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Abstract: In this paper, an Efficient Method for PHotovoltaic Arrays Study through Infrared Scanning (EM-
PHASIS) is presented; it is a fast, simple, and trustworthy cell-level diagnosis method for commercial
photovoltaic (PV) panels. EMPHASIS processes temperature maps experimentally obtained through
IR cameras and is based on a power balance equation. Along with the identification of malfunction
events, EMPHASIS offers an innovative feature, i.e., it estimates the electrical powers generated
(or dissipated) by the individual cells. A procedure to evaluate the accuracy of the EMPHASIS
predictions is proposed, which relies on detailed three-dimensional (3-D) numerical simulations
to emulate realistic temperature maps of PV panels under any working condition. Malfunctioning
panels were replicated in the numerical environment and the corresponding temperature maps
were fed to EMPHASIS. Excellent results were achieved in both the cell- and panel-level power
predictions. More specifically, the estimation of the power production of a PV panel with a shunted
cell demonstrated an error lower than 1%. In cases of strong nonuniformities as a PV panel in hotspot,
an estimation error in the range of 9–16% was quantified.

Keywords: analytical method; cell-level diagnosis; fault detection; photovoltaic (PV) plants; power
assessment; thermography

1. Introduction

In the last decades, both the growing efficiency and the cost reduction in photovoltaic
(PV) plants have contributed to their wide diffusion in customer applications [1]. Currently,
emerging countries face the rising energy demand of their economy by installing large PV
plants, which are steadily moving from ancillary to main energy sources [2–4]. On the other
hand, in developed countries, the PV market is enhanced by the diffusion of innovative
smart grids and of private electric mobility [5], both supported by the availability of battery
energy storage systems [6,7].

However, grid parity can only be reached by providing the full functionality of
energy plants and by reducing maintenance costs [8,9]. According to smart operation and
maintenance approaches, effective monitoring systems are needed to timely detect any
malfunction event and yield loss [10], thus (i) reducing production issues and (ii) allowing
an accurate evaluation of failures.

PV plants are plagued by numerous types of faults [11]. The faults on the AC
side are mainly caused by inverter failures and/or undesired activation of interface
mechanisms [12–14]. On the DC side, where the plant appears as a complex structure,
an individual PV panel can be typically affected by delamination, browning, cracks, snail
trails, ribbons soldering issues, bypass diodes failures, and electric arcs [15]. At a cell-
level, shunted cells and localized hotspots may be induced by aging, partial shadow, and
overheating [16–18].

For the aforementioned reasons, diagnosis represents a valuable strategy to detect
and analyze the reduction in PV plant reliability [19]. The literature is populated by many
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fault-detection approaches [20–39], a first classification of which can be based on their
granularity. While in [23] the investigation involves the whole PV plant, methods aimed at
monitoring PV strings are shown in [24,25]. The granularity is even higher in the approach
presented in [26,27], in which sensing circuits to be mounted on each PV panel are exploited.
It is clear that an increased granularity comes with a more precise diagnosis power; on the
other hand, it implies higher costs as well as complex procedures.

As stated in [28–32], the trade-off between granularity and cost can be overcome by
exploiting diagnosis approaches based on thermography. More specifically, the use of
drones to capture infrared (IR) images of the panel was found to be a convenient solution
to mitigate the maintenance costs [33–36]. In [31,32], the IR images are fed to heuristics
methods, whereas neural networks are adopted in [37–39]. However, these strategies (i) rely
on time-demanding preliminary stages (e.g., the training of neural networks), (ii) require
the use of additional sensors, and (iii) may partially interrupt the power production of the
plant. It must also be remarked that these approaches are only devoted to identifying the
type of fault and they are not able to recognize the actual working conditions of the panel.

In [40], an analytical diagnosis method based on aerial IR scanning was introduced.
Besides being able to detect and classify the fault, it allows the identification of the electrical
power generated (or even dissipated) by the individual cells composing PV panels. To carry
out a cell-level power assessment, the method in [40] was based on a power balance law
applied to on-field temperature maps of PV panels under their actual working conditions;
this was possible since the approach does not demand the stop of the PV plant power
production. A new version of the same method requiring a reduced number of sensors
was presented in [41]. Although both approaches allowed identifying localized faults, their
cell-level electrical power estimations were still fairly imprecise.

This paper presents three variants of Efficient Method for PHotovoltaic Arrays Study
through Infrared Scanning (EMPHASIS), which is an upgraded version of the methods shown
in [40,41]. If compared with its previous versions, EMPHASIS benefits from the accuracy
in the cell-level power assessment. These improvements were obtained by adopting
(i) a pixel-level power balance equation increasing the granularity and (ii) temperature-
dependent parameters accounting for the nonlinear (NL) thermal effects. The evaluation of
the accuracy of the cell-level power prediction was performed through a strategy based
on “simulated experiments.” Instead of experimental temperature maps, EMPHASIS was
used to examine numerical, yet realistic, ones corresponding to a known power pattern.
Then, the predicted values were compared with the already known ones. A procedure
was devised in order to extract the abovementioned numerical temperature maps of
functioning and malfunctioning commercial PV panels. This procedure was appropriately
tuned by on-field measurements and combines an electrothermal (ET) macrocircuit in
a SPICE-like environment and three-dimensional (3-D) purely-thermal simulations in a
finite-element method (FEM) software package. It is worth noting that such a procedure
is not to be conducted by the EMPHASIS end users, since it was only adopted in the
“simulated experiments.”

The paper is arranged as follows. In Section 2, EMPHASIS and its three variants are
described. Section 3 presents a methodology based on “simulated experiments,” which is
conducted on a commercial PV panel. Results are discussed in Section 4, while conclusions
are drawn in Section 5.

2. EMPHASIS

EMPHASIS is an innovative method aimed to predict the effective working conditions
of any PV panel (even malfunctioning ones) by means of the mere knowledge of the
temperature field on the front surface (Tglass). To obtain the predictions, the whole top
surface of the panel has to be partitioned into a specific set of disjoint areas A, to which the
following power balance equation is applied:

0.95 · G · A = Pg,A +
(Tavg,A − Tamb)

rA
+ Pout,A, (1)
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where G and Tamb correspond to solar irradiance and ambient temperature, respectively.
The single variables in Equation (1) can be classified as: input physical quantities (G, A,

Tamb), tuning parameters (rA), quantities to be evaluated (Tavg,A and Pout,A), and generated
electrical powers (Pg,A). On the left side of Equation (1), 0.95·G·A corresponds to the
solar power impinging on the area A and takes into account a loss of 5% due to reflection
mechanisms; such an input term has to be balanced by the sum of the 3 contributions
described in the following:

• Pg,A is the electrical power generated (or, if negative, dissipated) in the area A; the quan-
tity 0.95·G·A–Pg,A corresponds to the power giving rise to the thermalization process.

• The ratio between the temperature increment averaged on A (Tavg,A–Tamb) and the
positive quantity rA is representative of the upward heat flux through the panel front
surface (i.e., the thermal power vertically flowing from the cells to the ambient). Here,
rA has the dimensions of a thermal resistance [K/W] and accounts for the thermal
behavior of the panel. It depends on the panel characteristics (i.e., geometry and
materials) as well as on the ambient conditions. Since the PV panel temperature is
typically higher than the ambient one, such a ratio is expected to be positive.

• The thermal power Pout,A represents that the heat horizontally moving in and out from
the specific area A; Pout,A is positive (negative) in presence of an outgoing (ingoing)
effective horizontal heat flux.

The power balance solely neglects the downward heat flux; however, this contribution
only marginally influences the power balance accuracy. The bottom surface is usually not
prone to the heat disposal because of (i) its poor convective-radiative effects and (ii) the
low thermally conductive materials (e.g., the Tedlar) positioned on the back.

The quantities to be evaluated Tavg,A and Pout,A are obtained by elaborating the
temperature maps; while Tavg,A corresponds to the Tglass averaged on the area A, Pout,A is
evaluated according to the following equation:

Pout,A = kglass · tglass ·
∮

EA

∇T ◦ n̂ dl, (2)

where ∇T is the two-dimensional (2-D) temperature gradient, EA represents the border
of the area A, n̂ is the unit normal vector pointing out from EA, while tglass and kglass are
the glass thickness and thermal conductivity, respectively. In Equation (2), the heat is
assumed to flow only through the front glass, since the contribution involving the thin
layer encapsulating the cells is typically negligible.

EMPHASIS can be subdivided into two analytical stages that require (i) the electrical
and thermal features of the panel under investigation and (ii) the knowledge of G and Tamb.
Both stages exploit the power balance equation with different targets:

• the first stage, also referred to as calibration procedure, is performed only once on
temperature maps of functioning panels, the generated power of which (Pg,panel) must
be known. The calibration procedure identifies the rA distribution—representing the
only unknown in Equation (1). While Pout,A and Tavg,A are obtained as stated before,
each Pg,A value can be derived as Pg,panel·A/Aglass, where Aglass is the area of the
panel front surface;

• the second stage, denoted as power assessment, is performed on temperature maps of
panels working under unknown electrical conditions (i.e., Pg,panel is undetermined). To
identify the energy production of the panel, the power assessment (i) exploits the rA
distribution extracted in the calibration procedure and (ii) solves Equation (1) for Pg,A.

It must be remarked that the temperature maps of all the panels—including the ones
needed in the calibration procedure—are to be taken in a relatively short amount of time
to ensure the same ambient conditions. It is noteworthy to highlight that rA can be either
temperature-independent (Sections 2.1 and 2.3) or temperature-dependent (Section 2.2), as
a result of the calibration procedure.
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The accuracy of the method strongly depends on the partitioning of the front panel
surface. In [40,41], A coincided with the cell area (Acell); this choice neglects the tem-
perature gradients internal to the PV cells that may reduce the accuracy of the method.
EMPHASIS solves this issue by applying Equation (1) to the individual pixels of the tem-
perature maps, thus reaching the maximum granularity level. By considering A = Apixel,
Equation (1) becomes:

0.95 · G · Apixel = Pg,i +
(Ti − Tamb)

ri
+ Pout,i, (3)

where i is the index of the individual pixel and Pg,i, Ti, ri, and Pout,i correspond to pixel-level
quantities. In this hypothesis, during the power assessment stage, the evaluated output
is represented by the Pg,i distribution; to obtain the cell-level electrical powers (Pg,cells),
Pg,i is then integrated over the corresponding cell area. A schematic representation of
the EMPHASIS workflow is shown in Figure 1. It must be underlined that EMPHASIS is
developed to be applied to real PV panels; the calibration procedure is performed on a
functioning panel (with no significant mismatches between cells). Then, the ri distribution
serves to investigate temperature maps and to assess the corresponding Pg,i values.

Figure 1. Schematic representation of the EMPHASIS workflow illustrating the calibration procedure and the power
estimation stages. The equation numbers are related to the standard approach (i.e., the first variant of EMPHASIS) presented
in Section 2.1.

The following subsections outline three pixel-level EMPHASIS variants; they differ in
both the calibration procedure and the power assessment stages.

2.1. Standard Approach

The calibration procedure of the standard approach requires one temperature map taken
under known working conditions. In the calibration stage, the ri distribution is evaluated
according to

ri =
(Ti − Tamb)

0.95 · G · Apixel − Pg,i − Pout,i
. (4)

Equation (4) generalizes the power balance useful for the calibration procedure, which
can be performed on PV panels operating under any working condition, that is, regardless
of the Pg,i distribution. On the other hand, a temperature map typically adopted is obtained
under open-circuit (OC) conditions; it turns out to be a convenient choice because of the Pg,i
values—all of them trivially being 0 W. Then, the analysis moves towards the temperature
maps of the actual panels to be investigated, the electrical working conditions of which are
unknown. The power assessment is carried out by solving

Pg,i = 0.95 · G · Apixel −
(Ti − Tamb)

ri
− Pout,i, (5)
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where the ri values correspond to the ones obtained in the previous calibration procedure.

2.2. NL-Corrected Approach

The NL-corrected approach aims to mitigate the errors introduced by the NL effects
described in Section 3.3. Its calibration procedure requires two temperature maps and
the corresponding Pg,panel values. A typical choice is represented by panels working
under OC and maximum-power-point (MPP) conditions. The two ri distributions are
evaluated according to Equation (4); then, a set of linear ri(T) functions is obtained by a
(2-point) interpolation.

Once the calibration procedure is carried out, the power assessment is conducted on
the panels to be examined by solving

Pg,i = 0.95 · G · Apixel −
(Ti − Tamb)

ri(Ti)
− Pout,i. (6)

2.3. Differential Approach

Two temperature maps (e.g., under OC and MPP conditions) can also be exploited
in the differential approach described in the following. For each temperature map (namely,
map #1 and #2), Equation (3) can be applied.

0.95 · G · Apixel = Pg1,i +
(T1,i − Tamb)

r1,i
+ Pout1,i (7)

0.95 · G · Apixel = Pg2,i +
(T2,i − Tamb)

r2,i
+ Pout2,i. (8)

By subtracting Equation (8) from Equation (7) and assuming r1,i = r2,i = rd,i, it follows:

rd,i =
T1,i − T2,i

(Pout2,i − Pout1,i) + (Pg2,i − Pg1.i)
. (9)

For the sake of clarity, it must be remarked that the two r1,i and r2,i distributions do
not coincide because of the NL nature of the thermal problem. However, a preliminary
study demonstrated that this assumption is reasonable: several NL FEM simulations have
been performed and the discrepancy between the two distributions was ~0.7% on average.

After the rd,i extraction, one of the two temperature maps exploited in the calibration
procedure has to be also accounted for in the power assessment stage; for instance, by
considering map #1, the power assessment can be computed according to

Pg,i = Pg1,i −
(Ti − T1,i)

rd,i
+ Pout1,i − Pout,i. (10)

As Equation (10) clearly states, the differential approach solves the issue related to the
lack of some parameters. More specifically, it can be applied without the knowledge of the
G and Tamb values; it therefore allows avoiding ad hoc sensors that introduce inevitable
measurement errors. On the other hand, the constraint of a short time between the shoots
of the temperature maps adopted in the calibration procedure is even stricter; Equation (9)
is indeed more valid as such a time decrease.

3. “Simulated Experiments” Methodology

The study presented in this section was conceived with the ambition of validating
EMPHASIS, and it is therefore not to be adopted by the end users. It aims to evaluate the
method accuracy by processing temperature maps of commercial PV panels. A way to
obtain such temperature maps is to exploit aerial thermography (e.g., drones equipped with
IR cameras). However, the adoption of experimental maps would lead to some limitations:
it is not always possible to create ad hoc malfunctioning (e.g., localized hotspots or shunted
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cells) and, in addition, aerial IR scanning does not provide the cell-level working conditions
of the PV panel—needed in the accuracy evaluation stage. These issues were solved by
adopting a strategy based on “simulated experiments,” which can be explained/described
as follows:

• a commercial PV panel (Section 3.1) was tested by on-field measurements (Section 3.2);
• an ET macrocircuit in a SPICE-like environment was exploited to emulate the ET

behavior of the PV panel (Section 3.3);
• a real PV panel was replicated in a commercial FEM software package (Section 3.4)

and thermal simulations were performed to extract temperature maps under many
working and environmental conditions. Such maps emulate the realistic PV panel
thermal behavior as if they were taken through IR scanning. The key point is that—in
contrast to IR scanning—the cell-level working conditions (i.e., the Pg,cell distribution
obtained by the ET macrocircuit) are known and can be used as a reference; these tem-
perature maps were fed to EMPHASIS that provided a prediction of the Pg,cell values.

The method accuracy was evaluated by comparing such a prediction with the refer-
ence Pg,cells.

3.1. PV Panel under Investigation

EMPHASIS can in principle be applied to PV panels of any shape, size, and number
of cells; in this work, the “simulated experiments” focused on the commercial PV panel
described in [42]. The panel is based on monocrystalline silicon (Si) and comprises 40 series-
connected cells arranged in 10 rows and 4 columns according to Figure 2, which also
highlights the left and right subpanels. The individual cell is hexagonal in shape and Acell
was estimated to be 72.8 cm2. The electrical rates reported in the datasheet are referred to
the standard test conditions (STC), that is, standard solar irradiance (GSTC) of 1000 W/m2,
1.5 Air Mass, and Tamb = 25 ◦C. The open-circuit voltage (VOC) and the short-circuit current
(ISC) under STC are 24.6 V and 2.81 A, respectively; under the same conditions, the MPP
voltage (current) is 20.2 V (2.48 A) leading to a maximum Pg,panel value of ~50 W.

Figure 2. Schematic depiction of the PV panel under investigation showing (i) the cells shape and numbering, (ii) the power
terminals of the panel (Vpanel+ and Vpanel-), (iii) the electrical connections between cells (red dashed line), and (iv) the left
and right subpanels.

Figure 3 illustrates the technology of the PV panel under analysis. On the back, a
thin Tedlar sheet is positioned to prevent the entrance of water and steam. The 150 µm-
thick Si cells are embedded in the middle of an ethylene vinyl acetate (EVA) layer, the
thickness of which is 950 µm. A 3 mm-thick glass covering the whole panel acts as both an
electrical insulator and a protection for the PV cells underneath. The panel is surrounded
by an aluminum frame, which provides a mechanical support to the assembly by sealing
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the abovementioned layers together. The width, length, and thickness of the panel are
W = 55.5 cm, H = 71.9 cm, and t = 3.4 cm, respectively.

Figure 3. Schematic 3-D representation (not to scale) of the PV panel technology illustrating materials and thickness of each
layer composing the structure.

3.2. On-Field Measurements

On-field measurements were conducted on the previously described panel mounted
with a tilt angle β = 30◦ and oriented with an azimuth angle (positive from south to west)
γ = −16◦ on the rooftop of the Department of Electrical Engineering and Information
Technology in Naples, Italy (latitude φ = 40.84◦ and longitude λ = 14.25◦). The experiment
was carried out on a sunny day of May in Naples at 13:00 with a measured Tamb = 22.9 ◦C
and wind speed of ~2 m/s (detected by means of an anemometer); the panel was previously
cleaned. An ammeter was connected to the power terminals of the panel and ISC,exp
was measured. The experimental irradiance (Gexp) was then evaluated according to the
following equation:

Gexp =
ISC,exp

ISC,STC
· GSTC. (11)

An irradiance value Gexp = 865 W/m2 was obtained.
As a second step, a thermal camera FLUKE TiS55 (resolution 220 × 165) [43] was

exploited to acquire the temperature map of the panel under OC conditions. Figure 4
shows the map obtained through IR scanning at a distance of ~2.5 m. The original picture
was subject to a post-processing stage consisting in (i) a visual inspection to delimitate the
boundaries of the PV panel, (ii) a manual parallax correction, and (iii) a 2-D Gaussian filter
reducing the quantization error introduced by the IR sensor.

Figure 4. Experimental temperature map of the panel under OC conditions obtained through IR scanning.
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By processing the temperature map in Figure 4, the average temperature increment of
each cell (∆Tavg,cell) was computed and the self- and mutual-heating resistances (RSMHs)
values were obtained according to

RSMH =
∆Tavg,cell

0.95 · Gexp · Acell
. (12)

The RSMHs have the dimension of a thermal resistance (K/W)) and account for the self-
and mutual-heating effects of the individual cells, as well as the heat exchange mechanisms
of the panel. In the case study, the RSMH values span in the range of 8–10 K/W.

3.3. SPICE Electrothermal Model

The RSMHs were used to account for the power-temperature feedback in an ET macro-
circuit describing the panel in a SPICE-like solver [44]. According to Figure 5, each cell was
described by coupling an electrical behavioral model and its thermal feedback circuit. The
electrical model is inspired by the work of Guerriero et al. [45], in which the widely known
single diode equivalent circuit [46] was suitably extended by means of analog behavioral
modeling blocks. The latter were exploited to include (i) the cell-level avalanche current
(IAV,cell) and (ii) the temperature dependence of the main electrical model parameters, such
as the mobility, the series resistance (Rs), and the photogenerated current (Iph). The power
dissipated by the cell (PD) was evaluated by the difference between the impinging one
(corresponding to 0.95·G·Acell) and the electrical power, which is given by the product of
the cell output current (Icell) and voltage (Vcell).

Figure 5. ET cell subcircuit reporting the electrical behavioral model (left) and the corresponding thermal feedback circuit
(right) based on the thermal equivalent of the Ohm’s law.

Concerning the ET feedback, the circuit shown in Figure 5 makes use of the thermal
equivalent of the Ohm’s law [47]. PD is fed as a current, while the cell temperature (Tcell)
corresponds to the voltage drop on the series of the RSMH and the voltage generator Tamb,
which can vary depending on the case study. Tcell, in turn, is supplied to the electrical
behavioral model [48]. The 40 cells were then connected in series and two Si-based bypass
diodes were included to define the left and right subpanels. The resulting macrocircuit is
depicted in Figure 6.

The implemented macrocircuit offers the key feature of varying the single parameters
of each cell in order to emulate:

• a variation of the environmental conditions by acting on Tamb and G;
• any malfunction event, such as a shunt fault by simply reducing the shunt resistance

(Rsh) value of the individual cells;
• a partial shading that may lead to localized hotspots, emulated by reducing the G

value of the shaded cells.
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Figure 6. Screenshot of the PV panel macrocircuit implemented in the SPICE-like environment; each of the 40 series-
connected boxes contains the subcircuit shown in Figure 5. For illustrative purposes, the two Si-based bypass diodes were
hidden.

In addition to the abovementioned advantages, the ET macrocircuit enabled the
evaluation of the EMPHASIS accuracy by providing the Pg,cell reference distributions to be
used in the “simulated experiments.”

3.4. FEM Simulations

The exact replica of the PV panel under investigation was automatically built in COM-
SOL Multiphysics [49] by means of an in-house routine [50–52] addressed to thermal-only
FEM simulations. Such a routine exploits the livelink between MATLAB and COMSOL
Multiphysics and is briefly described in the following. The 2-D information of the PV
panel is included in a graphic data system file, which is organized in layers and serves
as a starting point. Then, the layout is extruded into the 3rd dimension by assigning to
each layer a thickness and a quote on the z-axis (i.e., the vertical one). Given the 3-D
domain, each layer is associated to the corresponding material. Table 1 summarizes the
thermal conductivity values k(T0) of the materials composing the domain, where T0 + 273◦

(T0 = 27 ◦C) is the reference temperature in the FEM solver. The structure built in COMSOL
is represented in Figure 7a.

Table 1. Thermal conductivities of the materials composing the PV panel under investigation.

Material k(T0) (W/mK)

Si 148 [53]
Glass 1.8 [53]
EVA 0.35 [53]

Tedlar 0.15 [53]
Aluminum 237 [54]
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Figure 7. 3-D representations of the PV panel built in the COMSOL Multiphysics environment. The geometry, the tetrahedral
mesh, and the solution of the thermal problem are reported in (a–c), respectively. Below the dashed lines, the glass layer is
set as transparent to show the PV cells underneath.

The domain was subsequently discretized into a tetrahedral mesh (Figure 7b), with
a number of elements and degrees of freedom of ~1.8 and ~2.3 M, respectively. In the
thermal problem, the power generation was then set by attributing to the individual heat
sources (coinciding with the PV cells) the corresponding PD value evaluated according to

RCH = 0.95 · G · Acell − Pg,cell , (13)

where Pg,cell represents the reference distribution computed by the ET macrocircuit and
used in the “simulated experiments.” The solution of the thermal problem was finally
carried out (Figure 7c) by the NL solver embedded in the FEM software package. On
average, the time for a single steady-state simulation amounted to 30 min on a PC equipped
with an Intel Core i7-7700 and a 16 GB RAM.

Convective and radiative BCs were accounted for in the thermal problem. For what
concerns the convection, it was activated through two heat transfer coefficients on the front
and back surfaces (hfront and hback, respectively). A hback value of 1.565 W/m2K [55] was
assigned to emulate a weak forced convection effect. On the other hand, the hfront one was
tuned in order to achieve an optimal matching with the on-field measurements (Section 3.2).
The optimum hfront distribution was modeled as a linear function of the y-coordinate
spanning in the range of 9–14.8 W/m2K. The y-dependence of hfront can be inferred by the
temperature map shown in Figure 4, in which the cells temperature lowers as y increases
(i.e., by moving from the bottom to the top of the panel). As a matter of fact, the wind effect
leads to the upper half of the panel enjoying an enhanced forced convection. The radiative
heat exchanges between (i) front surface and sky and (ii) back surface and ground were
accounted for by adopting the Stephan-Boltzmann law [40]. This mechanism plays a key
role in the NL nature of the thermal problem; in the temperature range under investigation,
radiation significantly influences the thermal behavior of the panel.

It is worth highlighting a second NL contribution that is dictated by the tempera-
ture dependence of the Si thermal conductivity (kSi) in accordance with the following
equation [56]:

kSi(T) = kSi(T0) ·
(

T + 273◦

T0 + 273◦

)−1.33
. (14)

All other material parameters were instead considered as temperature insensitive.
As a final step, the solutions of the FEM simulations were post-processed to extract

the temperature distributions on the panel front surface (i.e., the temperature maps).
For a given Pg,cell reference distribution, these maps represent the corresponding steady-
state thermal behavior. By appropriately defining the ET macrocircuit parameters, this
methodology can in principle replicate any ambient condition and malfunction event. The
temperature maps were fed to EMPHASIS, which estimated the Pg,cell distribution to be
compared with the reference one in the “simulated experiments.”

4. “Simulated Experiments” Results

To prove the reliability and trustworthiness of the described methodology, a pre-
liminary result is represented by a comparison between the on-field measurements map
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(Figure 4) and the temperature distribution extracted through FEM simulations. To this
aim, the experimental test conditions were replicated in the ET macrocircuit and in the
FEM environment. The PV panel temperature maps were compared along the cut line
x = 218.6 mm (i.e., the one shown in Figure 4). According to Figure 8, the FEM temperature
distribution turned out to have a good agreement (error ε = −2.78%) with the measured
one. The negligible mismatch between the two plots is determined by both the very fine
mesh size in the numerical problem and the low spatial resolution of the thermal camera
used during the on-field measurements.

Figure 8. Tglass along the cut line shown in Figure 4. The experimental data (red curve) are compared with the COMSOL
simulation results (blue); the error reported in the legend quantifies the mismatch between the two distributions.

For the validation of the EMPHASIS accuracy, four temperature maps were extracted
and processed under the environmental conditions Tamb = 25.9 ◦C and G = 1006.26 W/m2,
which correspond to a typical clear-sky day of June in Naples at 12:00 p.m. [40]:

• Case #1—denoted as MPP—corresponds to a functioning panel working under the
MPP condition. The MPP map was used in the calibration procedures;

• Case #2—denoted as OC—refers to a functioning panel operating under OC conditions.
The OC map was used in the calibration procedures;

• Case #3—denoted as SHUNT—replicates the occurrence of a shunted cell, which does
not contribute to the power generation. More specifically, in the SHUNT case, the
Rsh value of cell #34 was preventively decreased by a factor 100 in the SPICE-like
environment. The SHUNT map was processed in the power assessment stage.

• Case #4—denoted as HOTSPOT—emulates the partial shading of a cell leading to a
localized hotspot. To this aim, the G value impinging on cell #5 was reduced to 80%.
The HOTSPOT map was processed in the power assessment stage.

The Pg,cell reference values in the four cases are reported in Figure 9, while the cor-
responding temperature maps are shown in Figure 10. It is worth highlighting that the
junction box positioned on the top half of the back of the panel leads to an appreciable
temperature increase in the neighboring cells. In addition, a significant heating was ob-
served in the HOTSPOT case (Figure 10d), whereas similar temperature distributions were
extracted under MPP, OC, and SHUNT conditions. The Pout,i maps were obtained by
solving Equation (2) and are shown in Figure 11.
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Figure 9. Cell electrical power Pg,cell obtained by means of the ET simulations in the OrCad environment; (a) MPP conditions
(Case #1), (b) OC conditions (Case #2), (c) cell #34 shunted (Case #3, SHUNT), and (d) cell #5 partially shaded (Case #4,
HOTSPOT). Both the shunted and shaded cells are highlighted in red.

Figure 10. Front surface pixel temperature Ti evaluated by the numerical simulations; (a) MPP conditions (Case #1), (b) OC
conditions (Case #2), (c) cell #34 shunted (Case #3), and (d) cell #5 partially shaded (Case #4). The red dashed circle shows
the slightly higher temperature of cell #34 in Case #3.
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Figure 11. The pixel outgoing thermal power Pout.i evaluated by applying Equation (2); (a) MPP conditions (Case #1), (b)
OC conditions (Case #2), (c) cell #34 shunted (Case #3), and (d) cell #5 partially shaded (Case #4).

The Pg,cell predicted distributions are shown in Figures 12 and 13, which summarize
the results of the EMPHASIS power assessment stage in the SHUNT and HOTSPOT cases,
respectively. Both temperature maps shown in Figure 10c,d were computed by means of
the standard, NL corrected, and differential approaches. Concerning the calibration procedure,
the OC map (Pg,panel = 0 W) was exploited for the standard approach, while both the MPP
(Pg,panel = 48.1 W) and OC temperature distributions were used for the NL corrected and
differential ones. To quantify the method accuracy, three figures of merit were considered,
that is, the estimation errors in the prediction of the power generated (or dissipated) by
(i) the malfunctioning cell, (ii) the remaining ones, and (iii) the subpanels.

Figure 12. Estimated electrical powers Pg,cells obtained in the SHUNT case study by means of EMPHASIS; (a) standard,
(b) nonlinear (NL corrected), and (c) differential approach. The Pg,cell predicted values are to be compared with the reference
ones shown on the left.
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Figure 13. Estimated electrical powers Pg,cells obtained in the HOTSPOT case study by means of EMPHASIS; (a) standard,
(b) NL corrected, and (c) differential approach. The Pg,cell predicted values are to be compared with the reference ones shown
on the left.

Concerning the SHUNT case, the temperature of the fault cell is only slightly higher
than the one of the remaining cells (Figure 10c). In these conditions, the IR diagnosis is
therefore challenging. However, the three EMPHASIS proposed approaches recognized
the cell #34 as malfunctioning and accurately predicted its Pg,cell value. A good estimation
of the Pg,cell of the remaining cells was also achieved (Figure 12). It is worth noting that no
significant differences were witnessed between the standard and the differential approaches;
the errors in the power assessment were found to lie in the range of 0.07–0.1 W. No actual
advantages were obtained by adopting the NL-corrected approach; it can be ascribed to
the low temperature distribution under investigation (Figure 10c) not leading to relevant
NL effects.

In the HOTSPOT case, instead, a significant temperature increment was observed in
proximity of the shaded cell (Figure 10d). In addition, under these conditions, EMPHASIS
successfully detected the localized malfunctions. Figure 13 states that the negative Pg,cell
value corresponding to cell #5 was predicted, regardless of the adopted approach. In
addition, the estimation of all the remaining Pg,cell values is trustworthy, the only exception
being the cells surrounding the partially shaded one. Because of the huge temperature
increment of cell #5, these cells are characterized by strong temperature gradients, which
lead to an overestimation of the absolute value of the—negative and ingoing—horizontal
heat flux (i.e., Pout,i in Equation (3)). As a result, these Pg,cell values are slightly overesti-
mated. However, EMPHASIS still identifies the cells surrounding the partially shaded one
as correctly working (i.e., as generating electrical power). The main difference between
the three approaches consists in the prediction of the power dissipated by the shaded
cell. The standard approach leads to an error of ~6.5%, whereas the differential approach
error was ~4.3%. The more complex calibration procedure of the NL-corrected approach is
rewarded with improved predictions (error of ~0.9%); it can be inferred that—when high
temperatures are observed—this approach can be successfully adopted to mitigate the
error introduced by the NL thermal effects.

A comprehensive comparison between the approaches in the diagnosis of Cases #3
and #4 is reported in Table 2, which shows the subpanel- and panel-level electrical powers.
In accordance with the cell-level discussion, no significant differences were found in the
three approaches applied to the SHUNT case. EMPHASIS predicted the power generated
by the subpanel (panel) with an absolute error lower than 0.5 W (1 W). With regard to the
HOTSPOT case, the method was able to recognize the left subpanel—which includes the
partially-shaded cell—as malfunctioning. The most accurate panel-level prediction was
achieved by the NL-corrected approach that provided an absolute error of ~2 W. Concerning
the differential approach, the calibration procedure relying on two temperature maps is
conveniently traded for highly accurate results. By moving from the standard to the
differential approach, the panel-level estimation error improves from 16.6% to 13.1%.
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Table 2. Summary of the subpanel- and panel-level electrical powers. The results are referred to the
three EMPHASIS approaches applied on both the SHUNT and HOTSPOT cases; the mismatches
with the reference power distributions are also reported.

Case #3—SHUNT Case #4—HOTSPOT

Left
Subpanel

Right
Subpanel

Whole
Panel

Left
Subpanel

Right
Subpanel

Whole
Panel

Standard
approach

24.10 W
(−0.38 W)

22.98 W
(−0.31 W)

47.09 W
(−0.58 W)

1.52 W
(+3.27 W)

24.86 W
(+0.47 W)

26.38 W
(+3.75 W)

NL-
corrected
approach

24.10 W
(−0.38 W)

22.93 W
(−0.36 W)

47.03 W
(−0.64 W)

−0.08 W
(+1.68 W)

24.76 W
(+0.37 W)

24.67 W
(+2.04 W)

Differential
approach

24.10 W
(−0.38 W)

22.93 W
(−0.36 W)

47.03 W
(−0.64 W)

0.83 W
(+2.6 W)

24.77 W
(+0.38 W)

25.59 W
(+2.96 W)

Reference 24.38 W 23.29 W 47.67 W −1.75 W 24.39 W 22.63 W

As a last result, a comparison between EMPHASIS and the methods previously pre-
sented in [40,41] is summarized in Table 3. The methodology shown in [40] corresponds to
the early version of the standard approach, while the differential approach is an improvement
of the method described in [41]. In the HOTSPOT case and regardless of the approach, EM-
PHASIS proved to be more precise than its previous versions with a significant reduction in
the estimation errors of the electrical powers of both the malfunctioning cell and the panel
electrical powers. The same can be inferred for the cell-level prediction in the SHUNT case,
while the EMPHASIS panel-level estimation was found to be seemingly worse than the one
achieved in [40]. However, since the method in [40] overestimates (underestimates) the
cell- (panel-) level electrical powers, its better prediction is to be ascribed to compensation
of the errors.

Table 3. Estimation error in the prediction of the malfunctioning cell and panel-level electrical
powers in SHUNT and HOTSPOT cases; comparison between EMPHASIS and the methods presented
in [40,41].

SHUNT Case HOTSPOT Case

Malfunctioning
Cell Error

Panel-Level
Error

Malfunctioning
Cell Error

Panel-Level
Error

Method in [40] +0.15 W −0.45 W −5.77 W +4.38 W

EMPHASIS
standard
approach

−0.07 W −0.58 W −1.52 W +3.75 W

Method in [41] – – +9.27 W +9.81 W

EMPHASIS
differential
approach

– – +1.01 W +2.04 W

5. Conclusions

In this work, an Efficient Method for PHotovoltaic Arrays Study through Infrared Scanning
(EMPHASIS) has been proposed and thoroughly described. EMPHASIS is an innovative
analytical technique able to predict—on the basis of the mere knowledge of IR temperature
maps—the cell-level working conditions of any PV panel. Moreover, the accuracy of
the method predictions has been evaluated through a strategy relying on “simulated
experiments,” which are not to be replicated by the EMPHASIS end users. A methodology
has been conceived to feed the proposed method with numerical, yet realistic, temperature
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maps associated to a known power pattern, which has been compared to the one assessed
by EMPHASIS.

The “simulated experiments” have been performed under realistic working conditions
to emulate ad hoc localized malfunction events. EMPHASIS—in its three variants—has
been applied on temperature maps of PV panels affected by a shunted cell and a localized
hotspot. As a main result, an excellent agreement has been found and each variant has
turned out to be reliable in the power assessment, with slight differences in terms of
accuracy. In the case study concerning the PV panel with a shunted cell, EMPHASIS has
provided negligible errors in the cell-level predictions; more specifically, the malfunctioning
cell has been identified, and its reduced generated power has been correctly assessed. As
far as the PV panel with a hotspot cell is concerned, the corresponding power loss has
been quantified with an estimation error in the range of 9–16%. The whole investigation
has witnessed that EMPHASIS can be successfully adopted to localize faults. In addition,
the proposed method is expected to stand out among all other techniques presented in
literature for being able to predict the actual cell- and panel-level electrical powers.
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Abbreviations

2-D Two-dimensional
3-D Three-dimensional
Acell Cell area
Aglass Panel front surface
Apixel Pixel area
BC Boundary condition
EMPHASIS Efficient Method for PHotovoltaic Arrays Study through Infrared Scanning
ET Electrothermal
EVA Ethylene vinyl acetate
FEM Finite-element method
G Solar irradiance
Gexp Experimental solar irradiance
hback Heat transfer coefficients on the back surface
hfront Heat transfer coefficients on the front surface
Iph Photogenerated current
IR Infrared
ISC Short-circuit current
k Thermal conductivity
PD Dissipated power
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MPP Maximum-power-point
NL Nonlinear
OC Open-circuit
Pg,cell Electrical power generated by the cell
Pg,panel Electrical power generated by the panel
PV Photovoltaic
ri Tuning parameter
Rs Series resistance
Rsh Shunt resistance
RSMH Cell self- and mutual-heating resistance
Si Silicon
STC Standard test conditions
T0 Reference temperature in the FEM solver
Tamb Ambient temperature
Tglass Front surface temperature
tglass Glass thickness
Ti Pixel-level front surface temperature
VOC Open-circuit voltage
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