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Abstract: The expansion on the use of Electric Vehicles demands new mechanisms to ease the
charging process, making it autonomous and with a reduced user intervention. This paper reviews
the technologies applied to the wireless charge of Electric Vehicles. In particular, it focuses on
the technologies based on the induction principle, the capacitive-based techniques, those that use
radiofrequency waves and the laser powering. As described, the convenience of each technique
depends on the requirements imposed on the wireless power transfer. Specifically, we can state
that the power level, the distance between the power source and the electric vehicle or whether the
transfer is executed with the vehicle on the move or not or the cost are critical parameters that need
to be taken into account to decide which technology to use. In addition, each technique requires
some complementary electronics. This paper reviews the main components that are incorporated
into these systems and it provides a review of their most relevant configurations.

Keywords: wireless power transfer; electric vehicle; inductive; capacitive; laser; optical; dynamic;
stationary; charge

1. Introduction

Electric Vehicles (EVs) represent a sustainable mode of transportation, which will
help reduce greenhouse gas emissions. This statement is supported by some reported
data. The United States Environmental Protection Agency informed that nearly 28% of the
greenhouse gas emissions in this country in 2018 were produced from the transportation
sector [1]. In particular, if we study which type of vehicle contributed more to this pollution,
we observe that 69% of these gases were caused by light-duty vehicles whereas 23% was
related to medium and heavy-duty trucks. A similar conclusion can be derived when
studying the data about Europe for the same year where 25% of the greenhouse gases were
due to the transport sector [2].

In addition, EVs are expected to become a relevant actor in the Smart Grids. It is
expected that a group of vehicles will behave as mobile batteries with a low response time
when activated or deactivated. They can compensate the intermittency of the renewable
energy sources [3]. For this purpose, the batteries can be generators or they can also act as
controllable loads in the Vehicle-to-Grid (V2G) context [4].

Even if EVs will help to the integration of renewable energy sources and to reduce the
greenhouse emissions, driver still tend to acquire fuel-based vehicles as they fear that the
autonomy of EVs is not sufficient to guarantee a drive without problems. This shortcoming
has been identified for electric cars [5] or even for other low-power vehicles [6]. One of
the reasons for this belief is the charging time. Table 1 summarizes the charging modes
defined in the International Standard IEC 61851-1 [7]. Mode 1 charging is the most popular
solution for domestic appliances due to its power requirements and reduced cost.

The charging process is limited by the batteries’ physical constraints, such as the
maximum charging current, power and voltage [8]. To comply with these restrictions
and avoid damaging the battery, charging is usually carried out following a Constant
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Current (CC)/Constant Voltage (CV) strategy [9], which guarantees that both the voltage
and the current do not exceed the maximum values recommended by the manufacturer
in a two-phase process. In addition, the C-rate and the Depth-of-Discharge (DoD) of the
charge directly affect the lifetime of the battery [10], so it is not advisable to use the fast
charge regularly.

Table 1. Charging modes according to IEC 61851-1 [7].

Charging
Mode

Charging
Type

Maximum
Current

Maximum
Power

Charging Time
for 50 kWh

Kilometers from
a 15 min Charge 1

Mode 1 Slow 16 A, AC,
Single-Phase 3.7 kW 14 h 5 km

Mode 2 Fast
32 A, AC,

Single-Phase 7.4 kW 7 h 9 km

32 A, AC,
Three-Phase 22 kW >2 h 27 km

Mode 3 Rapid 62 A, AC,
Three-Phase 43 kW >1 h 54 km

Mode 4 Ultra-Rapid 400 A, DC 200 kW 15 min 2 250 km2

1 Using an average consumption of 0.20 kWh/km. 2 Batteries cannot be fully charged at maximum power.

Moreover, DC chargers are only available in specific locations presently for safety
concerns. The high charging time of most popular wired chargers and the care of batteries
prompt the need for developing other charger types or other mechanisms, which could
also ease user interaction with the grid. Wireless Power Transfer (WPT) outstands as an
alternative technology to improve the user perception about the charging process of the
EVs [11]. Although DC charging are still a quicker option, we can already find some 11-kW
wireless chargers commercially available, which could provide a convenient charging
time too. The advantages provided by this technology are multiples, being the following
features the most relevant ones.

• Automatic operation without driver intervention. The process can be scheduled, and
it can happen even without the presence of the vehicle owner. This feature reveals
itself as convenient to promote the participation of the EVs in the V2G operations.
Some software appliances can be designed and implemented to program the charges
and set the user preferences.

• Safer charge. In case of electric cars, conductive charge is supported by cables carrying
high electrical current. This could become a serious risk, especially when adverse
weather conditions take place. As this conductor is avoided by wireless chargers,
this type of charger becomes safer from the driver’s point of view. As a counterpart,
magnetic or electric fields involved in the wireless power transfer must be restricted
to the controlled levels to guarantee that they are not harmful.

• Dynamic or on-the-move charge. As the power source and the receiver are not physi-
cally connected, the EVs can be charged in more situations if they use wireless chargers.
Thus, the use of wireless chargers extends the possibility of performing a static charge
(when the EV is parked) to scenarios where the car is temporally stopped (e.g., waiting
for a traffic light) or on the move. If this kind of charge are available in more road
sectors, this will imply that the battery of the EVs can be charged more frequently
while moving and it could be smaller and cheaper.

These advantages are significant for all types of EVs. As a consequence, we can find
implementation of wireless chargers in cars [12], bicycles [13], buses, trains [14], boats [15],
scooters, wheelchairs [16] and Unmanned Aerial Vehicles (UAV). Some of these implemen-
tations are commercially available but others are mere proofs of concept.
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Currently, there are different technologies associated with the WPT. When deciding
about which WPT technology to employ and how to adapt it to the system, the following
criteria should be considered:

• Transferred power. WPT technology can be used to transmit up to 1 kW for light-duty
vehicles, to transfer 1–100 kW for medium power EV or even to send more than 100 kW
for high-power EVs. For very-low-power requirements, the system may directly power
the vehicle instead of recharging the battery. In addition to this tendency, the power
level impacts on two main issues. First, the devices on the power electronics need to
support the switching frequency and the demanded power levels. Second, the power
levels involved in the transfer usually sets the criterion to follow in the design. In this
sense, the maximum power transfer theorem is applied for low-power applications
whereas the efficiency is more relevant for high power levels.

• V2X-enabled power transfer, i.e., the compliance or not with the Vehicle-to-Everything
(V2X) context. By this criterion, we define the sense of the power flow leading to
unidirectional or bi-directional chargers. The traditional chargers have a power transfer
with a unique sense from a power system to the battery but it is also possible to
discharge the EVs to support the grid, another vehicle or device. In this last case, the
power electronics must be designed to be bi-directional.

• Gap, i.e., the distance separating the power source and the receiver. In EV wireless
chargers, we can find a wide range for the gap. In [17], the receiver is installed in the
kickstand of a bicycle and the transmitter is on the pavement. Both power extremes
are in contact with 0 cm as the gap. For electric cars, SAE establishes the term coil
ground clearance as the gap. In particular, the organization defines three types of
classes according to this parameter: Z1-class ( 100 mm < gap < 150 mm), Z2-class
(140 mm < gap < 210 mm) and Z3-class (170 mm < gap < 250 mm). For aerospace
applications, the gap can reach up to several meters [18].

• Capability to work with misalignment. During the design of a charger, the transmitter
and the receiver are assumed to be in a predefined position. However, the conventional
use of the charger may be in situations where the transmitter and/or the receiver are
not in those expected placed. As a result, both extremes are misaligned. Some WPT
technologies are still able to work with misalignment. However, other technologies
need to reconfigure the transmitter to modify the power beam so it is adjusted to the
current position of the receiver.

• Potential existence of intermediate objects. The WPT technologies operate with dif-
ferent ranges of wavelengths. This makes them capable or not to transmit the power
when intermediate objects are in the gap. Safety issues may arise when this eventuality
takes place.

• Stationary/Mobile receiver, if we set the requirement that the WPT system should be
able to transfer power when the receiver is in an unspecific position before or during
the charging process. This feature is especially relevant for on-the-move charge.

WPT refers to a set of technologies [11], which comprises magnetic resonant chargers,
capacitive-based WPT, laser beam powering or microwave-based chargers. So far, wireless
chargers based on resonant transmission have reached a commercial status for static EVs [19].
Several prototypes have also been implemented and tested for dynamic charge and they
are supported by magnetic resonant transmission. Capacitive power transfer has been
extensively studied for its potential application in EVs. So far, the power levels and gap
of capacitive WPT experiments are lower in comparison with the potentials of magnetic
resonant chargers [20]. However, this tendency may change as recent works defend the fact
that capacitive charging is more convenient for charge on the move. There are also other
implementations based on microwave power transmissions, for electric cars but they are not
a commercial product [21]. Optical power transfer is revealing as an appealing technology
to powering drones, but the efficiency and the power levels are still low.

This paper presents an overview about how WPT technology is applied in the EV
sector considering different vehicles and power transfer techniques. It also includes the
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description of some prototypes or experiments, which have demonstrated the feasibility of
these techniques. From the analysis of the already implemented systems, we conclude some
limitations that the technology has for a fully convenient application in the EV context.

The rest of the paper is structured as follows. Section 2 overviews the EV conditions
on which the WPT can happen. Section 3 deeply describes the application of the most
relevant WPT techniques to the charge/discharge of EVs. Section 4 addresses the analytical
comparison among the technologies to offer a convenient operation for EVs. Finally,
Section 5 describes the main conclusions of this work and outlines some future trends.

2. Charging Operation Modes: Static, Stationary and Dynamic

Wireless chargers avoid the restriction of being connected to a cable increasing the EV
charging mode options. Due to the flexibility that wireless charging offers, the EV charging
process can also take place at temporal stops or even while driving, and thus, allowing
reduced energy capacity for the batteries.

It can be identified three wireless charging operation modes: static, stationary or
quasi-dynamic and dynamic. They are represented in Figure 1.

(a) Static. (b) Quasi-dynamic or stationary.

(c) Dynamic.

Figure 1. WPT operation modes.

Static WPT takes place when the EV is at parking position and engine is off to proceed
to full charge. This is the usual charging mode at public parking or homes. Some complex
functions can be incorporated to these chargers in order to minimize coil misalignments.
Taking into account charging infrastructure and time, static WPT is similar to conventional
conductive charging [22,23].

On the other hand, dynamic and stationary (or quasi-dynamic) wireless charging oper-
ation modes enable EVs to be charged while in transit. This new paradigm poses technical
design and operational challenges that were not present for classical conductive charging.

Stationary WPT charge occurs with the following two particularities (i) the vehicle is
stationary, but the engine is still running and (ii) this situation holds over a short period
of time that is not sufficient to reach a full charge. This type of charge is useful for public
transport vehicles to charge when stopping at passenger stops. This was one of the charging
operation modes of the Victoria project in city of Málaga (Spain) in 2018 [24]. Without
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affecting the bus service at stops, the battery can be charged. For private vehicles and at
traffic lights stops, the stationary charge can also take place.

The most challenging operation mode is the dynamic mode, which allows an EV to
charge wirelessly as it is driving along the road. In this case, certain sections of the road
are equipped with WPT transmitters and power electronic equipment to enable WPT for
EVs. This type of charging promotes the roadway powered electric vehicles [25]. Although
the cost of the infrastructure is high, its benefits of this infrastructure are expected to be
notable due to the low number of chargers available in highways [26].

There are several cities where dynamic charging has already been tested. For instance,
in some cities in South Korea under the OLEV project) [27], in Malaga (Spain) in the Victoria
project [24] or in the city of Douai in France with the FastinCharge project [28]. In Torino
(Italy), Conductix-Wampfler has implemented a prototype to charge a bus when stopping
and at the end of the bus route with magnetic resonant technology [29].

The Unplugged project [30] whose objective is to design and develop inductive charg-
ers for EVs in urban environments improves comfort and sustainability of car-based mobility.
Another relevant project on dynamic charge is The Fabric Project [31]. It was completed in
June 2018 and it performed a comparison among different modes of electromobility, includ-
ing wireless and uninterrupted charging of electric vehicles on the go. This comparison has
been carried out on urban, interurban (metropolitan) roads and highways. Alternatively, the
Smartroad Gotland project [32] connects the municipality and Visby airport on the island of
Gotland (Sweden). It has developed a reserved test section for electric bus with continuous
service (shuttle service) of 1.6 km of the total of 4.1 km of the road axis.

In a similar way to conductive chargers, wireless chargers can be implemented in
such a way that they allow bi-directional power flows. V2G wireless chargers are being of
interest for the research community in recent years. We can find some studies addressing
the V2G procedures even for dynamic charge [33].

3. WPT Technologies

Wireless power transfer encompasses a group of technologies. As we will study next,
their application differs for each one.

3.1. Magnetic Resonant WPT

The most mature technology for WPT in EVs is based on the induction principle with a
pair of air-core coils. As defined by Ampère’s Law, when the transmitter coil (also referred
to as the primary coil) is powered with a time-varying current, it generates a dynamic
magnetic field around this structure. If a receiver or secondary coil is able to concatenate
some of the flux, a induced voltage is observed . Since the secondary coil is electrically
connected to the EV battery, the current on the primary coil is able to induce some voltage
on the secondary coil and, in turn, to transfer power to the battery. An illustrative coupler
for EV applications is shown in Figure 2. This corresponds to the coupler used by the
authors in their prototypes.

Figure 2. Illustrative implementation of two coils for a magnetic resonant WPT.
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As stated by Faraday’s Law, the amount of the power transferred is due to the capacity
of the secondary coil to concatenate as much magnetic flux as possible. The magnetic
field involved in these systems are related to the primary current and the relative position
between the transmitter and the receiver coil [34]. In EV wireless chargers, two main
strategies are mainly applied to maximize the magnetic flux traversing the secondary coil:
(i) advanced coil design and (ii) inclusion of compensation networks. Power converters
and their control system are also relevant in these chargers, as illustrated in the generic
diagram of Figure 3.

Primary Side Secondary Side

L1

R1

−
+Vs

R2

L2

M

Compensation

Network

Compensation

Network
Inverter Rectifier RL

IL

ControllerController

Coils

Figure 3. Generic structure of an EV wireless charger.

As for the coil design, the simplest structures are the circular and the rectangu-
lar/square ones. Their simplicity can be a plus for low-cost applications. However, some
other vehicles require that their charge is not degraded with misalignment, and the use
of this type of coil may not fulfill this requirement. This need has prompted the use of
alternative coil topologies in the context of electric cars. Double-D or DD coils are com-
posed of two equal D-shaped (rectangular) subcoils with a shared side. They are electrically
connected in parallel but wound in such a way that they concatenate the magnetic field as
if they were in series. Basing on the DD coils, the DD quadrature or DDQ is implemented.
It has two independent windings: one is a DD pair of coils and another is the quadrature
or quad (Q) coil. The Q-coil is placed over half of the area of each D coil. Ferromagnetic
and conductive materials are included to prevent coupling between the DD and the Q
coils. Bipolar coils are similar to DD coils but one of the coils overlaps half of the area
of the D-shape coil. Among these three topologies, it is said that DDQ coils are the ones
that can concatenate more magnetic flux. Bipolar coils represent an intermediate solution
and DD coils can concatenate less magnetic field than the other two [35]. To confine the
magnetic field in the area of interest, advanced coils are usually equipped with ferrite plates
which set a preferential path for the magnetic field [36]. In addition, shielding may be used
to prevent the magnetic field to traverse determined zones. For instance, they could be
placed underneath the transmitting coil so that the magnetic field will not circulate in this
unproductive area. Using ferrite and shielding will increase the efficiency of the system
and it will help to comply with the safety restrictions imposed in this kind of system.

The previous coil topologies are more convenient for static applications. The approach
for dynamic charging alters the structure of the transmitter coils. In particular, we can
find a series of coils with a dimension similar to the pickup coil. This structure is usually
called lumped or segmented. It is also possible to a rail-based solution with stretched
transmitter coils, in which the longitudinal dimension is much larger than the one of the
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receiver coil. In this category, we can find the E-type, U-type, W-type, I-type or S-type
coils. The first letter on this term refers to the resulting geometry once the ferromagnetic
material is included in the stretched coil. In comparison with the lumped structure, the
rail-based solution presents some advantages, such as higher losses, lower efficiency and
higher installation and maintenance costs [37].

When efficiency is a goal, the material of the coils must be carefully selected for the
operational frequency. If the cost is feasible, Litz wire can be used as it minimizes the losses
due to eddy currents [38].

Inductive WPT applied to EVs are usually resonant systems. In resonant WPT, the
electrical system is designed to work under at resonance so that reactive networks (referred
to as the compensation networks) are incorporated on the primary and the secondary sides.
Mono-resonant topologies are composed of only one capacitor. One capacitor is connected
to the primary coil and another to the secondary coil. The connection can be series or
parallel. When referring to them, the connection with the primary coil is first specified
and then the connection to the secondary coil so that the configurations are: Series-Series,
Series-Parallel, Parallel-Series or Parallel-Parallel compensation networks. Figure 4 shows
the schematics for these connections. Table 2 specifies the value for these capacitors (C1
on the primary side and C2 on the secondary side). It also includes the efficiency that can
be achieved taking into account the resistances of the coils (R1 and R2 for the primary
and secondary coils) and the equivalent resistance of the load RL. The efficiencies of the
SP and PP topologies are affected by the mutual inductance M, which also depends on
the coil misalignment. Due to their simplicity, they are easy to control and implement.
However, they do not provide a high performance when they coils are misaligned. Multi-
resonant compensation topologies, which contain more than one reactive component, are
more adequate under these circumstances. In addition to improving system efficiency
against misalignment, multi-resonant topologies offer other additional benefits, such as
reduced bifurcation phenomenon [39], improved stability and efficiency with dynamic
charging [40] or using a single primary coil to charge multiple vehicles [41] and feasibility
of bi-directional systems[42].

The most popular multi-resonant structures for EV wireless chargers are the LCL and
the LCC topologies. The schematics are illustrated in Figure 5.

C1 R1

L1Vs

R2
C2

RLL2

M

Coils

(a) Series-Series.

C1 R1

L1Vs

R2

RLL2 C2

M

Coils

(b) Series-Parallel.

R1

L1Vs C1

R2
C2

RLL2

M

Coils

(c) Parallel-Series.

R1

L1Vs C1

R2

RLL2 C2

M

Coils

(d) Parallel-Parallel.

Figure 4. Mono-resonant compensation topologies.
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Table 2. Capacitor values and AC efficiency for mono-resonant compensation topologies [43].

Topology C1 C2 Efficiency

SS 1
L1ω

1
L2ω η ∼= RL

R2+RL

SP L2
2C2

L1L2−M2
1

L2ω η ∼= RL

R2+RL+
R1 L2

2
M2

PS L2C2

L1+
M4

L1 L2C2R2
L

1
L2ω η ∼= RL

R2+RL

PP (L1L2−M2)L2
2C2

M4R2
LC2

L2
(L1L2−M2)

2

1
L2ω η ∼= RL

R2+RL+
R1 L2

2
M2

L f 1 R1

L1Vs C1

R2 L f 2

RLL2 C2

M

Coils

(a) LCL topology.

L f 1
C1 R1

L1Vs C f 1

R2
C2 L f 2

RLL2 C f 2

M

Coils

(b) LCC topology.

Figure 5. Multi-resonant compensation topologies.

A third issue related to magnetic resonant WPT is the power electronics. To con-
catenate more variation of the magnetic flux, inductive power transfer usually relies on
high-frequency signals. The generation and process of these signals are done by the power
converters. The devices in these converters must be selected according to the power they
have to support and the switching frequency. International standards regulate the nominal
operation frequency at 85 kHz [44]. Traditional Si IGBTs are not suitable to deal with this
frequency and high power, so Silicon Carbide (SiC) MOSFETs are recommended instead.
Despite their higher cost, they present lower on-state resistance in comparison with Si
IGBTs [45], which allows higher switching frequencies and a reduction of losses and cooling
requirements.

The typical diagram of a resonant wireless charger is depicted in Figure 3. The inverter
converts the direct current to high-frequency alternating current. This conversion is usually
performed using a full-bridge inverter [46–49], although some authors suggest other topolo-
gies such as single-ended converters [50] or multi-phase systems [51,52]. If the charger is
designed to be bi-directional, the power converters must be designed to be bi-directional too.
Other diagrams also opt for including a DC/DC converter on the secondary side [53,54].

Associated with the power electronics, these chargers include the control system. This
system is in charge of switching the power devices according to different criteria. We
can find some proposals in which the control adjusts the operational frequency, others
in which they tune the reflected load or even some that act on the frequency and on the
compensation networks at the same time [55]. The control strategy used has a direct effect
on the selection of the charger topology, since depending on the actuation point, specific
converters may be required. In systems controlled on the primary side, the control acts on
the inverter of the charger, which can be regulated by adjusting the phase-shifting and the
frequency. Chargers that use this topology reduce the number of components installed in
the vehicle since the secondary power electronics are simpler, but they require a system
that communicates both sides of the charger. On the other hand, chargers controlled on
the secondary side do not have this need for communication, but they require a greater
number of components in the vehicle, such as a controlled rectifier or a DC/DC converter.
This entails an increased weight. It is also possible to find chargers controlled from both
sides of the charger, in which all the power electronics work in coordination with the aim of
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achieving maximum efficiency [53]. Furthermore, this configuration allows bi-directional
operation if the power electronics allow the power flow in both senses.

The efficiency of resonant wireless chargers is due to the efficiency of the power
converters, the compensation networks and the coils. They will be highly affected by the
coil misalignment. A deep study about the efficiency of resonant wireless chargers can be
found in [56].

Today, there are commercial wireless chargers based on magnetic resonant technology.
ORNL, Witricity, Qualcomm or Efacec are providers of this product [57]. These chargers
are oriented to static charge. ORNL has been able to build a 120-kW charger with a 97%
efficiency. Witricy states that their wireless chargers can provide up to 11 kW with a 90–93%
of efficiency. Qualcomm defines for their wireless an efficiency level over 97% across the
airgap and over 90% from primary DC to battery DC [58], although their technology was
acquired by Witricity in 2019. Efacec presents similar efficiency than Qualcomm technology.
SAE J2954 is the standard for inductive wireless chargers applied to light-duty vehicle [44].
This standard imposes some limitations on the dimensions of the coils, the gap or the
efficiency [46]. The International Electrotechnical Committee (IEC) [59] and the International
Organization for Standardization (ISO) [60] also have documents to regulate commercial
wireless chargers.

3.2. Capacitive WPT

Capacitive WPT is supported by an electrical field generated in the area between two
capacitors (the forward and return capacitors). These capacitors are constructed between
the transmitter and the receiver with two parallel and close plates. The coupling capacitance
of these elements is usually of the order of a few picofarad [61]. In an analogous way to
resonant WPT, when the plates are close, an electric field is generated, and an induced
current appears in the receiver. As the capacitors are connected to the battery, the power
transfer is effectively performed to the EV. Although this arrangement of the plates is the
most common one, there are variants that provide improvements [62], such as the Four-
Plate Stacked structure [63], which is more compact and reduces the external capacitances,
and the Six-Plate Stacked structure [64], which includes two larger external plates that act
as shielding and reduces electric field emissions. The induced current is proportional to
the variation of the electric field, so power converters are also used in this type of charger
to increase this variability.

Conversely to resonant wireless chargers, capacitive WPT can realize an effective power
transfer even with metallic barriers [62] as this condition does not lead to relevant losses.
Capacitive wireless chargers are a competitive option because the electric field is confined
in the volume comprised between the two plates of the capacitors. This restriction makes
capacitive wireless chargers safer when compared with the magnetic-based counterparts.

Compensation networks and power converters are also part of these chargers, as
shown in Figure 6.

−
+Vs

Is

RL

IL

Inverter

Primary

Compensation

Network

Secondary

Compensation

Network

Rectifier

Capacitive coupler

Figure 6. Generic diagram for capacitive wireless chargers.
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The mono-resonant compensation topologies are coils, which may be connected in
series or in parallel. We can also talk about the Series-Series, Series-Parallel, Parallel-Series
or Parallel-Parallel structures, as in the magnetic-based chargers. As for the multi-resonant
compensation topologies, double-side LCL [63], double-side LCLC and double-side LC
are the most popular ones in capacitive chargers [65]. The schematics of the most popular
compensation topologies in capacitive power transfer are depicted in Figure 7.

L1 I1
CM1

Vp

+

L2 I2

Vo
CM2

+

(a) Double-side L compensation.

L1 I1
CM1

Vp

+
CT

L2 I2

Vo
CM2

CR

+

(b) Double-side LC compensation.

L1a I1
L1b

CM1

Vp

+
CTa CTb

L2a L2b I2

Vo
CM2

CRa CRb

+

(c) Double-side LCLC compensation.

Figure 7. Compensation topologies for capacitive WPT.

As with inductive power transfer, power electronics play a fundamental role, since the
operating frequency of the system is directly related to the capacitance requirements. Most
of the prototypes developed in the literature use an operating frequency of 1 MHz [14,63,65],
although there are also prototypes that work at other frequencies such as 530 kHz [66],
4 MHz [62] and 13.56 MHz [67]. To deal with these high-frequency values, SiC MOSFETs is
usually the selected technology thanks to its previously mentioned advantages, but Gal-
lium Nitride (GaN) technology is used for the highest frequencies due to lower switching
losses [68,69]. The DC current is converted to high-frequency alternating current using a
full-bridge inverter (most usual) [14,63,65], buck converter [70], Class E converter [62,71],
Class φ converter [67] or even with a three-phase inverter [72], although the latter requires
a special six-plate topology.

The first prototypes of capacitive wireless chargers were restricted to low-power and
low-gap applications [20]. However, this technology has evolved in recent years and we can
find some implementations reaching several kilowatts and gaps up to 300 mm. Switching
frequency is usually higher than in resonant chargers as the coupling capacitance is very
small. As previously commented, it is usually a MHz signal [61,63]. Both the gap and the
misalignment also affect the efficiency. The authors in [73] analyze the drop in the efficiency
and the study does not show significant efficiency drops with horizontal misalignments
lower than 50% of the plate length, although increments in the gap do produce steeper
drops in efficiency from a certain distance. The study in [65] presents similar results, but
with a higher efficiency drop in horizontal misalignment. The plates topology also affects
to the efficiency under misalignment. For example, Four-Plate Stacked structure is more
robust under angular misalignment than the simple parallel structure.

The main advantages of capacitive WPT to charge an EV are:

• Restricted electric field to the zone comprising the plates. This particularity eases the
role of preserving the electromagnetic emissions in potentially dangerous areas.

• Reduced size and cost when compared with resonant wireless charger. Resonant
chargers rely on expensive coils made of Litz wire in order to reduce the losses at
high-frequencies. However, capacitive wireless chargers just require aluminum plates.
This is cost-efficient material, with good conductivity and low weight.
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As for the disadvantages, the most relevant ones for capacitive wireless chargers are:

• Difficulty to build the bulky capacitors due to the small area available underneath the
vehicle chassis, specially for light-duty vehicles such as bicycles or scooters.

• Parasitic capacitances are common in the vehicle, which may affect in the performance
of the wireless charger [61].

Recently, there is a new approach for building inductive and capacitive wireless
chargers [14,74]. These hybrid systems are design so that the vehicle is charged with
the inductive technology while it is parked. Alternatively, for on-the-move charge the
capacitive WPT is preferred.

Developed prototypes can transfer up to a few kWs with an efficiency higher than 90%.
Focusing on the bibliography, ref. [73] with 2.4-kW output power and 90% of efficiency,
ref. [63] with 1.8 kW and an efficiency of 86%, ref. [65] with 1.5 kW and an efficiency of 85%
and [66] with 1 kW at an efficiency of 88% stand out. On the other hand, there is a commercial
solution from Murata [75], which has available a low-power solution with a power capacity
of 10 W, and the Equus platform from Solace Power Inc.(located in Canada) [76], which can
reach a maximum power level of 250 W at greater than 75% efficiency.

3.3. Microwave Power Transfer

Microwave Power Transfer (MPT) is a far-field WPT technique working with mi-
crowaves. The basis of this technology works as follows. The microwave is generated by
a magnetrom, which is powered by a high-voltage DC generator. The microwave passes
through a waveguide and it is then radiated by the transmitting antenna. The transmit-
ting antenna may be designed to be able to orientate the radiated power to the collection
region [77]. For that, a phase-shifter array is used in the transmitter. Then, the receiver uses
a rectenna to convert the microwave signal into a DC signal. The DC signal is connected
to the battery of the EV, so that this element can be charged. This generic structure is
represented in Figure 8. The power is usually transferred with 2.4 GHz or 5.8 GHz. Some
recent works also employ 28-GHz signals [78].

Figure 8. Generic diagram of a MPT system.

There are some implementations for MPT in home environments [79–81] but the
current experiments on EVs are limited. The work in [82] develops a model for recharging
an electric agricultural vehicle with MPT. The prototype reaches 44% efficiency in the DC-
DC conversion for a 250-W power level. The system requires a robust tracking algorithm to
control the beamforming as the MPT is very sensible to the relative misalignment between
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the transmitter and the receiver. The authors in [83] addresses the most suitable material
for the substrate of the transmitting antennas in order to maximize the power transfer.

More than terrestrial vehicles, the applicability of MPT is expected to be oriented to
the aerospace field with a separation of several meters from the power transmitter and the
receiver. The group led by William Brown conducted the first relevant MPT experiment on
which they powered a model aircraft in 1964. In 1968 Peter Glaser defined the Space Solar
Power/Satellite (SSPS). The idea behind this renewable energy system is that geostationary
satellite collects the solar energy through a condenser. Then, it converts this energy into
electricity by the solar arrays. With a MPT circuit, it reflects the energy to the Earth. A more
recent approach can be found in [84]. In 1975 they also transmitted 450 kW to a receiver
placed 1 mile away from the transmitter via microwaves. In the 1980s, small aerial vehicles
flying at 21 km of altitude received 500 kW via a 5.4-GHz microwave. These airplanes
were part of the Stationary High Altitude Relay Platform (SHARP) project, in which the
airplanes provided telecommunication services. Presently, MPT is gaining attention for the
powering of UAVs. In [85], a microwave beam radiation is used to power a Microaerial
Vehicle. As described in this work, the process has three phases: (i) tracking the receiver by
means of a pilot 2.45-GHz signal, (ii) transmitting the power at 5.8 GHz and (iii) processing
the power. The work addresses how to configure an active-phased array of antennas to
orientate the beam conveniently. In [86], the authors propose the use of the bus network in
a city to charge the EVs, when they are close enough. Buses and EVs are equipped with a
MPT system. It is a theoretical study which does not include implementation details.

Taking into account the generic circuits of the MPT, this technology suffers from the
following three main limitations in the EV context:

• The transmitter and the receiver are designed to work in only one power flow direction.
The adaptation of these chargers for V2G operations requires the replication of a dual
system in the MPT.

• For high power levels, it requires bulky antennas which may avoid its applicability in
some scenarios.

• The efficiency of MPT is lower than the one obtained by inductive or capacitive
coupling [21]. This term is usually referred to as the beam collection efficiency.

3.4. Optical WPT

Optical WPT or laser power beaming systems work with waves in the THz range for
the power transfer. Figure 9 presents a generic diagram of an optical WPT.

Main Laser
Beam

Pilot Laser
Beam

Beam director

Laser
Diode

Power
Controller

Power
Source

PV Array

Power
Controller

Battery

Figure 9. Generic diagram of an optical WPT system.

The optical wave is generated by a laser diode, which is powered by the grid in the
transmitter. A laser generates a concentrated beam of light of a particular wavelength
and power. To adjust the direction of the light, a beam director is incorporated into these
systems so that the light can reach the receiver. The receiver is equipped with photovoltaic
cells which convert the received laser light into power. This power is transferred to the
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battery by power converters. The transmitter or the receiver can rely on a maximum
power point tracking device to maximize the received power beam and, consequently, the
efficiency of the power transfer. The beam director is an essential element as in the range
of wavelengths the power transmitter and its receiver must keep the line-of-sight and no
intermediate objects should be allowed. Under this circumstance, the receiver may be up
to several kilometers from the power source. It is important to take into account that lasers
are considered potentially dangerous for humans [87]. In particular, the risks increase with
the power levels. Consequently, beam powering is restricted to specific environments with
scarce human activity nearby and low-power transmissions.

There requirements can be identified in the beam-powered prototypes. The first
experiment of beam powering in the EV context was designed by EADS Space Transport.
The source was a distance up to 280 m to the vehicle, which was a Mini Rover. The efficiency
of the system was under 25% as the laser was powered with 5 W, but the vehicle only
received 1 W [18]. In NASA was able to remotely power 6-W drone flying at an altitude
of 15 m with a 1-kW laser beam [88]. Lasermotive demonstrates the feasibility of beam
powering with a prototype at 9 m from the source. It could keep its flight during 48 h with
only the received laser power. Other experiments with UAVs have been described in the
related literature but the power and efficiency of the transfer are reduced [18]. In [89], the
authors describe how they designed and implemented a 180-W UAV to be powered by
laser beams. It run for 12 h continuously with this WPT technology.

The efficiency of laser power beaming is quite poor. We could quantify the overall
efficiency (ηsys) as the product of the efficiencies of the intermediate elements. So that:

ηsys = ηDC ∗ ηPS ∗ ηDiode ∗ ηAtm ∗ ηPV ∗ ηPCR (1)

where ηDC, ηPS, ηDiode, ηAtm, ηPV and ηPCR are the efficiencies associated with the DC
source, the power source, the diode, the propagation through the atmosphere, the photo-
voltaic cells in the receiver and the power converter to connect to the battery, respectively.
Typical values for the components are presented in [18].

Atmospheric attenuation is modelled by Beer’s Law as follows

P = Po ∗ e−αext∗R (2)

where Po is the output power at the laser diode, P is the power received by the photovoltaic
cells, which are separated R meters from the diode, and αext corresponds to the attenuation
due to gas or aerosol.

As a conclusion, the use of this WPT technology is appropriate for specific scenarios with
controlled conditions (no human or obstacles nearby). The power levels must be also reduced.
UAVs are the most promising candidates to benefit from this technology [90]. Its application
to other EV systems is not recommended as it suffers from the following limitations:

• Low efficiency. As previously explained, these systems suffer rom from a poor effi-
ciency (<25%) [91]. The advances on laser technology and photovoltaic cells could
increase this metric in the near future.

• Low power levels due to the potential risks of reaching a human being.
• Difficulty to orientate the laser beam via a software control, being the passive elements

(e.g., lens or mirrors) the current devices to perform this task. It is worth noting
that the orientation of the laser is usually a strong requirement as the beam must be
oriented to the area where no human beings are in the path between the power source
and the receiver.

• Unidirectional power flow. Due to the specific and different components that are
present in the transmitter and in the receiver, V2G operations are not possible with
this technology.
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3.5. Comparison

WPT can be implemented via multiple technologies. The previous sections have
explained the fundamentals of the resonant, capacitive, microwave-based and optical
power transfer when they applied to the EV charge. Table 3 summarizes the main features
and metrics of these technologies in the studied context.

Table 3. Comparative study of the WPT technologies applied to EVs.

Technology Power Level Efficiency Bi-Directional
Flow Gap Intermediate

Objects
On the
Move Cost

Resonant High (Up to 100 kW) 90–95% Yes < 30 cm Yes Yes Medium
Capacitive Medium (Up to 7 kW) 80–85% Yes < 30 cm Yes Yes Low
Microwave Low (<250 W) 40–50% No up to 1 km No No High

Laser Low (<500 W) 1–15% No up to 1 km No No High

Although inductive technology is mature, it is expected that conductive and wireless
chargers will be implemented jointly in a vehicle to offer the possibility of using each one
in the most convenient way and situation. Some hybrid chargers have been proposed for
this type of implementation [92].

3.6. Safety Issues

WPT technologies rely on electromagnetic fields to realize the power transfer. For health
and safety reasons, the flux of these fields must be restricted as has been established by the
international institutions. Specifically, International Commission on Non-Ionizing Radiation
Protection (ICNIRP) has published a guideline about this issue, which has been transposed
into regulation by more than 100 countries. It sets the limits for non-ionizing radiation, i.e.,
the radiation derived with a photon energy lower than 10 eV and a frequency lower than
3 · 1015 Hz. These limits were established as a measurement of protection for general and
occupational public from short- and long-term exposures to artificial electromagnetic fields.

For these restrictions, this organization divides the electromagnetic waves into six
groups:

• Ultraviolet radiation, with a wavelength comprised between 200 and 400 nm.
• Visible light, with a wavelength in the interval from 100 to 400 nm.
• Infrared Radiation, in which the wavelength is greater than 400 nm but lower than

780 nm.
• Radiofrequency, in which the frequency is in the interval from 100 kHz to 300 GHz.
• Low frequency, for waves in the range from 1 Hz to 100 kHz.
• Static electric and magnetic fields with 0 Hz of frequency.

According to this classification, resonant EV wireless chargers should comply with the
restrictions associated with the low frequency group. In this group, there is an additional
sub-classification. For those chargers supported by electromagnetic waves in the range from
3 kHz to 10 MHz (this also includes some radiofrequency-based chargers), the imposed
restrictions are in Table 4.

Table 4. Electromagnetic restrictions set by ICNIRP in the range 3 kHz–10 MHz.

Public E-Field Strength E
(kV m−1)

Magnetic Field
Strength H (A m−1)

Magnetic Flux
Density B (T)

Occupational 1.7 · 10−1 80 1 · 10−4

General 8.3 · 10−2 21 2.7 · 10−5

Another concern related to resonant wireless power transfer is the compatibility of
these systems with internal medical devices (e.g., pace-markers). These devices are carefully
designed to be safe with external interfering sources. However, some limits should be
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considered for the charger. Specifically, they could be in the drivers, passengers or even in
a bystander. According to X, the field reaching to them should be lower than 15 µT so that
the devices are unaffected. When this field is 29.4 µT, then the device may be in reversion
mode but with no permanent damage. Touch current must be restricted too due to the
potential damages it could provoke [93].

MPT and capacitive-based systems should comply with the restrictions in the radiofre-
quency range. ICNIRP specifies the SAR (Specific Absorption Rate) for different parts
of the body and for general and occupational public too. Evaluating these metrics and
considering the power levels implied in the EV wireless chargers, no human being should
be allowed to be in the area comprised between the power transmitter and the receiver.

As for lasers, the safety concerns are related to the diode types, which are also linked
to the amount of the power transfer. Class 1, 2 or 3R lasers are safe for humans as they
do not provoke skin burn hazards. Class 4 lasers are not safe for humans posing risks of
skin burns or eye damage. Consequently, they should be used with the guarantee that no
human being will be in the power transfer path. For that, an additional system that detects
this eventuality could be necessary.

4. Additional Technologies for EVs Wireless Charge

To get commercial WPT products, the components for the power transfer must also
count on some control electronics and software to fulfill the safety and operational re-
quirements. In addition, some extra electronics and control must be included in order to
effectively integrate the product with other systems or infrastructures. Data communication
is necessary to exchange data to a convenient integration of the charger with the infrastruc-
ture (e.g., electrical grid or data bases for vehicle identification). Moreover, the primary and
the secondary sides of the wireless chargers must exchange some measurements to ensure
that the charge/discharge process is being accomplished correctly, to ease the alignment of
the transmitter/receiver or for load detection [94]. This must be done to prolong battery
lifetime as they have to be charged in a controlled way. In this sense, Ion-Lithium batteries,
which are the most common batteries in EVs, are usually charged with a Constant-Current-
Constant-Voltage scheme [95]. Therefore, the primary side must generate the electrical
signals according to the status of the battery. Under some given circumstances, the primary
side can infer how the power is being received [47,48,96], but in a broad view, the results of
some measurements (current, voltage) must be transferred to the primary controller. For
this purpose, a wireless communication channel must be set. It can be based on well-known
technologies such as IEEE 802.11, IEEE 802.16 or 3G. In magnetic resonant chargers and
microwave-based WPT systems, some experimental prototypes make advantage of the
installed coils to use them as the communication components [97]. When the data and the
power systems rely on a common channel, some configuration parameters must be taken
into account. First, it is important to decide if the power and the data can be transmitted
simultaneously or timeslots may be set to separate both processes (they could even share
the same carrier). The most common implementation is to use two different carriers (one
for the power transfer and another for the data transmission) so that they do not interfere
each other [94]. Concerning the data transmission, the modulation technique and the
protocol should be carefully selected in order to have an effective communication with the
sufficient Signal-to-Noise Ratio and the bit rate needed for this application [98].

In some WPT applications, the power receiver can move or be in a random position.
Under these circumstances, a receiver localization algorithm must be included in the
product so that the electromagnetic wave is generated with the correct beam direction.
Far-field WPT opt for controlling the difference in the current phase of the transmitting
antennas. An array of antennas is common to increase the transmitted power and to control
the beamforming. Near-field WPT techniques try to estimate the coupling between the
transmitter and the receiver in order to adjust the transmitted power [99]. The work in [100]
develops an autonomous alignment system for a dynamic wireless charge with a random
position for the receiver.
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Magnetic resonant technology and laser-beaming are especially sensible to the pres-
ence of intermediate objects in the zone between the transmitter and the receiver. These
objects can cause a diminution of the efficiency and even unexpected accidents due to the
induced eddy currents (with resonant systems) or reflections (with beam powering). The
Foreign Object Detection (FOD) algorithms are oriented to detect the situations in which
these objects/beings are in the intermediate zone between the transmitter and the receiver.
Some proposals for this algorithm can be found in [101,102].

An additional algorithm is the scheduling, which controls and defines when the charge
or the discharge occurs for a set of chargers. It is supported by network models and some
optimization problems. The goal of the optimization problem may be reducing the peak
loads [103], reducing the greenhouse emissions [104] or improving the integration of the
renewable energy sources [105]. Scheduling can also be performed with routing. In this
way, the drivers receive recommendations about when and where to charge and discharge
their EVs [106].

There are few works dealing with scheduling and/or routing for wireless chargers. If
we consider only static wireless chargers, the scheduling algorithms are similar to a minor
reduction on the efficiency. However, quasi-dynamic and dynamic charging do impact on
how the recommendations about the charge/discharge process should take place. Dynamic
charge poses a new challenge for scheduling algorithms. The work in [86] proposes the
use of the buses to charge the EVs when they are close. The algorithm is designed to
maximize the total residual energy subject to all EVs can arrive to their destinations before
a predefined deadline. Trying to minimize the charging costs, the work in [107] defines
the scheduling for online buses charged via wireless. To do so, a two-stage optimization
problem is proposed, and the day-ahead electricity market is considered. As for routing,
we can find a specific work about dynamic wireless charge in [108].

5. Conclusions

It is clear that the Electric Vehicles can benefit from Wireless Power Transfer technol-
ogy as it eases the charge/discharge process and it even extends the scenarios in which
these processes can happen. When considering the electromobility context, four main
technologies are applied for wireless chargers. They differ on the physical principle on
which they rely: induction, capacitance, radiofrequency and laser. In this paper, we have
analyzed some application of these technologies specifically intended for EVs. The review
reveals that the convenience of these technologies depends on several parameters such as
the gap, the power level, the potential presence of intermediate objects or how the power
flow could be. The most mature technology for EV wireless charger is the one based on the
magnetic resonant technology, which also allows V2G operations. However, there are still
some open challenges in which the industry and research community need to align efforts
so that new approaches and solutions are developed. Among the most important ones, for
the resonant chargers, we can highlight the following ones: (i) transmission and receiver
pad misalignment minimization strategies to achieve higher efficiencies, (ii) compact and
reduced coil designs for high-power transfer rates and (iii) optimized designs for EM fields
shielding and mitigation. The capacitive WPT technology shows some relevant limitations
such as limited efficiency, low-power density, intense electric fields and parasitic capaci-
tances. A deep effort must be addressed to mitigate these shortcomings. Similar limitations
are found to radiofrequency and optical WPT. The microwave is not practical for high
power levels as it requires bulky antennas while the optical-based technology is restricted
to low power levels due to the potential risks of reaching a human being. The efficiencies
for the latter two technologies are lower than the one obtained by inductive or capacitive
coupling. They are only of interest when there is a certainty that no human being may be
in the path between the transmitter and the receiver and both components are separated a
long distance.

Concerning charging operation modes, the static charge can be accomplished safely
with the four technologies presently but quasi-dynamic and dynamic charge still requires
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some advances. Other adjacent technologies must be also developed in order to guarantee
a correct performance of the chargers.

Author Contributions: conceptualization, A.T. and J.A.A.; methodology, A.T.; validation, J.A.A.;
formal analysis, A.T. and J.M.G.-G; investigation, A.T., J.A.A. and J.M.G.-G; resources, J.M.G.-G;
writing—original draft preparation, A.T. and J.M.G.-G; writing—review and editing, J.A.A.; visual-
ization, J.M.G.-G; supervision, A.T.; project administration, A.T.; funding acquisition, A.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish National Project PID2019-110531-RA-100.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United States Environmental Protection Agency. Fast Facts on Transportation Greenhouse Gas Emissions|Green Vehicle Guide|US

EPA. 2020. Available online: https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions (accessed on
13 January 2021).

2. EUROSTAT. Trends in Greenhouse Gas Emissions; Technical Report; EUROSTAT: Luxembourg, 2020.
3. Vasilj, J.; Jakus, D.; Sarajcev, P. Virtual Storage-Based Model for Estimation of Economic Benefits of Electric Vehicles in Renewable

Portfolios. Energies 2020, 13, 2315. [CrossRef]
4. Sovacool, B.K.; Kester, J.; Noel, L.; Zarazua de Rubens, G. Actors, business models, and innovation activity systems for

vehicle-to-grid (V2G) technology: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 131, 109963. [CrossRef]
5. Statharas, S.; Moysoglou, Y.; Siskos, P.; Zazias, G.; Capros, P. Factors Influencing Electric Vehicle Penetration in the EU by 2030: A

Model-Based Policy Assessment. Energies 2019, 12, 2739. [CrossRef]
6. Bui, V.T.; Dow, C.R.; Huang, Y.C.; Liu, P.; Thai, V.D. A Canopen-Based Gateway and Energy Monitoring System for Electric

Bicycles. Energies 2020, 13, 3766. [CrossRef]
7. Electric Vehicle Conductive Charging System—Part 1: General Requirements; International Standard IEC 61851-1:2017; International

Electrotechnical Commission: Geneva, Switzerland, 2017.
8. Wei, Z.; Zhao, J.; Xiong, R.; Dong, G.; Pou, J.; Tseng, K.J. Online estimation of power capacity with noise effect attenuation for

lithium-ion battery. IEEE Trans. Ind. Electron. 2019, 66, 5724–5735. [CrossRef]
9. Keil, P.; Jossen, A. Charging protocols for lithium-ion batteries and their impact on cycle life-An experimental study with different

18650 high-power cells. J. Energy Storage 2016, 6, 125–141. [CrossRef]
10. Gonzalez-Gonzalez, J.M.; Martin, S.; Lopez, P.; Aguado, J.A. Hybrid battery-ultracapacitor storage system sizing for renewable

energy network integration. IET Renew. Power Gener. 2020, 14, 2367–2375. [CrossRef]
11. Trivinño-Cabrera, A.; Gonzaález-Gonzaález, J.M.; Aguado, J.A.J.A. Wireless Power Transfer for Electric Vehicles: Foundations and

Design Approach; Springer: Cham, Switzerland, 2020; p. 175.
12. Nissan. Wireless Charging System | NISSAN | TECHNOLOGICAL DEVELOPMENT ACTIVITIES. Available online: https:

//www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/wcs.html (accessed on 1 February 2021).
13. Daymak. Daymak Launches New Special Edition EC1 Featuring Built in Wireless Charging Technology; Plans to Roll Out This

Technology on Certain E-Bike Models. Available online: https://www.prnewswire.com/news-releases/daymak-launches-
new-special-edition-ec1-featuring-built-in-wireless-charging-technology-plans-to-roll-out-this-technology-on-certain-e-bike-
models-300464874.html (accessed on 23 January 2021).

14. Luo, B.; Long, T.; Guo, L.; Dai, R.; Mai, R.; He, Z. Analysis and Design of Inductive and Capacitive Hybrid Wireless Power
Transfer System for Railway Application. IEEE Trans. Ind. Appl. 2020, 56, 3034–3042. [CrossRef]

15. Paglialunga, E.; Marconcini, P.; MacUcci, M. Wireless Charging of Batteries for Electric Boats. In Proceedings of the 5th International
Forum on Research and Technologies for Society and Industry: Innovation to Shape the Future, RTSI, Florence, Italy, 9–12 September
2019; Institute of Electrical and Electronics Engineers Inc.: New York City, NY, USA, 2019; pp. 325–330.

16. KingMeter. Wireless Charging. Available online: http://www.king-meter.com/#/product/17 (accessed on 26 January 2021).
17. Beh, H.Z.Z.; Covic, G.A.; Boys, J.T. Investigation of magnetic couplers in bicycle kickstands for wireless charging of electric

bicycles. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 87–100. [CrossRef]
18. Jin, K.; Zhou, W. Wireless Laser Power Transmission: A Review of Recent Progress. IEEE Trans. Power Electron. 2019, 34, 3842–3859.

[CrossRef]
19. Meet Plugless|The Wireless EV Charging Station. Available online: https://www.pluglesspower.com/ (accessed on 1 February 2021).
20. Dai, J.; Ludois, D.C. A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for

Small Gap Applications. IEEE Trans. Power Electron. 2015, 30, 6017–6029. [CrossRef]

https://www.epa.gov/greenvehicles/fast-facts-transportation-greenhouse-gas-emissions
http://doi.org/10.3390/en13092315
http://dx.doi.org/10.1016/j.rser.2020.109963
http://dx.doi.org/10.3390/en12142739
http://dx.doi.org/10.3390/en13153766
http://dx.doi.org/10.1109/TIE.2018.2878122
http://dx.doi.org/10.1016/j.est.2016.02.005
http://dx.doi.org/10.1049/iet-rpg.2019.1310
https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/wcs.html
https://www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/wcs.html
https://www.prnewswire.com/news-releases/daymak-launches-new-special-edition-ec1-featuring-built-in-wireless-charging-technology-plans-to-roll-out-this-technology-on-certain-e-bike-models-300464874.html
https://www.prnewswire.com/news-releases/daymak-launches-new-special-edition-ec1-featuring-built-in-wireless-charging-technology-plans-to-roll-out-this-technology-on-certain-e-bike-models-300464874.html
https://www.prnewswire.com/news-releases/daymak-launches-new-special-edition-ec1-featuring-built-in-wireless-charging-technology-plans-to-roll-out-this-technology-on-certain-e-bike-models-300464874.html
http://dx.doi.org/10.1109/TIA.2020.2979110
http://www.king-meter.com/#/product/17
http://dx.doi.org/10.1109/JESTPE.2014.2325866
http://dx.doi.org/10.1109/TPEL.2018.2853156
https://www.pluglesspower.com/
http://dx.doi.org/10.1109/TPEL.2015.2415253


Energies 2021, 14, 1547 18 of 21

21. Shinohara, N.; Kubo, Y.; Tonomura, H. Wireless charging for electric vehicle with microwaves. In Proceedings of the 2013
3rd International Electric Drives Production Conference, Nuremberg, Germany, 29–30 October 2013; IEEE Computer Society:
Washington, DC, USA, 2013.

22. WiTricity: Powering Life, Wirelessly. Available online: https://witricity.com/ (accessed on 29 January 2021).
23. Bombardier Primove to Provide Wireless Charging and Battery Technology to Berlin—Bombardier. Available online: https:

//www.bombardier.com/en/media/newsList/details.bombardier-transportation20150318ebusberlinabsommerfaehrtdielini.
bombardiercom.html?filter-bu=tran (accessed on 2 Feburary 2021).

24. Bludszuweit, H. Project Victoria—The first spanish showcase for DWPT. In Proceedings of the FABRIC conference (Presentation),
Brussels, Belgium, 2 February 2016.

25. Mi, C.C.; Buja, G.; Choi, S.Y.; Rim, C.T. Modern Advances in Wireless Power Transfer Systems for Roadway Powered Electric
Vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6533–6545. [CrossRef]

26. IEA. Global EV Outlook 2018; Technical Report; IEA: Paris, France, 2020.
27. Foote, A.; Onar, O.C. A review of high-power wireless power transfer. In Proceedings of the 2017 IEEE Transportation and

Electrification Conference and Expo, ITEC 2017, Chicago, IL, USA, 22–24 June 2017; Institute of Electrical and Electronics
Engineers Inc.: New York City, NY, USA, 2017; pp. 234–240.

28. FastinCharge: Innovative Fast Inductive Charging Solution for Electric Vehicles. Available online: https://cordis.europa.eu/
project/id/314284/reporting/es (accessed on 1 February 2021).

29. Eltis. Wireless Charging for Quiet and Clean Public Transport in Torino (Italy). Available online: https://www.eltis.org/discover/
case-studies/wireless-charging-quiet-and-clean-public-transport-torino-italy (accessed on 22 January 2021).

30. Final Report Summary—UNPLUGGED (Wireless Charging for Electic Vehicles)|Report Summary|UNPLUGGED|FP7|CORDIS|
European Commission. Available online: https://cordis.europa.eu/project/id/314126/reporting/es (accessed on 25 January 2021).

31. Fabric. Fabric EU Project. Available online: http://www.fabric-project.eu/www.fabric-project.eu/index.html(accessed on 1
February 2021).

32. Smartroad Gotland. Available online: https://www.smartroadgotland.com/ (accessed on 1 February 2021).
33. Nguyen, D.H. Electric vehicle—Wireless charging-discharging lane decentralized peer-to-peer energy trading. IEEE Access 2020,

8, 179616–179625. [CrossRef]
34. Triviño-Cabrera, A.; Aguado, J.; González, J. Analytical characterisation of magnetic field generated by ICPT wireless charger.

Electron. Lett. 2017, 53, 871–873. [CrossRef]
35. Boys, J.T.; Covic, G.A. The Inductive Power Transfer Story at the University of Auckland. IEEE Circuits Syst. Mag. 2015, 15, 6–27.

[CrossRef]
36. Mohammad, M.; Choi, S.; Elbuluk, M.E. Loss Minimization Design of Ferrite Core in a DD-Coil-Based High-Power Wireless

Charging System for Electrical Vehicle Application. IEEE Trans. Transp. Electrif. 2019, 5, 957–967. [CrossRef]
37. Panchal, C.; Stegen, S.; Lu, J. Review of static and dynamic wireless electric vehicle charging system. Eng. Sci. Technol. Int. J. 2018,

21, 922–937. [CrossRef]
38. Wojda, R.; Kazimierczuk, M. Winding resistance of litz-wire and multi-strand inductors. IET Power Electron. 2012, 5, 257.

[CrossRef]
39. Wang, C.S.; Covic, G.A.; Stielau, O.H. Investigating an LCL load resonant inverter for inductive power transfer applications.

IEEE Trans. Power Electron. 2004, 19, 995–1002. [CrossRef]
40. Hao, H.; Covic, G.A.; Boys, J.T. An approximate dynamic model of LCL-T-based inductive power transfer power supplies. IEEE

Trans. Power Electron. 2014, 29, 5554–5567. [CrossRef]
41. Keeling, N.A.; Covic, G.A.; Boys, J.T. A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron.

2010, 57, 744–751. [CrossRef]
42. Madawala, U.K.; Thrimawithana, D.J. A bidirectional inductive power interface for electric vehicles in V2G systems. IEEE Trans.

Ind. Electron. 2011, 58, 4789–4796. [CrossRef]
43. Villa Gazulla, J.L. Sistemas de Transferencia de Energía Para Vehículos Eléctricos Mediante Acoplamiento Inductivo—Repositorio

Institucional de Documentos. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2009.
44. Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and Alignment Methodology; International Standard SAE J2954 202010;

SAE International: Warrendale, PA, USA, 2020.
45. Hazra, S.; De, A.; Cheng, L.; Palmour, J.; Schupbach, M.; Hull, B.A.; Allen, S.; Bhattacharya, S. High Switching Performance of

1700-V, 50-A SiC Power MOSFET over Si IGBT/BiMOSFET for Advanced Power Conversion Applications. IEEE Trans. Power
Electron. 2016, 31, 4742–4754.

46. González-González, J.; Triviño-Cabrera, A.; Aguado, J.; González-González, J.M.; Triviño-Cabrera, A.; Aguado, J.A. Design
and Validation of a Control Algorithm for a SAE J2954-Compliant Wireless Charger to Guarantee the Operational Electrical
Constraints. Energies 2018, 11, 604. [CrossRef]

47. Triviño-Cabrera, A.; Ochoa, M.; Fernández, D.; Aguado, J.A. Independent primary-side controller applied to wireless chargers
for electric vehicles. In Proceedings of the 2014 IEEE International Electric Vehicle Conference, IEVC 2014, Florence, Italy, 17–19
December 2014; Institute of Electrical and Electronics Engineers Inc.: New York City, NY, USA, 2014.

48. Thrimawithana, D.J.; Madawala, U.K. A primary side controller for inductive power transfer systems. In Proceedings of the
IEEE International Conference on Industrial Technology, Via del Mar, Chile, 14–17 March 2010; pp. 661–666.

https://witricity.com/
https://www.bombardier.com/en/media/newsList/details.bombardier-transportation20150318ebusberlinabsommerfaehrtdielini.bombardiercom.html?filter-bu=tran
https://www.bombardier.com/en/media/newsList/details.bombardier-transportation20150318ebusberlinabsommerfaehrtdielini.bombardiercom.html?filter-bu=tran
https://www.bombardier.com/en/media/newsList/details.bombardier-transportation20150318ebusberlinabsommerfaehrtdielini.bombardiercom.html?filter-bu=tran
http://dx.doi.org/10.1109/TIE.2016.2574993
https://cordis.europa.eu/project/id/314284/reporting/es
https://cordis.europa.eu/project/id/314284/reporting/es
https://www.eltis.org/discover/case-studies/wireless-charging-quiet-and-clean-public-transport-torino-italy
https://www.eltis.org/discover/case-studies/wireless-charging-quiet-and-clean-public-transport-torino-italy
https://cordis.europa.eu/project/id/314126/reporting/es
http://www.fabric-project.eu/www.fabric-project.eu/index.html
https://www.smartroadgotland.com/
http://dx.doi.org/10.1109/ACCESS.2020.3027832
http://dx.doi.org/10.1049/el.2017.0968
http://dx.doi.org/10.1109/MCAS.2015.2418972
http://dx.doi.org/10.1109/TTE.2019.2940878
http://dx.doi.org/10.1016/j.jestch.2018.06.015
http://dx.doi.org/10.1049/iet-pel.2010.0359
http://dx.doi.org/10.1109/TPEL.2004.830098
http://dx.doi.org/10.1109/TPEL.2013.2293138
http://dx.doi.org/10.1109/TIE.2009.2027255
http://dx.doi.org/10.1109/TIE.2011.2114312
http://dx.doi.org/10.3390/en11030604


Energies 2021, 14, 1547 19 of 21

49. Miller, J.M.; Onar, O.C.; Chinthavali, M. Primary-side power flow control of wireless power transfer for electric vehicle charging.
IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 147–162. [CrossRef]

50. Omori, H.; Iga, Y.; Morizane, T.; Kimura, N.; Nakagawa, K.; Nakaoka, M. A novel wireless EV charger using SiC single-ended
quasi-resonant inverter for home use. In Proceedings of the 15th International Power Electronics and Motion Control Conference
and Exposition, EPE-PEMC 2012 ECCE Europe, Novi Sad, Serbia, 4–6 September 2012.

51. Deng, Q.; Wang, Z.; Chen, C.; Czarkowski, D.; Kazimierczuk, M.K.; Zhou, H.; Hu, W. Modeling and control of inductive power
transfer system supplied by multiphase phase-controlled inverter. IEEE Trans. Power Electron. 2019, 34, 9303–9315. [CrossRef]

52. Vu, V.B.; Dahidah, M.; Pickert, V.; Phan, V.T. A High-Power Multiphase Wireless Dynamic Charging System with Low Output
Power Pulsation for Electric Vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3592–3608. [CrossRef]

53. Gonzalez-Gonzalez, J.M.M.; Trivino, A.; Aguado, J.A. Model Predictive Control to Maximize the Efficiency in EV Wireless
Chargers. IEEE Trans. Ind. Electron. 2021, 1. [CrossRef]

54. Wu, H.H.; Gilchrist, A.; Sealy, K.D.; Bronson, D. A high efficiency 5 kW inductive charger for EVs using dual side control. IEEE
Trans. Ind. Inform. 2012, 8, 585–595. [CrossRef]

55. Murliky, L.; Porto, R.W.; Brusamarello, V.J.; Rangel de Sousa, F.; Triviño-Cabrera, A. Active Tuning of Wireless Power Transfer
System for compensating coil misalignment and variable load conditions. AEU Int. J. Electron. Commun. 2020, 119, 153166.
[CrossRef]

56. Zucca, M.; Cirimele, V.; Bruna, J.; Signorino, D.; Laporta, E.; Colussi, J.; Angel, M.; Tejedor, A.; Fissore, F.; Pogliano, U. Assessment
of the Overall Efficiency in WPT Stations for Electric Vehicles. Sustainability 2021, 13, 2436. [CrossRef]

57. Zhang, B.; Carlson, R.B.; Smart, J.G.; Dufek, E.J.; Liaw, B. Challenges of future high power wireless power transfer for light-duty
electric vehicles—technology and risk management. eTransportation 2019, 2, 100012. [CrossRef]

58. Qualcomm. Qualcomm Halo—Frequently Asked Questions. 2012. Available online: https://www.qualcomm.com/media/
documents/files/wireless-charging-for-electric-vehicles-faq.pdf (accessed on 23 February 2021).

59. Electric Vehicle Wireless Power Transfer (WPT) Systems—Part 3: Specific Requirements for the Magnetic Field Wireless Power Transfer
Systems; Technical Specification IEC TS 61980-3:2019; International Electrotechnical Committee: Geneva, Switzerland, 2019.

60. Electrically Propelled Road Vehicles—Magnetic Field Wireless Power Transfer—Safety and Interoperability Requirements; Standard ISO
19363:2020; International Organization for Standardization: Geneva, Switzerland, 2020.

61. Sinha, S.; Kumar, A.; Regensburger, B.; Afridi, K.K. A New Design Approach to Mitigating the Effect of Parasitics in Capacitive
Wireless Power Transfer Systems for Electric Vehicle Charging. IEEE Trans. Transp. Electrif. 2019, 5, 1040–1059. [CrossRef]

62. Lu, K.; Nguang, S.K.; Ji, S.; Wei, L. Design of auto frequency tuning capacitive power transfer system based on class-E2 dc/dc
converter. IET Power Electron. 2017, 10, 1588–1595. [CrossRef]

63. Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. A Four-Plate Compact Capacitive Coupler Design and LCL-Compensated
Topology for Capacitive Power Transfer in Electric Vehicle Charging Application. IEEE Trans. Power Electron. 2016, 31, 8541–8551.

64. Zhang, H.; Lu, F.; Hofmann, H.; Liu, W.; Mi, C.C. Six-Plate Capacitive Coupler to Reduce Electric Field Emission in Large Air-Gap
Capacitive Power Transfer. IEEE Trans. Power Electron. 2018, 33, 665–675. [CrossRef]

65. Vu, V.B.; Dahidah, M.; Pickert, V.; Phan, V.T. An Improved LCL-L Compensation Topology for Capacitive Power Transfer in
Electric Vehicle Charging. IEEE Access 2020, 8, 27757–27768. [CrossRef]

66. Dai, J.; Ludois, D.C. Capacitive Power Transfer Through a Conformal Bumper for Electric Vehicle Charging. IEEE J. Emerg. Sel.
Top. Power Electron. 2016, 4, 1015–1025. [CrossRef]

67. Choi, J.; Tsukiyama, D.; Tsuruda, Y.; Davila, J.M.R. High-Frequency, High-Power Resonant Inverter With eGaN FET for Wireless
Power Transfer. IEEE Trans. Power Electron. 2018. 33, 1890–1896. [CrossRef]

68. Li, K.; Evans, P.; Johnson, M. SiC and GaN power transistors switching energy evaluation in hard and soft switching conditions.
In Proceedings of the WiPDA 2016—4th IEEE Workshop on Wide Bandgap Power Devices and Applications, Fayetteville, AR,
USA, 7–9 November 2016; Institute of Electrical and Electronics Engineers Inc.: New York City, NY, USA, 2016; pp. 123–128.

69. Shah, F.M.; Xiao, H.M.; Li, R.; Awais, M.; Zhou, G.; Bitew, G.T. Comparative performance evaluation of temperature dependent
characteristics and power converter using GaN, SiC and Si power devices. In Proceedings of the 2018 IEEE 12th International
Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2018, Doha, Qatar, 10–12 April 2018;
Institute of Electrical and Electronics Engineers Inc.: New York City, NY, USA, 2018; pp. 1–7.

70. Mostafa, T.; Bui, D.; Muharam, A.; Hattori, R.; Hu, A. Capacitive Power Transfer System with Reduced Voltage Stress and Sensitivity.
Appl. Sci. 2018, 8, 1131. [CrossRef]

71. Yusop, Y.; Saat, S.; Husin, H.; Nguang, S.K.; Hindustan, I. Analysis of Class-E LC Capacitive Power Transfer System. Energy
Procedia 2016, 100, 287–290. [CrossRef]

72. Luo, B.; Mai, R.; Shi, R.; He, Z. Analysis and designed of three-phase capacitive coupled wireless power transfer for high power
charging system. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition—APEC, San Antonio, TX, USA,
4–8 March 2018; Institute of Electrical and Electronics Engineers Inc.: New York City, NY, USA, 2018; Volume 2018, pp. 1369–1374.

73. Lu, F.; Zhang, H.; Hofmann, H.; Mi, C. A Double-Sided LCLC-Compensated Capacitive Power Transfer System for Electric
Vehicle Charging. IEEE Trans. Power Electron. 2015, 30, 6011–6014. [CrossRef]

74. Vincent, D.; Huynh, P.S.; Azeez, N.A.; Patnaik, L.; Williamson, S.S. Evolution of Hybrid Inductive and Capacitive AC Links for
Wireless EV Charging—A Comparative Overview. IEEE Trans. Transp. Electrif. 2019, 5, 1060–1077. [CrossRef]

http://dx.doi.org/10.1109/JESTPE.2014.2382569
http://dx.doi.org/10.1109/TPEL.2018.2886846
http://dx.doi.org/10.1109/JESTPE.2019.2932302
http://dx.doi.org/10.1109/TIE.2021.3057006
http://dx.doi.org/10.1109/TII.2012.2192283
http://dx.doi.org/10.1016/j.aeue.2020.153166
http://dx.doi.org/10.3390/su13052436
http://dx.doi.org/10.1016/j.etran.2019.100012
https://www.qualcomm.com/media/documents/files/wireless-charging-for-electric-vehicles-faq.pdf
https://www.qualcomm.com/media/documents/files/wireless-charging-for-electric-vehicles-faq.pdf
http://dx.doi.org/10.1109/TTE.2019.2931869
http://dx.doi.org/10.1049/iet-pel.2016.0655
http://dx.doi.org/10.1109/TPEL.2017.2662583
http://dx.doi.org/10.1109/ACCESS.2020.2971961
http://dx.doi.org/10.1109/JESTPE.2015.2505622
http://dx.doi.org/10.1109/TPEL.2017.2740293
http://dx.doi.org/10.3390/app8071131
http://dx.doi.org/10.1016/j.egypro.2016.10.179
http://dx.doi.org/10.1109/TPEL.2015.2446891
http://dx.doi.org/10.1109/TTE.2019.2923883


Energies 2021, 14, 1547 20 of 21

75. Murata Manufacturing Co. Ltd. Capacitive Coupling Wireless Power Transmission System. 2011. Available online: https://corporate.
murata.com/en-eu/about/newsroom/techmag/metamorphosis16/productsmarket/wireless?intcid5=com_xxx_xxx_cmn_hd_xxx
(accessed on 24 February 2021).

76. Solace Power. Intelligent Wireless Power, Sense & Data Solutions. Available online: https://www.solace.ca/technology (accessed
on 24 February 2021).

77. Li, X.; Zhou, J.Z.; Zhang, Y.Q. Performance of Planar Arrays for Microwave Power Transmission with Phase Shifter Errors; Fifth Asia
International Symposium on Mechatronics (AISM 2015) Technology, IET Conference Publications: Stevenage, UK 2015; Volume
2015, In Proceedings of the 2015 Fith Asia International Symposium on Mechatronics, Guilin, China, 7–10 October 2015.

78. Hung, N.D.; Sugamuna, S.; Shimamura, K.; Mori, K. Millimeter Wave Power Transfer to an Autonomously Controlled Micro
Aerial Vehicle. Trans. Jpn. Soc. Aeronaut. Space Sci. 2020, 63, 101–108.

79. Powercastco. Wireless Power Products. Available online: https://www.powercastco.com/ (accessed on 1 February 2021).
80. Cota: Real Wireless Power. Available online: https://www.ossia.com/cota/ (accessed on 1 February 2021).
81. Energous. WattUp® Wire-Free Charging Technology. Available online: http://energous.com/ (accessed on 1 February 2021).
82. Nakagawa, S.; Yamanaka, Y.; Ohdo, K.; Miyasaka, J.; Shimizu, H.; Nakashima, H.; Hashimoto, K.; Shinohara, N.; Mitani, T.

Development of an Electric Vehicle by Microwave Power Transmission. IFAC Proc. Vol. 2010, 3, 209–214. [CrossRef]
83. Shanbhag, P.; Sabarish Narayanan, B. Coir Composite Based Electronics for Microwave Charging of Electric Vehicles. Mater.

Today Proc. 2020, 24, 177–183. [CrossRef]
84. Sasaki, S.; Tanaka, K. Wireless power transmission technologies for solar power satellite. In Proceedings of the 2011 IEEE MTT-S

International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications,
Kyoto, Japan, 12–13 May 2011; pp. 3–6.

85. Nako, S.; Okuda, K.; Miyashiro, K.; Komurasaki, K.; Koizumi, H. Wireless power transfer to a microaerial vehicle with a
microwave active phased array. Int. J. Antennas Propag. 2014, 2014, 374543. [CrossRef]

86. Jin, Y.; Xu, J.; Wu, S.; Xu, L.; Yang, D. Enabling the Wireless Charging via Bus Network: Route Scheduling for Electric Vehicles.
IEEE Trans. Intell. Transp. Syst. 2020, 22, 1827–1839. [CrossRef]

87. Duncan, K.J. Laser based power transmission: Component selection and laser hazard analysis. In Proceedings of the IEEE PELS
Workshop on Emerging Technologies: Wireless Power, WoW 2016, Knoxville, TN, USA, 4–6 october 2016; Institute of Electrical
and Electronics Engineers Inc.: New York City, NY, USA, 2016; pp. 100–103.

88. Gibbs, Y. NASA. Dryden Fact Sheets—Beamed Laser Power, 2014. Available online: https://www.nasa.gov/centers/armstrong/
news/FactSheets/FS-087-DFRC.html (accessed on 1 February 2021).

89. Achtelik, M.C.; Stumpf, J.; Gurdan, D.; Doth, K.M. Design of a flexible high performance quadcopter platform breaking the MAV
endurance record with laser power beaming. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, San Francisco, CA, USA, 25–30 September 2011; Institute of Electrical and Electronics Engineers (IEEE): New York
City, NY, USA, 2011; pp. 5166–5172.

90. Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy manage-
ment: Solutions, strategies, and prospects. Appl. Energy 2019, 225, 113823. [CrossRef]

91. Zhou, W.; Jin, K. Efficiency Evaluation of Laser Diode in Different Driving Modes for Wireless Power Transmission. IEEE Trans.
Power Electron. 2015, 30, 6237–6244. [CrossRef]

92. Vu, B.; Gonzalez-Gonzalez, J.M.; Pickert, V.; Dahidah, M.; Trivino, A. A hybrid charger of conductive and inductive modes for
Electric Vehicles. IEEE Trans. Ind. Electron. 2020. [CrossRef]

93. Mohamed, A.A.S.; Meintz, A.; Schrafel, P.; Calabro, A. Testing and Assessment of EMFs and Touch Currents From 25-kW IPT
System for Medium-Duty EVs. IEEE Trans. Veh. Technol. 2019, 68, 7477–7487. [CrossRef]

94. Qian, Z.; Yan, R.; Wu, J.; He, X. Full-Duplex High-Speed Simultaneous Communication Technology for Wireless EV Charging.
IEEE Trans. Power Electron. 2019, 34, 9369–9373. [CrossRef]

95. Kumar, M.S.; Revankar, S.T. Development scheme and key technology of an electric vehicle: An overview. Renew. Sustain. Energy
Rev. 2017, 70, 1266–1285. [CrossRef]

96. Chow, J.P.W.; Chung, H.S.H.; Cheng, C.S. Online regulation of receiver-side power and estimation of mutual inductance in
wireless inductive link based on transmitter-side electrical information. In Proceedings of the IEEE Applied Power Electronics
Conference and Exposition—APEC, Long Beach, CA, USA, 20–24 March 2016; Institute of Electrical and Electronics Engineers
Inc.: New York City, NY, USA, 2016; Volume 2016, pp. 1795–1801.

97. Triviño-Cabrera, A.; Lin, Z.; Aguado, J. Impact of Coil Misalignment in Data Transmission over the Inductive Link of an EV
Wireless Charger. Energies 2018, 11, 538. [CrossRef]

98. Tajmohammadi, M.; Mazinani, S.M.; Nikooghadam, M.; Al-Hamdawee, Z. LSPP: Lightweight and Secure Payment Protocol for
Dynamic Wireless Charging of Electric Vehicles in Vehicular Cloud. IEEE Access 2019, 7, 148424–148438. [CrossRef]

99. Abdollah Mirbozorgi, S.; Bahrami, H.; Sawan, M.; Gosselin, B. A smart multicoil inductively coupled array for wireless power
transmission. IEEE Trans. Ind. Electron. 2014, 61, 6061–6070. [CrossRef]

100. Hwang, K.; Park, J.; Kim, D.; Park, H.H.; Kwon, J.H.; Kwak, S.I.; Ahn, S. Autonomous coil alignment system using fuzzy steering
control for electric vehicles with dynamic wireless charging. Math. Probl. Eng. 2015, 2015, 205285. [CrossRef]

101. Jeong, S.Y.; Thai, V.X.; Park, J.H.; Rim, C.T. Self-Inductance-Based Metal Object Detection with Mistuned Resonant Circuits and
Nullifying Induced Voltage for Wireless EV Chargers. IEEE Trans. Power Electron. 2019, 34, 748–758. [CrossRef]

https://corporate.murata.com/en-eu/about/newsroom/techmag/metamorphosis16/productsmarket/wireless?intcid5=com_xxx_xxx_cmn_hd_xxx
https://corporate.murata.com/en-eu/about/newsroom/techmag/metamorphosis16/productsmarket/wireless?intcid5=com_xxx_xxx_cmn_hd_xxx
https://www.solace.ca/technology
https://www.powercastco.com/
https://www.ossia.com/cota/
http://energous.com/
http://dx.doi.org/10.3182/20101206-3-JP-3009.00036
http://dx.doi.org/10.1016/j.matpr.2020.04.265
http://dx.doi.org/10.1155/2014/374543
http://dx.doi.org/10.1109/TITS.2020.3023695
https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-087-DFRC.html
https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-087-DFRC.html
http://dx.doi.org/10.1016/j.apenergy.2019.113823
http://dx.doi.org/10.1109/TPEL.2015.2411279
http://dx.doi.org/10.1109/TIE.2020.3042162
http://dx.doi.org/10.1109/TVT.2019.2920827
http://dx.doi.org/10.1109/TPEL.2019.2909303
http://dx.doi.org/10.1016/j.rser.2016.12.027
http://dx.doi.org/10.3390/en11030538
http://dx.doi.org/10.1109/ACCESS.2019.2946241
http://dx.doi.org/10.1109/TIE.2014.2308138
http://dx.doi.org/10.1155/2015/205285
http://dx.doi.org/10.1109/TPEL.2018.2813437


Energies 2021, 14, 1547 21 of 21

102. Pavo, J.; Badics, Z.; Bilicz, S.; Gyimothy, S. Efficient Perturbation Method for Computing Two-Port Parameter Changes Due to
Foreign Objects for WPT Systems. IEEE Trans. Magn. 2018, 54, 7204604. [CrossRef]

103. Janjic, A.; Velimirovic, L.; Stankovic, M.; Petrusic, A. Commercial electric vehicle fleet scheduling for secondary frequency control.
Electr. Power Syst. Res. 2017, 147, 31–41. [CrossRef]

104. Hoehne, C.G.; Chester, M.V. Optimizing plug-in electric vehicle and vehicle-to-grid charge scheduling to minimize carbon
emissions. Energy 2016, 115, 646–657. [CrossRef]

105. Tabatabaee, S.; Mortazavi, S.S.; Niknam, T. Stochastic scheduling of local distribution systems considering high penetration of
plug-in electric vehicles and renewable energy sources. Energy 2017, 121, 480–490. [CrossRef]

106. Triviño-Cabrera, A.; Aguado, J.A.; Torre, S.d.l. Joint routing and scheduling for electric vehicles in smart grids with V2G. Energy
2019, 175, 113–122. [CrossRef]

107. Yang, C.; Lou, W.; Yao, J.; Xie, S. On Charging Scheduling Optimization for a Wirelessly Charged Electric Bus System. IEEE Trans.
Intell. Transp. Syst. 2018, 19, 1814–1826. [CrossRef]

108. Li, C.; Ding, T.; Liu, X.; Huang, C. An Electric Vehicle Routing Optimization Model with Hybrid Plug-In and Wireless Charging
Systems. IEEE Access 2018, 6, 27569–27578. [CrossRef]

http://dx.doi.org/10.1109/TMAG.2017.2771511
http://dx.doi.org/10.1016/j.epsr.2017.02.019
http://dx.doi.org/10.1016/j.energy.2016.09.057
http://dx.doi.org/10.1016/j.energy.2016.12.115
http://dx.doi.org/10.1016/j.energy.2019.02.184
http://dx.doi.org/10.1109/TITS.2017.2740329
http://dx.doi.org/10.1109/ACCESS.2018.2832187

	Introduction
	Charging Operation Modes: Static, Stationary and Dynamic
	WPT Technologies
	Magnetic Resonant WPT
	Capacitive WPT
	Microwave Power Transfer
	Optical WPT
	Comparison
	Safety Issues 

	Additional Technologies for EVs Wireless Charge
	Conclusions
	References

