discharging Model of ESS

A typical ESS mainly consists of a PCS unit, a storage unit and the connecting facility
of the plant. The PCS unit is a voltage source bidirectional inverter designed to operate
as either an inverter while discharging or as a rectifier while charging [26]. Due to the
mismatch of the voltage levels between the battery and the grid, the PCS needs to be
connected to the DNs and the battery side for voltage matching, voltage isolation and
charging/discharging power control [37]. The PCS permits the ESS to generate both active
and reactive power in all four quadrants as illustrated by the capability curve in Figure 1.

Figure 1. Active and reactive power capability of energy storage system (ESS).
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In Figure 1, the unit circle represents the capacity of PCS as SESS, and the operating
point of the ESS can be any point on the unit circle. Assuming the power output of the ESS
to DNs is positive, therefore the maximum discharging active power of the ESS, Pmax

ESS.dis,
has a positive value and the maximum charging active power, Pmax

ESS.ch, is negative. Qmax
ESS is

the maximum reactive power of the ESS and QESS(t) is the actual operating reactive power
at the time t. PESS.ch(t) is the actual charging active power of ESS at time t. When ESS is
running in the first and fourth quadrant, PESS.ch(t) will be replaced by PESS.dis(t), which
represents the actual discharging active power of ESS at time t. When the power factor
of PCS is 1, it is equal to SESS. ESS can only be in the state of discharging or charging at
the same time. So, 0-1 variables, µdis(t) and µch(t), representing the discharging/charging
sign of the ESS at time t, were introduced respectively. When the ESS is charging, µch(t)
is 1, µdis(t) is 0 and vice versa. The operating power of the ESS is required to satisfy the
following constraints.√

(PESS.dis(t) + PESS.ch(t))
2 + QESS(t)

2 ≤ SESS (1)
0 ≤ PESS.dis(t) ≤ SESSµdis(t)
−SESSµch(t) ≤ PESS.ch(t) ≤ 0

µdis(t) + µch(t) =1
−SESS ≤ QESS(t) ≤ SESS

(2)

In addition, the residual capacity of the battery is represented by the state-of-charge
(SOC), and its value can be obtained by comparing the residual capacity value of the battery
with the battery capacity value. SOC was accumulated and calculated strictly according to
the magnitude of the charging and discharging power in time sequence, and its value has
absolute continuity in the time sequence [38], as shown in Equation (3). The SOC value of
each time t should be within the upper and lower limits of SOC, as shown in Equation (4).

SOC(t) = SOC(t− 1)·(1− δ)− PESS.ch(t)ηCηPCS∆t
Erate

− PESS.dis(t)∆t
ErateηDηPCS

(3)

SOCmin ≤ SOC(t) ≤ SOCmax (4)

where ηC and ηD are the charging and discharging efficiency of the battery and ηPCS
represents the associate PCS efficiency. SOCmax and SOCmin are the upper and lower limits
of SOC and SOC(t) is the SOC at time t. Erate is the rated capacity of the battery and δ is the
self-discharging rate of the battery.

In real operation, the ESS usually works at a fixed cycle T. In order to maintain the
continuous operation of the ESS, the final SOC within each cycle T should be consistent
with the initial SOC, as shown in Equation (5).

SOC(0) = SOC(T) (5)

where SOC(0) and SOC(T) are the SOC of ESS at the initial and ending time of each
operation cycle.

2.1.2. The LCC Model of ESS

According to the international standard IEC 60300-3-3, the LCC of a certain product
should contain six parts: concept and definition, design and development, manufacturing,
installation, operation and maintenance and disposal [39]. All of the costs considered in
this study are illustrated as follows.

Cost = C1 + C2 + C3 + C4 + C5 (6)
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where C1 represents the investment cost, C2 indicates the replacement cost, C3 is the
operation and maintenance cost, C4 is the disposal cost and C5 is the recovery value, which
is negative to represent revenue.

The hardware of the ESS are composed of three main components: the storage unit,
the PCS and the connecting facilities of the plant. So, the investment cost can be presented
as (7):

C1 = (cEErate + cPPrate + cBErate)
σ(1 + σ)Y

(1 + σ)Y − 1
(7)

where cE ($/kW·h) is the unit capacity price of ESS, cP ($/kW) is the PCS cost, which are
expressed per unit of the ESS rated power capacity and cB ($/kW·h) is the connecting
facility of the plant cost per kW·h. Erate and Prate are the rated capacity and rated power of
the ESS, separately. In this paper, the maximum charging/discharging power of the ESS
was considered as the rated power. Then, Prate and SESS were equal. Y is the project cycle
(year) and σ is the discount rate (%).

Typically, the lifetime of the battery and the PCS cannot meet the needs of the entire
project cycle without replacement. So, annual replacement cost is expressed as follows.

C2 = cEErate

k

∑
ε=1

(
(1− β)εn

(1 + σ)εn
σ(1 + σ)Y

(1 + σ)Y − 1

)
+ cPPrate

(1− β)10

(1 + σ)10
σ(1 + σ)Y

(1 + σ)Y − 1
(8)

where k is the total number of times of battery replacement ((round up, (k = Y/n−1)), n is
the lifetime of the battery and ε is the sequence of replacement. β is the average annual
decline rate of the ESS investment cost. According to the current literature, the lifetime of
the PCS is considered to have a fixed lifetime of 10 years in this study [40].

The operation and maintenance cost C3 include the labor and management cost, which
are related to the rated power, cf is the operation and maintenance cost per kW, then

C3 = cfPrate (9)

The ESS should be decommissioned at the end of their life. The disposal cost can be
formulated as [41]:

C4 = cdPrate

k

∑
ε=1

(
(1− β)εn

(1 + σ)εn
σ(1 + σ)Y

(1 + σ)Y − 1

)
(10)

where cd ($/kW) is a specific disposal cost of the ESS.
In general, part of the ESS equipment can be recycled, then the recovery value can be

expressed as follows:
C5 = −cres(C1 + C2) (11)

where cres is the recover residual rate, usually selected between 3% and 5% [42].

2.1.3. The Economic Benefit Model of ESS

In this paper, the economic benefit of the ESS mainly comes from two folds. The first
part is the arbitrage revenue brought by energy time shifting between the off-peak and
peak prices, and the second part is the income carried by reducing line losses.

In the context of the electricity market, the ESS can achieve arbitrage through charging
at off-peak time and discharging at peak time. Dividing the entire day into 24 time slots,
the arbitrage income can be calculated as:

Barb = G
24

∑
t=1

NESS

∑
i=1

(PESS.dis,i(t) + PESS.ch,i(t))× price(t) (12)

where Barb is the annual arbitrage income of ESS and G is the number of days that ESS
operates in a year. PESS.dis,i(t) and PESS.ch,i(t) are the discharging and charging active power



Energies 2021, 14, 1611 6 of 24

of the i-th ESS, respectively. NESS is the number of ESS in the DNs and the price(t) is the
electricity price at time t.

The allocation of ESS in DNs can effectively reduce the line losses and obtain benefits,
which are shown as follows:

Bloss = C0 − Closs (13)

Closs = G
24

∑
t=1

Nac

∑
i=1

∑
j∈Ωi

1
2
(rij × I2

ij(t)× price(t)) (14)

where Bloss is the annual income from reducing line losses. C0 and Closs are the annual line
losses cost of DNs before and after ESS configuration separately. Additionally, Nac is the
number of system nodes and Ωi is the set of neighbors of node i. The rij and Iij(t) are the
resistance and current of branch ij respectively. It is worth noting that a factor of 1/2 is
applied in Equation (14) to avoid repeated line losses consideration for each line.

2.1.4. The Capacity Fading Model of ESS

Battery lifetime is usually defined as the cycle life or calendar life corresponding to
the actual capacity degradation to 80% of the rated capacity. The capacity degradation is
mainly caused by the corrosion of lithium and the increase of the internal resistance of the
battery, which are related to the charging/discharging power, the depth of discharging, the
SOC fluctuations, the number of cycles and the working temperature [43]. As shown in [44],
the residual value of the Li-ion battery can be determined by the state of health (SOH),
which changes from 1 to 0 when capacity declined from rated capacity to 80%. The capacity
fading rate is related to the average SOC (SOCavg) and the SOC deviation (SOCdev), and
the higher the SOCavg or SOCdev value, the higher the capacity fading rate [44]. The total
fading capacity is a summation of the fading capacity that occurs under the experienced
operating conditions, considering temperature, the charging energy, and the SOCavg and
SOCdev, the fading capacity can be expressed as:

Γ =
τsum

∑
m

((x1SOCdev,m·e(x2·SOCavg,m) + x3ex4SOCdev,m)e
(− Ea

R ( 1
Tm −

1
Tref

))
)Ahm (15)

where Γ is the total fading capacity and the parameters can be chosen as: x1 is −4.092 × 10−4,
x2 is−2.167, x3 is−1.408× 10−5 and x4 is 6.130, Ea is 78.06 kmol/J and R is 8.314 J/(mol·K)
according to the existing literature [44]. One sampling period is represented by m and
sampling duration is τ, which is selected as 24 h in this study, and τsum is the total time
period. Ahm, Tm, SOCavg,m and SOCdev,m represent the charging energy, temperature of
the ESS, average SOC and SOC deviation during time period m. Tref is the reference
temperature, which is normally set as 25 ◦C. The temperature of Li-ion battery cells,
Tm, can be formulated as Equation (16) according to the approximate linear relationship
between the charging/discharging power and temperature change for a given charging
profile, Rth is the empirical constant as shown in [45].

Tm =
∫ τ

0
(Tref + Rth · |Pdis(t)µdis + Pch(t)µch|)dt/τ (16)

The SOH of the battery can be calculated as Equation (17) and the lifetime of the
battery n can be calculated by the τsum in Equation (15) (round, n = τsum/365).

SOH = (1− Γ
0.2Erate

)·100% (17)

2.2. Distflow Branch Power Flow Model of DNs

Due to the large resistance and reactance ratio of the DNs and difficulties in ac-
tive/reactive power decoupling, the power flow modeling methods commonly used in
power transmission systems are no longer applicable to DNs. More accurate power flow
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analysis methods are essential in developing the optimization operation of DNs. The basic
constraints of DNs are modeled in the form of branch flow [33,34]. The distflow branch
flow method uses active power, reactive power, branch current amplitude and node voltage
amplitude to describe the power flow of DNs. It can be mathematically expressed as:

(1) AC branch flow constraints:
∑

h∈ϕi

Pih(t) = ∑
j∈φi

(
Pji(t)− Rji(I2

ji(t))
)
+ Pi(t)

∑
h∈ϕi

Qih(t) = ∑
j∈φi

(
Qji(t)− Xji(I2

ji(t))
)
+ Qi(t)

(18)

V2
j (t) = V2

i (t)− 2(R ijPij(t) + XijQij(t)) + (R 2
ij + X2

ij)(I2
ij(t)) (19)

I2
ij(t) =

(P2
ij(t) + Q2

ij(t))

V2
i (t)

(20)

where ϕi is the set of branch head nodes with node i as the end node and Φi is the set of
branch end nodes with node i as the head node; Rji and Xji are the resistance and reactance
of branch ij. Pij(t) and Qij(t) are the active and reactive power flowing between node i to
node j at time t. Iij(t) and Vi(t) are the current flowing from node i to node j and the voltage
of node i at time t. Pi(t) and Qi(t) are the sum of the active power and reactive power
injected on the node i at time t respectively. Their expressions are as follows:{

Pi(t) = PPV,i(t) + PESS.dis,i(t) + PESS.ch,i(t)− PLOAD,i(t)
Qi(t) = QPV,i(t) + QESS,i(t)−QLOAD,i(t)

(21)

where PPV,i(t) and QPV,i(t) are the active and reactive power injected by the PV on the node
i at time t respectively. QESS,i(t) is the reactive power injected by ESS on node i. PLOAD,i(t)
and QLOAD,i(t) are the active and reactive power consumed by the load on the node i at
time t.

(2) Constraint of operating voltage level:

(Vmin
i )

2 ≤ (V2
i (t)) ≤ (Vmax

i )2 (22)

where Vmax
i and Vmin

i are the upper and lower limits of the voltage of node i, respectively.
(3) Branch current constraint:

0 ≤ (I2
ij(t)) ≤ (Imax

ij )2 (23)

where Imax
ij is the maximum current of branch ij.

3. The Bilevel ESS Optimization Model

The ESS planning issue is closely related to the operation pattern at different time
scales. The bilevel optimization model (as shown in Figure 2) can effectively decouple
the energy storage capacity planning issue and the operation optimization problem. The
long term planning issue can be solved in the outer optimization, while the optimal
operation problem can be resolved in the inner optimization process. The outer model
mainly concentrates on the capacity of the chosen ESS and the economic operation of
the system is settled by the inner optimization with the ESS capacity, rated power and
initial SOC determined by the outer optimization process. The internal optimization model
optimizes the operation of DNs under the given ESS parameters of the external layer,
obtains the operation power of the ESS, the cost of line losses and the revenue from the ESS
arbitrage, then returns to the external layer and solves the problem iteratively through the
internal and external optimization. The calculation scale and difficulty of the model can be
effectively reduced by the iterative approach.
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Figure 2. The proposed bilevel capacity optimization model.

3.1. The Outer Optimization Model
3.1.1. The Outer Optimization Model Establishment

As shown in Equation (24), the proposed outer optimization model takes the total LCC
of the ESS minus the annual average benefit of line loss reduction and arbitrage income
as the optimization object. The average annual arbitrage income of the ESS and average
annual line losses cost are calculated by the internal optimization model and returned to
the external layer. The optimization variables are the rated ESS capacity, rated power and
the initial SOC value (SOC0) of each ESS. Since SOC0 has a certain impact on the operation
of the ESS, thereby affecting the service life and arbitrage benefits of the ESS, thus it is used
as the optimization variable.

F = min(Cost− Barb − Bloss) (24)

where the cost is obtained from Equation (6). Barb and Bloss are described by Equations (12)
and (13) respectively.

The outer optimization model must meet the following constraints:
Pmin

ESS ≤ Prate ≤ Pmax
ESS

Emin
ESS ≤ Erate ≤ Emax

ESS
SOCmin ≤ SOC0 ≤ SOCmax

(25)

where Pmin
ESS and Pmax

ESS are the minimum and maximum investment power of ESS respectively.
Emin

ESS and Emax
ESS are the minimum and maximum investment capacity of ESS. Prate is the

maximum active power that can be released when ESS works at the unit power factor.

3.1.2. The Outer Optimization Solution

GA is a heuristic optimization algorithm, which converges to the optimal solution suc-
cessively through iterations and can solve the constrained nonlinear problems effectively,
however it may fall into a local optimum [46]. SA is a general probabilistic algorithm for
finding the optimal solution of a proposition in a large searching domain, which makes it
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as a good combination with GA to determine the global optimal solution. The probability
acceptance function of SA can be calculated according to (26) [47].

P = e
− ( f it− f it′)

λmT0 (26)

where, fit is the individual fitness, which is the reciprocal of the objective function in
Equation (24) without the annealing operation, and fit’ is the individual fitness with SA. λ
is the annealing coefficient. T0 is the initial temperature of annealing and m is the number
of times of annealing.

The variables of outer optimization model are the rated capacity, rated power and the
SOC0 of the ESS. The outer optimization process is presented in Figure 3.

Figure 3. Flow chart of the outer optimization model.

3.2. The Inner Optimization Model
3.2.1. Operation Strategy of the ESS

As illustrated in Section 2.1.1, ESS can operate in any quadrant as shown in Figure 1.
Through the power control of the PCS, the DNs operation can be adjusted to a certain
extent. Therefore, the ESS in the DNs can further improve the stability of the system and
solve the voltage issues caused by the high permeability of renewable generation in the
system. In this model, the PV sends active power according to a unit factor to maximize
the use of renewable energy. The PCS of the ESS has a certain reactive power capacity,
which can absorb or release a certain amount reactive power for reactive compensation to
support the voltage profiles [48].

As shown in Figure 4, V and VS are the voltages of grid-connected point and DN
voltage, R and X are the line resistance and reactance; PPV and QPV are the active and
reactive power of the PV, respectively, PESS and QESS are the active and reactive power of
the ESS and PS and QS are the sum of the injected active and reactive power of PV and
ESS, respectively.
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Figure 4. Equivalent circuit of a photovoltaic (PV) and an ESS connected to distribution net-
works (DNs).

Therefore: {
PS = PPV + PESS

QS = QPV + QESS
(27)

The grid connected point voltage V after PV and ESS is:

V = VS +
PSR + QSX

V
(28)

The voltage variation ∆Vl before and after the PV and ESS access can be calculated
as follows:

∆Vl =
PSR + QSX

V
=

(PPV + PESS)R + (QPV + QESS)X
V

(29)

When the ESS is connected without reactive power, the voltage variations are caused
by the active power injection of PV. At this time, PESS is negative, and the ESS works as
a load to reduce PS. It can be seen from Equation (29) that the smaller the PS, the smaller
∆Vl, thereby regulating the voltage to a safe range. On the other hand, at a time that
the PV output is large, the ESS is used as a load to absorb power from the network to
regulate the voltage within limits, the reactive power of the ESS can be utilized to reduce
the unnecessary active power purchase from the utility during the period of high electricity
price, therefore improve the arbitrage income of the ESS. It can be easily seen from Equation
(30), the reactive power contribution from ESS, QESS, is essential for voltage regulation
while reducing unnecessary ESS’s active power exchange with the grid, consequently
improve the arbitrage income.

∆Vl =
(PPV + PESS)R

V
=

(PPV + P′ESS)R + QESSX
V

(30)

As a result, when the PV power output causes the voltage excursions at a high
electricity price period, the PCS with ESS preferentially provide reactive power to regulate
the voltage level until reaching the reactive power adjustment capacity margin, then active
power support is applied.

3.2.2. Inner Optimization Model Establishment

The voltage levels can be divided into the dead zone, uneconomic zone and emergency
zone, the best operating state for DNs is the dead zone, however the uneconomic zone op-
eration does not affect the security of the system [49]. When the system voltage operates in
the emergency zone, the safety and reliability of the system cannot be guaranteed. Accord-
ing to the operation strategy of ESS illustrated in the previous section, the objective function
of the inner optimization model can be constructed as Equations (31) and (32) to ensure the
best operation status of voltage, the losses minimization and the revenue maximization.

f = min(λ1Closs − λ2Barb + λ3∆V) (31) ∆V = G
24
∑

t=1

Nac
∑

i=1

∣∣∣V2
i (t)− 1

∣∣∣
s.t. (Vi(t) ≥ Vthr,max

∥∥∥Vi(t) ≤ Vthr,min)
(32)
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where Closs is the annual line losses cost of the DNs after ESS configuration, represented
as Equation (12) and Barb is the annual arbitrage income of ESS, which is represented as
Equation (14). ∆V is the voltage variation and λ1, λ2 and λ3 are the weighting coefficients.
Vi(t) is the voltage amplitude of node i at time t and Vthr,max, Vthr,min are the upper and
lower limits of the optimal interval of nodal voltage amplitude, respectively. On the
premise that the ESS performs loss reduction and arbitrage to the greatest extent to improve
economic efficiency, the voltage is approached or maintained within the optimized interval
[Vthr,min, Vthr,max] as much as possible.

The inner optimization model is essentially a multiperiod optimal power flow problem
at the operating layer. So, the distflow branch flow method of DN is used in this paper. The
constrains of the DNs are explained by Equations (18)–(23). Additionally, the operating
constraints of ESS are illustrated in Equations (1)–(5).

3.2.3. Inner Optimization Model Solution

The continuous power regulation of ESS expands the operation optimization problem
of DNs from a single period of time to a continuous time series, which brings a heavy
burden to the calculation. Compared with other common algorithms, second-order cone
programming features with faster solving speed and stronger optimization capability [50].
In this method, the nonconvex nonlinear problem is transformed into a second-order cone
programming problem, which can be solved efficiently by convex relaxation, and then the
global optimal solution of the original problem can be obtained.

However, the requirements of SOCP for the mathematical model are very strict, it
mainly can be summarized as the following two points [51]:

(1) The objective function of the optimization model must be a linear function about
the decision variables.

(2) The feasible domain of the optimization model must be composed of nonlinear
cone constraints and linear equation or inequality constraints.

The optimization model of the DNs with ESSs contains the quadratic term and the
product term of the decision variable. Therefore, it is necessary to convert the corresponding
model to meet the requirements of the linear objective function and cone searching space.
Since Equation (2) contains 0–1 variables, the second-order cone relaxation technique is
used to the power flow equations in this optimization model and then the original model
is converted to a mixed integer second-order cone programming (MISOCP) model, which
can be solved efficiently by CPLEX [52].

The ESS optimization model of DNs is transformed, which is divided into three steps
as follows:

(1) Linear transformation of objective function

For Equations (14) and (32) containing the second order terms I2
ij(t) and V2

i (t), Iij,2(t)
and Vi,2(t) are utilized to replace them. Then the objective function can be linearized as
Equations (33) and (34)

Closs = G
24

∑
t=1

Nac

∑
i=1

∑
j∈Ωi

1
2
(rij × Iij,2(t)× price(t)) (33)

 ∆V = G
24
∑

t=1

Nac
∑

i=1

∣∣Vi,2(t)− 1
∣∣

s.t. (Vi(t) ≥ Vthr,max
∥∥∥Vi(t) ≤ Vthr,min)

(34)

Since Equation (34) contains the absolute value term
∣∣∣Vi,2(t)− 1

∣∣∣, the auxiliary variable

µi(t) =
∣∣∣Vi,2(t)− 1

∣∣∣ is introduced and the constraint is added as follows [53]:
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µi(t) ≥ 0

µi(t) ≥ Vi,2(t)− (Vthr,max)
2

µi(t) ≥ −Vi,2(t) + (Vthr,min)
2

(35)

After the above transformation, the objective function becomes the linear function of
the decision variable.

(2) Cone transformation of system operation constraints

The operation constraints of the system also replace the second order term for lin-
earization. Replace the second order terms I2

ij(t) and V2
i (t) in Equations (18)–(20), (22) and

(23) with Iij,2(t) and Vi,2(t), as shown in (36) to (40).
∑

h∈ϕi

Pih(t) = ∑
j∈φi

(
Pji(t)− Rji(Iji,2(t))

)
+ Pi(t)

∑
h∈ϕi

Qih(t) = ∑
j∈φi

(
Qji(t)− Xji(Iji,2(t))

)
+ Qi(t)

(36)

Vj,2(t) = Vi,2(t)− 2(R ijPij(t) + XijQij(t)) + (R 2
ij + X2

ij)(Iij,2(t)) (37)

Iij,2(t) =
(Pij(t)

2 + Qij(t)
2)

Vi,2(t)
(38)

(Vmin
i )

2 ≤ (Vi,2(t)) ≤ (Vmax
i )2 (39)

0 ≤ (Iij,2(t)) ≤ (Imax
ij )2 (40)

Further relaxing the constraint condition in (38), as shown in Equation (41), then, it is
transformed into the form of standard second-order cone as shown in Equation (42):

Iij,2(t) ≥
(Pij(t)

2 + Qij(t)
2)

Vi,2(t)
(41)

∥∥∥∥∥∥∥
2Pij(t)
2Qij(t)

Iij,2(t)−Vi,2(t)

∥∥∥∥∥∥∥
2

≤ Iij,2(t) + Vi,2(t) (42)

(3) Cone transformation of ESS operation constraints

The charging and discharging constraints of the ESS are nonlinear, which do not meet
the requirements of the cone optimization model for linear constraints or the constraint
form of the rotating cone, it is necessary to do other model transformation. So, Equation (1)
is transformed into a rotating cone constraint:

(PESS.dis(t) + PESS.ch(t))
2 + QESS(t)

2 ≤ 2
SESS√

2
× SESS√

2
(43)

Through the equivalent transformation, the variables in Equation (43) can constitute
the Cartesian product form of the rotating cone, which meets the strict requirements of the
searching space in the convex cone range. Equations (2)–(5) are linear constraints, which
meet the requirements of cone optimization for linear constraints.

After the above steps, the cone conversion process of the optimization model is com-
pleted, the objective function is linearized and the nonlinear constraints are transformed
into linear constraints, second-order cone constraints, or rotating cone constraints. Ac-
cording to [54,55], if the second-order cone relaxation is to be established in the power
system optimization model, certain conditions must be met, including: (1) Optimization
problems must have feasible solutions. (2) The objective function must be a strict increasing
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function of branch current. (3) The network topology can be represented by a tree-like
connectivity graph. The infinite norm defining the slack deviation of the second-order cone
is shown in Equation (44) to verify the accuracy of Equation (42) at the optimal solution
after relaxation [56]. When the slack deviation is small enough, the second-order cone
relaxation can be considered to meet the calculation accuracy requirements.

gap =

∥∥∥∥∥∥Iij(t)−
(Pij(t))

2 + (Qij(t))
2

Vi(t)

∥∥∥∥∥∥
∞

(44)

The objective function of the inner model includes the cost of network losses, the arbitrage
income and the voltage deviation, and the MISOCP is no more accurate when the optimal
power flow is solved by the cone relaxation under the scene of high permeability of PV access.
After the nth solution of the optimization model, if the gapn representing the slack deviation
is small enough, then the solution accuracy can be considered satisfied, otherwise the cutting
plane constraint can be added when the nth solution is solved. The cutting plane constraints
of the multiperiod optimal power flow are shown in Equation (45) [57].

24

∑
t=1

Nac

∑
i=1

∑
j∈Ωi

Rij Iij,2(t) ≤
24

∑
t=1

Nac

∑
i=1

∑
j∈Ωi

Rij
(Pij,n(t))

2 + (Qij,n(t))
2

Vi,2,n(t)
(45)

where Pij,n(t) and Qij,n(t) are the active and reactive power transmitted between branches ij
at time t, which are calculated from the nth iterations. Vi,2,n(t) is the voltage square of node
i at time t calculated for the nth time and Iij,2(t) is the current square of branch ij at time t
calculated for the nth time.

The solution flow of the MISOCP used in this paper is shown in Figure 5:

Figure 5. Flowchart of the proposed mixed integer second-order cone programming (MISOCP) solution.
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4. Case Studies
4.1. Profiles

In this section, the proposed method is implemented on a medium voltage DN as
shown in Figure 6 for ESS planning. The parameters of the case study network are
shown in Table A1, Appendix A. In this system, the base voltage was 10 kV, with the
tight upper/lower limits of the voltage being 1.03 p.u. and 0.97 p.u., respectively. The
upper/lower limits of the optimal range of nodal voltage amplitude were set as 1.015 p.u.
and 0.985 p.u. The node 451 and the 150 were slack buses. The maximum capacity of each
branch was 500 A and the sampling time was 1 h. The daily profiles of the loads and PV
are shown in Figure 7. Time of use tariff was: 0.139$/(kW·h) from 08:00 to 21:00 (peak),
0.042$/(kW·h) from 00:00 to 07:00 and 22:00 to 24:00 (off-peak).

Figure 6. A medium voltage case study distribution system.

Figure 7. Typical profiles of the loads and the distributed generation (DG), (a) power output of PV1,
load1, (b) power output of PV2, load2 and (c) power output of PV3, PV4, load3.
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In this study, the Li-ion battery was selected as the ESS and the parameters of the ESS
are listed in Table 1 according to the current literature [40–42,58,59]. The project life cycle
was determined as 20 years. For the weighting coefficient λ1 of the distribution system
network loss cost, λ2 of arbitrage income and λ3 of voltage level deviation in the objective
function, the analytic hierarchy process (AHP) was used to obtain λ1 = 0.7, λ2 = 0.15 and
λ3 = 0.15. The parameters of the GA and SA are listed in Table 2. When the maximum gapn
was 10−4, it could be considered to meet the requirements of slack deviation.

Table 1. Technical and economic parameters of ESS.

Technical
parameters

ηC/ηD ηPCS SOCmin SOCmax
0.976 0.95 0.1 0.9

Economic
parameters

CE CP CB Cf
156$/kW·h 154$/kW 0$/kW·h 22$/kW·year

Cd Cres σ β

224$/kW 5% 10% 0%

Table 2. Parameters of the genetic algorithm (GA) and the simulated annealing (SA).

Parameters of GA Parameters of SA

Maximum generation 60 Variation probability 0.05 Annealing coefficient 0.9
Size of population 30 Crossover rate 0.7 Initial temperature 100

4.2. Simulation Results and Analysis

The preselected locations of the ESS include the critical load nodes, the end of the
feeder, the DG bus bars, the primary substation, etc. So, the ESS configuration nodes in this
medium voltage case study distribution system are presented in Figure 6. Three sets of
simulation are carried out in this part: case 1 uses the bilevel optimization model proposed
in this paper to configure the ESS of the medium voltage case study distribution system
considering the active and reactive power of ESS at the same time; case 2 compare the
configuration results of the same model as scenario 1 without reactive power from PCS
and case 3 compare the optimization result with the authors’ previous work.

Case 1: ESS configuration considering active and reactive power.
The simulation results of the bilevel optimization model considering both active and

reactive power are shown in Table 3. The voltage variations of each typical nodes before and
after the ESS configuration are separately presented as (a) and (b) in Figure 8. Additionally,
the output of the ESS is shown in Figure 9.

According to the results shown in Figure 8, the voltage issues could be effectively
solved by coordinated operation of active/reactive power of the ESS. Before ESS operation,
the voltage amplitude of each typical node exceeded the upper limit from 10:00 to 14:00,
and the voltage amplitude of nodes 83 and 84 exceeded the lower limit at 18:00 to 22:00 as
shown in Figure 8a. Additionally, the voltage profiles shown in Figure 8b of each typical
node was well kept within the optimization range after the ESS participation. In general,
the charging/discharging active power of the ESS were consistent with the power supply
and demand, and the arbitrage income from discharging/charging at different electricity
price were carried out within the voltage safety margin, as shown in Figure 9. Overall, the
arbitrage income was $177,531 and the benefit of reducing line losses is $2567 annually.

Table 3. Optimization results of the bilevel ESS optimization model.

ESS Location Prate (kW) Qrate (kvar) Erate (kW·h) SOC0 (%) LCC ($/year)

ESS1 500 500 3500 70 108,414
ESS2 600 600 3000 70 104,443
ESS3 600 600 3500 70 119,036
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Figure 8. Voltage profiles of each typical node before (a) and after (b) the ESS configuration.

Figure 9. The active and reactive power output of the ESS.

Case 2: ESS configuration considering active power only.
The results of the bilevel optimization model of the ESS without reactive power are

given in Table 4. Comparing the results of Tables 3 and 4, it can be seen that the rated
capacity and LCC of the configuration scheme without reactive power increased. As shown
in Figures 10 and 11, the voltage issues could be effectively solved by active power only,
and the arbitrage income from energy time shifting was achieved while maintaining the
voltage within the safety margin. Compared with Figures 9 and 10, it can be seen that in the
period with high PV injection, ESS absorb more active power with a high electricity price
to solve the voltage issues, thus reducing the economy of the overall scheme. Additionally
the voltage fluctuation is greater than the result shown in Figure 8b. Due to the constraints
of SOC illustrated in (4)–(5), although the voltage levels are low between 16:00 and 22:00,
ESS2 cannot discharge at maximum capacity to achieve better revenues during this peak
hours, and has to discharge between 22:00 and 23:00 during this off-peak hours. Therefore,
the overall benefit of the scheme was reduced. The arbitrage income was $106,177 and the
benefit of reducing line losses was $14,069 annually.
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Table 4. Optimization results of the bilevel ESS optimization model without reactive power.

ESS Location Prate (kW) Qrate (kvar) Erate (kW·h) SOC0 (%) LCC ($/year)

ESS1 500 0 4000 60 143,855
ESS2 500 0 3500 60 100,864
ESS3 500 0 5000 70 132,998

Figure 10. The active power of the ESS.

Figure 11. Voltage profiles of each typical node after the ESS configuration without reactive power.

To better quantify the economic benefit of Case 1 and Case 2, the LCC of the ESS
with/without reactive power are shown in Figure 12. ESS1, ESS2 and ESS3 represent each
ESS with reactive power operation and ESS1′, ESS2′ and ESS3′ represent each ESS without
considering reactive power. For ESS1 and ESS3, it can be seen that reactive power can
effectively reduce the LCC, and the investment and replacement cost obviously. For ESS2,
the LCC of ESS2 was slightly higher than ESS2′, but a much larger arbitrage revenue was
also obtained. In general, the total cost of ESS with reactive power was about $105,676
lower than that without reactive power annually. In other words, the allocation scheme of
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ESS with reactive power compensation saved 41% of the average annual cost compared
with the scheme without considering reactive power contribution.

Figure 12. Life cycle cost (LCC) comparison before and after the reactive power operation.

Case 3: ESS configuration comparison with two-stage heuristic optimization method.
Comparing the optimization method with the authors’ previous research proposed

in [60], results are shown in Table 5. The two models were designed to solve the problem
of DNs voltage fluctuations caused by the increase of DG penetration, but ESS arbitrage
operation and the reactive power of PCS are not considered in [60]. It worth noting that
the configuration capacity of each ESS in the two-stage heuristic optimization method
was smaller than the model proposed in this paper, however the overall cost was much
higher. This is mainly because the ESS of the two-stage heuristic optimization method did
not carry arbitrage operation and added the electricity bill into the LCC. The electricity
bill was calculated in the same way as arbitrage income and the electricity bill of each
ESS was $69,479, $45,509 and $82,112 respectively. Compared with the model proposed in
reference [60], the model proposed in this paper saved 65% of the annual average cost, so
the economy of ESS can be greatly improved through the arbitrage operation of ESS.

Table 5. Optimization results of the two-stage heuristic optimization method.

ESS Location Prate (kW) Qrate (kvar) Erate (kW·h) SOC0 (%) LCC ($/year)

ESS1 500 0 2290 57 146,966
ESS2 375 0 2362 10 118,994
ESS3 500 0 2633 51 168,590

Figure 13 shows the comparison of the optimization results of each ESS under different
scenario. It can be seen that although the rated power and capacity of each ESS in Case 3
is the smallest of the three cases, the economic benefit of each ESS in Case 3 was the
worst because there was no arbitrage income and the LCC was the highest. Under the
configuration method of Case 3, each ESS only had active power to regulate the system
power flow without arbitrage operation. In addition, it can be seen from Figure 7 that
the output of PV was high in the period peak hour. At this time, the ESS performed load
operation to absorb power and suppress PV output, resulting in a high electricity bill.
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Figure 13. Comparison of ESS1 (a), ESS2 (b) and ESS3 (c) in each case.

From Figure 13a, it can be seen that in Case 1, the regulating pressure of its active
power was reduced due to the reactive power output of ESS1, thus the lifetime was
increased compared with Case 2. Although the arbitrage income of ESS1 in Case 1 and
Case 2 was similar, the economic benefit of ESS1 in case1 was the best because of its long
lifetime, less rated capacity and lower LCC.

For ESS2, as shown in Figure 13b, the lifetime in Case 1 was less than that in Case 2.
This is because the reactive power of ESS2 in case1 regulated the voltage so that its active
power can carry out arbitrage operation with greater active power output to increase
the arbitrage income, thus its SOC fluctuation was greater and its lifetime was reduced.
Although the LCC of ESS1 in Case1 was slightly higher than that of Case 2, its arbitrage
income was significantly higher than that of Case 2. Therefore, the economic benefit of
ESS2 in Case 1 had the best results among others.

It can be seen from Figure 13c that in Case 1, the regulation pressure of its active
power was reduced due to the reactive power output of ESS3, and its rated capacity was
greatly reduced compared with Case 2. Similar to ESS2, because the reactive power of
ESS3 in Case 1 regulated the voltage, its active power could carry out arbitrage operation
with greater active power output to increase the arbitrage income, so its SOC fluctuation
was greater and its lifetime was reduced. According to Figures 12 and 13c, although the
lifetime of ESS3 in Case1 was shorter than that of Case2, its rated capacity was less, and
the increase value of replacement cost caused by the decrease of its lifetime was far less
than the decrease value of installation cost. The reactive power operation of ESS3 not only
increased the arbitrage income but also reduced the LCC, so the economic benefit of ESS3
in Case1 was the best compared with others.

Therefore, the model proposed in this paper was more beneficial than the two-stage
heuristic optimization method in terms of economy and voltage profile improvement.

5. Conclusions

To solve the voltage fluctuations in DNs caused by the proliferation of PV, an inter-
active bilevel ESS planning strategy was proposed considering the factors of LCC, the
arbitrage income and the benefit of reducing line losses. The outer model was solved by
GA combined with SA, and the inner optimization was solved by MISOCP. The simulation
results demonstrated the feasibility and effectiveness of the proposed planning method
and the contributions of this study could be summarized as follows.

(1) The intermittence of the distributed renewable generation integrated in the distri-
bution grids led to the risk of voltage fluctuations, energy storage could effectively manage
the impacts without added carbon footprint. The technoeconomic analysis carried out in
this study verified that the overall LCC of ESS could be significantly reduced by providing
ancillary services, reducing line losses and gaining revenues from arbitrage.
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(2) The coordinated operation of active and reactive power from ESS and associate
PCS could effectively reduce the LCC of ESS without further investment.

(3) The accuracy and the efficiency could be achieved in solving the internal and
external optimization iteratively by GA and SA, combined with MISOCP.

(4) Compared with the model in [60], the economy of this model was greatly improved
after taking into account the ESS arbitrage operation and reactive power.
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Abbreviations

Abbreviation Description
AHP Analytic Hierarchy Process
DG Distributed Generation
DNs Distribution Networks
ESS Energy Storage System
GA Genetic Algorithm
LCC Life-Cycle Cost
MISOCP Mixed Integer Second-order Cone Programming
PCS Power Conversion System
PV Photovoltaic
SA Simulated Annealing
SOC State-of-Charge
SOCP Second-Order Cone Programming
SOH State of Health
Variables Description
µdis(t) discharging sign of the ESS
µch(t) charging sign of the ESS
ε number of replacement
Γ total fading capacity
∆Vl voltage variation
Ahm charging energy of ESS
Barb annual arbitrage income of ESS
Bloss annual revenue from reducing line losses
C1 storage investment cost
C2 storage replacement cost
C3 operation and maintenance cost
C4 battery disposal cost
C5 recovery value
Cost LCC of the ESS
Closs annual line losses cost of the DNs
Erate rated capacity of the ESS
fit individual fitness
fit’ individual fitness with annealing
Iij(t) current of branch ij
n lifetime of the battery
PESS.ch(t) charging power of the ESS
PESS.dis(t) discharging power of the ESS
PESS active power of the ESS
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Prate rated power of the ESS
PESS.dis,i(t) discharging power of the ith ESS
PESS.ch,i(t) charging power of the ith ESS
Pij(t) active power flowing between node i and node j at time t
Pi(t) total active power injected on node i at time t
PPV,I(t) active power injected by the PV on node i
PPV active power output of PV
PS total active power of PV and ESS
PLOAD,i(t) active power consumed by the load on node i at time t
QESS(t) reactive power at the time t
Qij(t) reactive power flowing between node i and node j at time t
Qi(t) total reactive power injected on node i at time t
QESS,i(t) reactive power injected by the ESS on node i at time t
QLOAD,i(t) reactive power consumed by the load on node i at time t
QESS reactive power of ESS
QPV reactive power of PV
QPV,i(t) reactive power injected by the PV on node i
QS sum of reactive power of PV and ESS
SOC(t) SOC at time t
SOC0 initial value of SOC
SOCavg average of SOC
SOCdev Deviation of SOC
Tm temperature of the ESS
Vi(t) voltage of node i at time t
V grid-connected point voltage
VS distribution network voltage

Appendix A

Table A1. System data.

Node i Node j R(Ω) X(Ω) Node i Node j R(Ω) X(Ω)
1 2 0.062207 0.133984 63 64 0.195590 0.421271
1 3 0.088866 0.191404 64 65 0.170937 0.368172
1 7 0.106640 0.229686 65 66 0.022633 0.048749
3 4 0.071094 0.153125 160 67 0.065168 0.140363
3 5 0.115527 0.248828 67 68 0.051511 0.110947
5 6 0.088866 0.191404 67 72 0.046828 0.100860
7 8 0.210548 0.453489 67 97 0.065168 0.140363
8 12 0.039990 0.086133 68 69 0.077018 0.165885
8 9 0.039990 0.086133 69 70 0.065168 0.140363
8 13 0.146249 0.314998 70 71 0.065168 0.140363
9 14 0.151073 0.325388 72 73 0.037463 0.080689
13 34 0.229168 0.493593 72 76 0.409082 0.881100
14 11 0.088866 0.191404 73 74 0.094792 0.204167
14 10 0.088866 0.191404 74 75 0.075833 0.163334
15 16 0.133301 0.287110 76 77 0.280567 0.604298
15 17 0.124414 0.267969 77 78 0.182271 0.392585
34 15 0.349665 0.753125 78 79 0.042656 0.091875
149 1 0.071094 0.153125 78 80 0.450259 0.969790
149 150 0.154535 0.332844 80 81 0.426561 0.918747
152 52 0.072428 0.156000 81 82 0.041471 0.089323
52 53 0.022633 0.048749 82 83 0.052135 0.112290
53 54 0.049794 0.107249 81 84 0.042656 0.091875
54 55 0.063915 0.137663 84 85 0.042656 0.091875
54 57 0.049794 0.107249 97 98 0.071093 0.153124
55 56 0.131489 0.283207 98 99 0.213283 0.459378
57 58 0.135803 0.292499 99 100 0.521350 1.122909
57 60 0.131489 0.283207 100 450 0.056874 0.122499
58 59 0.101548 0.218719 450 451 0.149851 0.322757
60 61 0.150452 0.324052 13 152 0.053320 0.114844
60 620 0.105318 0.226839 The following is the interconnection switch620 62 0.210636 0.453678
62 63 0.255770 0.550891 60 160 0.0936 0.0936
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