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Abstract: Effectively transporting drilled cuttings to the surface is a vital part of the well construc-
tion process. Usually, mechanistic models are used to estimate the cuttings concentration during
drilling. Based on the results from these model, operational parameters are adjusted to mitigate any
nonproductive time events such as pack-off or lost circulation. However, these models do not capture
the underlying complex physics completely and frequently require updating the input parameters,
which is usually performed manually. To address this, in this study, a data-driven modeling approach
is taken and evaluated together with widely used mechanistic models. Artificial neural networks
are selected after several trials. The experimental data collected at The University of Tulsa–Drilling
Research Projects (in the last 40 years) are used to train and validate the model, which includes a
wide range of wellbore and pipe sizes, inclinations, rate-of-penetration values, pipe rotation speeds,
flow rates, and fluid and cuttings properties. It is observed that, in many cases, the data-driven
model significantly outperforms the mechanistic models, which provides a very promising direction
for real-time drilling optimization and automation. After the neural network is proven to work
effectively, an optimization attempt to estimate flow rate and pipe rotation speed is introduced using
a genetic algorithm. The decision is made considering minimizing the required total energy for this
process. This approach may be used as a design tool to identify the required flow rate and pipe
rotation speed to acquire effective hole cleaning while consuming minimal energy.

Keywords: cuttings transport; artificial neural networks; optimization; hole cleaning; machine
learning; data driven

1. Introduction

In recent years, the energy industry has showed significant interest in the digitization
of well construction processes for improved safety and cost reduction. To achieve that,
robust and accurate modeling of physical processes is essential, and especially modeling
cuttings transport is important to safely and successfully drill wells.

Most commonly, mechanistic models are used to estimate the cuttings concentration
in wellbores. These models are used during the design and execution phases of operations.
Based on the simulation results from the mechanistic model, several decisions can be made
to alleviate potential hole cleaning problems. For example, the pump’s flow rate and the
drill string’s rotation speed can be adjusted to mitigate nonproductive time (NPT) events.
An NPT event can be a pack-off leading to a stuck pipe due to elevated cuttings accumu-
lation around the bottomhole assembly (BHA), or it can be induced lost circulation due
to elevated equivalent circulating density (ECD) in the presence of high concentrations of
cuttings. Lost circulation can easily transform into a catastrophic blowout event. Therefore,
it is important to model and monitor the cuttings concentration in the wellbore.
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Up until now, these mechanistic models were useful; however, there are some inherent
shortcomings to these models. First, a mechanistic model can be inaccurate because it
is unlikely to perfectly model the complex physical interactions associated with cuttings
transport. These include the effects of pipe rotation, eccentricity, inclination, chemical
interactions, fluid and cuttings properties, etc. Additionally, mechanistic models frequently
require updating the input parameters. Some of these parameters, such as geometry,
trajectory, and fluid properties, may be extracted from daily drilling reports. However,
there are a lot of manual measurement steps required to collect these inputs and a human
operator is needed to input and maintain the model parameters [1]. This manual process is
a major challenge that prevents streamlining well construction operations.

In this study, an alternative, data-driven modeling approach is taken with the aim to
overcome the shortcomings of mechanistic models. After various trials, an artificial neural
network model is used. The model is applied to the experimental datasets collected at The
University of Tulsa—Drilling Research Projects (TUDRP). These datasets were collected
through the experimental research projects conducted in the last 40 years, which include a
wide spectrum of wellbore and pipe sizes, inclinations, rate-of-penetration (ROP) values,
pipe rotation speeds, flow rates, and fluid and cuttings properties. The performance of the
proposed model is compared with existing mechanistic models by comparing the results
with the experimental datasets. The results show that, especially for this particular research
area, the data-driven model performs significantly better. Finally, using this model, a
genetic algorithm is applied to determine the optimal flow rate and pipe rotation speed.
The decision is made considering the minimum required energy for this process.

Data-driven models are more practical to implement and show the potential to over-
come the disadvantages of the mechanistic model by providing better accuracy and re-
quiring fewer manual inputs. Therefore, data-driven models can be a better candidate in
the act of digitizing the well construction process. In addition, to the best of the authors’
recollection, there is no optimization attempt reported in the literature regarding flow rate
and rotation speed considering cuttings transport performance based on a quantitative
function defined to be minimized using a machine learning technique.

The paper structure is organized as follows: After this brief introduction, existing
relevant studies in the literature are presented in the Literature Review section along
with machine learning and genetic algorithm-related topics. The results are analyzed and
discussed in the Results and Discussions section. Finally, the conclusions are provided in
the last section. In the Appendix, basic working structures of neural networks and genetic
algorithms are introduced along with the particular network parameters used in the study.

2. Literature Review

Mechanistic and computational fluid dynamics (CFD) models for cuttings transport
are very important because there is no direct measurement of cuttings deposition during
drilling wells. The cuttings deposition is usually inferred by interpreting a multitude
of sensory measurements (i.e., standpipe pressure, hook load, etc.), which are prone to
human error. Therefore, the operations need to rely on simulations from these models.
However, there is only a limited amount of literature, especially about data-driven models
for cuttings transport. In this section, some literature about various modeling approaches
for cuttings transport is presented.

Cayeux et al. [2] proposed a real-time, transient cuttings transport model that can
calculate the distribution of cuttings along the wellbore. They applied this model to datasets
that are from actual drilling operations and demonstrated the model’s usability cases with
these two case studies. A good match between the surface measurements, observations,
and model’s prediction was attained.

Erge and van Oort [3] introduced a new cuttings transport modeling approach in-
cluding the effects of rotation and eccentricity. The proposed model was developed by
constructing 3D velocity profiles and by comparing the local velocities to a local critical
velocity definition to estimate the cuttings deposition along the trajectory of the wellbore.
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Then, they introduced time-dependency into the proposed model and demonstrated the
model’s capabilities using an actual drilling dataset with a stuck pipe event that occurred
due to cuttings pack-off. The results showed fair agreement between the model’s prediction
and the data [4,5].

Ozbayoglu et al. [6] conducted a comparative analysis using physics-based and data-
driven models for estimating the frictional pressure losses in an annulus. The results
showed that the data-driven model more accurately captured the complex dynamics
especially while the drill string was compressed and rotating.

Ozbayoglu et al. [7] developed a new cuttings-transport mechanistic model that
includes the effects of drill-pipe rotation and eccentricity. The model can estimate the
volumetric distribution phases in three-phase flow and the pressure losses in the horizon-
tal sections. Additionally, they conducted experiments involving three-phase flow and
compared the results from the mechanistic model to the experimental data. They noted a
good agreement between them.

Ozbayoglu et al. [8] conducted cuttings transport experiments for a wide range of
flow rates, cuttings injection rates, and inner pipe rotation speeds. Additionally, they
recorded these experiments via a high-speed digital camera. They implemented an image
processing algorithm to extract some characteristic information about cuttings transport
during these experiments, such as the concentration of moving particles, their relative
transport velocities, etc. These parameters were used as inputs to the mechanistic model
and, in doing so, the performance of the mechanistic model improved significantly.

Tombul et al. [9] applied several data-driven models (linear and nonlinear regression,
support vector regression (SVR), support vector machine (SVM), and artificial neural
networks (ANN)) to predict the velocity and direction of the cuttings using experimental
data collected via a particle image velocimeter. The experimental test matrix included a
distinct rate of penetration values, inclinations, rotation speeds, and flow rates. They noted
that SVM performed better when estimating the direction of the cuttings and that SVR
better predicted velocity.

Zamora et al. [10] and, later, Friedheim and Contreras [11] presented a cuttings trans-
port model that combines an analytical model, a fuzzy logic technique, and experimental
data. The results of their model were presented under four categories ranging from “very
good” to “poor” hole cleaning. They stated that this type of data-driven modeling is well
suited for implementation and use during real-time operations, which is also verified in
this present study.

Aggwu et al. [12] presented a comprehensive literature review of experimental, numer-
ical, and artificial intelligence (AI) modeling studies on cuttings settling velocity research.
They concluded that AI techniques provide a unique way to model the cuttings settling
velocity and that a variety should be investigated to determine the most relevant technique
for this field of research. In a more recent study, Aggwu et al. [13] applied ANN to esti-
mate the cuttings settling velocity considering the cuttings shape, size, and density and
the drilling fluid’s viscosity and density. They mentioned that, generally, physics-based
models assume cuttings shape to be a perfect sphere. This assumption causes the model
to be inaccurate in actual conditions. In contrast, they demonstrated that the ANN model
can capture the effect of the cuttings shape and can provide more accurate estimations of
cuttings settling velocity in comparison to physics-based, correlation-type models.

Al-Azani et al. [14] used SVM to estimate the cuttings concentration in the wellbore
by correlating it with the drilling fluid properties and the drilling parameters such as the
pump rate, rotation speed, etc. In a later study [15], they extended the initial work by
incorporating ANN models. They trained the models using the data published by Yu
et al. [16]. It is shown that SVM provided a higher accuracy in comparison to both the
ANN model and Yu et al.’s empirical correlation. They also emphasized the benefits of
using data-driven approaches as being a good fit for real-time applications and providing
better accuracy.
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Krishna et al. [17] investigated several modeling approaches for the detection and
prediction of lost circulation events that can be caused due to various reasons including
ineffective hole cleaning. They concluded that the AI-based predictive models show
varying performance based on the scenarios and that no model simply outperforms all
others. A hybrid of AI-based models was recommended to improve the adaptability to
varying conditions and computational speed.

Kumar et al. [18] compared the pressure drop prediction performance of several ma-
chine learning methods for the flow of Herschel–Bulkley fluids in eccentric and concentric
annuli. These methods include ANN, Bayesian neural network (BNN), random forest (RF),
and SVM. They showed that RF and BNN provided a superior prediction performance in
comparison to ANN and SVM for the dataset used in their study.

Erge and van Oort [19] proposed a new hybrid modeling approach that combines
the physics-based and data-driven models to predict the standpipe pressure in well con-
struction. Several data-driven models (ANN, deep learning, and Gaussian process (GP))
were evaluated with an actual drilling dataset. The hybrid model was developed using a
rule-based stochastic hidden Markov model, which outperformed the results from purely
physics-based or data-driven models.

Xiang [20] trained an Least Squares Support Vector Machine (LS-SVM) using two
different datasets from the cuttings transport literature [21,22]. The results show good
agreement with the datasets, with an ≈8.6 relative root mean square error (RMSE).

Yongwang et al. [23] applied an ant colony algorithm to solve a two-layer cuttings
transport model with a nonlinear set of equations. Solving these equations with discrete
Newton’s method and obtaining accurate results requires good estimation of the initial
values. In contrast, the ant colony algorithm does not require the initial values and provides
an easier and more stable solution of the equations. They showed that this approach offers
fairly accurate results as well.

Shirangi et al. [24] developed a CFD model for flow in annuli including the effects of
geometry changes, drilling parameters, fluid properties, cuttings bed height, and inner pipe
rotation. They ran about 55,000 simulations covering a wide parameter space and used
these data points to train several data-driven models such as linear models, decision tree,
SVR, neural network, and ensemble methods. With this data-driven modeling approach,
the computationally expensive CFD simulations were replaced, and fast and accurate
predictions were achieved.

Muftuoglu [25] developed a fuzzy logic model for cuttings bed thickness estimation
during the sediment transport in annuli. It was shown that the stationary bed thickness
could be estimated with an error of about 6.81% using this approach.

Sorgun et al. [26] conducted cuttings transport experiments at a flow loop, using
water as the drilling fluid with various flow rates, inclinations, rotation speeds, and rates
of penetration. They trained a fuzzy logic model using the data points collected at the
experiments that can estimate the cuttings bed thickness. The results from the model
showed good agreement with the experiments.

Jondahl and Viumdal [27] used ultrasonic attenuation to characterize the drilling fluid
properties, such as the density, plastic viscosity, and gel strength. An ANN was trained
using these noninvasive acoustic measurements for 11 different fluids. The results from
this study showed that ANN performed better when predicting the density and did not
perform as well when predicting the viscosity or the gel strength, which is attributed to
their nonlinear behavior. To overcome this challenge, the researchers outlined their next
steps as extending the test matrix and analyzing different machine learning techniques
such as SVM.

Kelin et al. [28] presented a detailed review of cuttings transport studies from uni-
versities, research institutes, and service and research companies. They summarized
their analysis into a set of rule of thumbs to optimize cuttings transport effectiveness for
drilling operations.
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Rooki et al. [29] evaluated the use of ANN and multiple linear regression methods
to predict the cuttings concentration in a wellbore during foam drilling applications.
They compared these two data-driven methods to a mechanistic model and showed that
ANN provided an overall better accuracy with predictions. In a later study, Rooki and
Rakhshkhorshid [30] presented a radial basis function network (RBFN) method to predict
the cuttings concentration during underbalanced drilling. They compared RBFN to a more
conventional backpropagation neural network (BPNN). According to their study, RBFN
outperformed RBNN in terms of accuracy, training speed, and simplicity. In a more recent
study, Rooki et al. [31] developed an evolutionary fuzzy system (EFS) based on the genetic
learning algorithm to estimate the cuttings concentration in a wellbore while drilling with
foam. Sixty out of the 77 experimental data points were used in training, and the results
showed that EFS outperformed the ANN, adaptive neuro-fuzzy inference system (ANFIS),
and multiple linear regression methods in the remaining 17 data points that the algorithms
were tested on.

Saini et al. [32] proposed a digital twinning and reinforcement learning application for
the hole cleaning challenge. A digital twin was developed by programming a hydraulics
and a cuttings transport model that allows for rapid simulations considering the state
and drilling parameter variation in time. Given the current state, several scenarios were
evaluated with the digital twin simulations and an optimized action was selected based on
the maximum reward using a Markov reward process.

Han et al. [33] presented a state-of-the-art real-time 3D cuttings sensing system that
allows a user to monitor the condition of the wellbore. They prototyped the system and
showed that it could track the size, shape, and distribution of the cuttings. The system
could also be used to detect the cavings, which is very important for early detection and
mitigation any NPT event related to cuttings transport and wellbore instability.

Singh et al. [34] evaluated some machine learning regression techniques to predict the
pressure losses in a narrow annulus. The models were trained with the experimental data
collected at the University of Tulsa. Their results show that Lasso and Ridge regression
outperformed the principal component analysis and partial least squares regression.

Another application of ANN for wellbore hydraulics was presented by Wang and
Salehi [35]. They trained the ANN using the surface measurements and some meta-
information from 3 different wells to predict the pump pressures during drilling. The
results showed a good match between the measured and estimated pump pressures.

There are numerous studies published estimating cuttings concentration and frictional
pressure losses during cuttings transport in wells using mechanistic models as well as
empirical approaches. However, there is very limited published information available
regarding the optimization of flow rate and pipe rotation speed considering hole cleaning.
For example, Larsen et al. [36] presented an empirical model aimed at determining the
minimum required flow rate for directional wells to prevent cuttings accumulation in a
wellbore. However, the model ignores the effect of pipe rotation. Bassal [37] proposed
empirical correlations that estimate the contribution of pipe rotation on cuttings transport.

Genetic algorithms and neural networks have been used together extensively in a
variety of applications. In the majority of implementations, a genetic algorithm is utilized
to find the optimal hyperparameters of the underlying neural network, as presented in [38].
This is a natural implementation of a genetic algorithm to find the optimal solution to a
particular problem; in this case, the problem was neural network optimal hyperparame-
ter tuning.

However, in a handful of studies in the literature, neural networks were embedded
into the genetic algorithm as the fitness functions [39–46]. In one study [39], the authors
used a neural network to find the suitability of the application of a beam through a certain
angle to find the optimal set of angles for cancer patients during the application of intensity-
modulated radiotherapy treatment. Using neural networks as the fitness function was
also adopted in machining research, where the researchers of [41] used the neural network
embedded genetic algorithm to find the optimal energy efficiency during the milling
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process. It was also investigated in the product form design process in the application of
automatic industrial design [42], optimization of the determination of the amount of dye
in ultrasound assisted-dispersive liquid–liquid micro-extraction coupled with derivative
spectrophotometry [43], optimization of the pulverized coal combustion performance [44],
enhancement of the overall performance of constructed wetlands in urban areas [45], and
engine optimization of efficiency and NOx emission [46]. In a slightly different research,
the authors used neural networks to find the best fitness function for the genetic algorithm
for the machine programming problem in automatic software generation [40].

The researchers in these vastly different study areas preferred neural networks to
perform as the fitness function for the genetic algorithm due to a lack of appropriate
representation of the optimization problem with a satisfactory empirical or mechanistic
model. Our motivation in this study also aligns with this approach: to find the optimal
drilling operational values for flow rate and rotation speed (rpm) for different working
conditions. To the best of our knowledge, we have not encountered any study in the
drilling research literature that focused on finding the optimal flow rate and rpm (or any
other control parameters, for that matter) using neural network-driven genetic algorithms
(or any other evolutionary algorithm). Thus, this paper attempts to provide a methodology
to optimize the flow rate and pipe rotation speed, using a genetic algorithm as a decision
tool, but uses artificial neural networks as the basis to estimate frictional losses and cuttings
concentration while considering cuttings transport phenomena inside the wellbore.

In this paper, after providing a theoretical background regarding the machine learn-
ing techniques used in this study, followed by cuttings concentration and frictional loss
estimations using mechanistic models and ANN, a methodology using a genetic algorithm
to optimize the flow rate and pipe rotation speed is presented.

2.1. Theoretical Background

In this section, theoretical information about the models used in this study is presented
briefly, including artificial neural networks, the genetic algorithm, and mechanistic models.

The data that were used for training and optimization were collected in TUDRP
from various cuttings transport-related projects. Hence, temporal factors such as varying
operating conditions, equipment state, sensor quality, and measurement noise were all
implicitly factored into the data. This phenomena provides a safety net for the overall input
and data quality, since some of the collected data might have experienced operational or
systemic issues during data collection, which alone would not have a significant effect on
the rest of the data.

The selected data inputs are among the most commonly preferred features used
throughout the literature. Our aim was not only to precisely estimate the output parameters,
namely cuttings concentration (CC) and pressure drop (∆P/∆L), but also to assist the
predictor model in obtaining a general understanding of the dynamics of the process
and in making satisfactory and acceptable predictions under all circumstances within the
operating range.

2.1.1. Artificial Neural Networks

In this study, 2 separate multilayer perceptron neural networks were developed with
11 inputs and 1 output. Each network had 1 hidden layer with 10 neurons. “tanh” was
preferred as the activation function for ANN models. Both networks used the following
inputs: pipe outer diameter, eccentricity, fluid density, θ600, θ300, cuttings size, cuttings
density, flow rate, wellbore inclination, rate of penetration, and pipe rotation. Since
wellbore diameter was constant for all data points considered in this study, it was not
taken into consideration for ANN models. The general structure of ANN is provided
in Appendix A.1.

Network 1 was developed to predict the cuttings concentration value; therefore, the
output neuron was associated with that value. In contrast, Network 2 was developed to
predict the frictional pressure loss value.
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After both networks were trained using a backpropagation learning algorithm, the pre-
dictions of cuttings concentration and frictional pressure loss from any given set of inputs
were acquired and the system was able to perform a fairly robust and accurate forecasting.
Since there was limited data to generate the prediction model, creating an unnecessarily
complex model that would have better chances of overfitting was not desirable. Thus, a
relatively simple and universal model was preferred. We decided to keep only one hidden
layer. Moreover, 10, 15, and 20 neurons were used, and using 10 neurons resulted in the
best performance. Therefore, we decided to use 1 hidden layer with 10 neurons. However,
each topology was run several times and stored the one with the best cross validation
performance to make sure a generalized, not overfit model was acquired. Early stop of the
training was applied as soon as the cross validation (CV) error started to increase; hence,
we ensured that the proposed prediction model would behave the same for new data. The
final weights and other network topology parameters are provided in Appendix B.1.

We used two neural networks, one for estimating the cuttings concentration and the
other for pressure drop estimation. Each neural network had 11 inputs, 10 hidden neurons,
and 1 output neuron. We chose the default training parameters that Matlab preconfigured
for the fitting tool. We used Levenberg–Marquard learning for error backpropagation,
which is a relatively fast gradient descent algorithm. Since we used cross validation for
overfitting prevention, the training sessions were short. The number of epocs had a span
of 5–20 in all attempts. We trained the model 10–15 times until we were satisfied with
the training, cross validation, and testing error values. Hence, our time complexity was
proportional with the number of neurons used, i.e., O(k × c × n), where k represents the
number of epocs for training, c represents the number of training sessions, and n represents
the number of neurons in the neural network. After the training process, for the testing
stage, the process was much faster, only a single forward pass through the network for
each prediction. Hence, the time complexity was much smaller; O(n), where n represents
the number of neurons in the neural network.

2.1.2. Genetic Algorithm

In the second phase of the system, a genetic algorithm-based optimization tool was
developed that takes cuttings concentration and frictional pressure loss values acquired
from an ANN model and tunes them to find the optimal flow rate and rpm settings for
any given drilling process. In Appendix A.2. the general structure of genetic algorithms
are presented.

The reason cuttings concentration and frictional pressure loss values for fine tuning
and optimizing the flow rate and rpm are used is due to the fact that cuttings concentration
and frictional pressure loss values are dependent variables of the system. Their values can
be altered by adjusting the flow rate and rpm along with other controllable parameters;
however, the relation between the controllable parameters of the process (neural network
inputs) and the dependent variables (cuttings concentration and frictional pressure loss)
is not easily represented through a simple function. However, the neural network comes
to the rescue at this point. Hence, the cuttings concentration and frictional pressure loss
values are able to be identified fairly accurately at any given point.

Meanwhile, since we attempted to find the optimal flow rate and rpm values, the
cuttings concentration and frictional pressure loss values have to be associated with the
flow rate and rpm values. For that purpose, the genetic algorithm is used with the following
fitness function:

y = a1Cc + a2
∆P
∆L

(1)

where a1 and a2 are constants and defined based on the experimental data. The genetic
algorithm tries to minimize the y value, hence aiming to find the best cuttings concentration
and frictional pressure loss (CC and ∆P/∆L) pairs that force y to be minimal. However,
there are 2 major issues here: (i) both CC and ∆P/∆L cannot be lowered at the same
time. When CC is lowered below a certain threshold, either ∆P/∆L may increase or the
overall process may become unsustainable. Similarly, if ∆P/∆L is decreased, there are
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sustainability issues. Hence, some trade-off is needed. (ii) CC and ∆P/∆L are not control
parameters. Their values cannot be set arbitrarily. They are dependent on network inputs
including flow rate and pipe rotation speed along with other process parameters. In this
particular study, only optimization of flow rate and pipe rotation speed is of interest. In
future work, the other control parameters (i.e., fluid properties, eccentricity, etc.) can also
be optimized. As a result, CC and ∆P/∆L can be obtained through the neural network
forecaster by giving different flow rate and pipe rotation speed values. CC and ∆P/∆L are
well associated with flow rate and pipe rotation speed; hence, minimizing y makes sense
from a process perspective.

a1 and a2 are coefficients that need to be tuned for the particular process requirements.
They can also be optimized; however, in this preliminary study, we set a1 = 5000 and a2 = 1.
Hence, the flow rate (Q) and rpm can be optimized based on these fixed coefficient values.

The chromosome structure used in this study consists of 2 genes (one storing the Q
value and the other one storing the rpm value). Since there are only 2 genes, there is only
one cutoff point that can be implemented in the crossover operation (between Q and rpm
genes). In addition, mutation can change the value of Q or rpm randomly depending on
the mutation rate. During implementation, the following hyperparameter settings for the
genetic algorithm were used:

• Chromosome size: 2 genes;
• Population size: 500;
• Maximum number of generations: 100;
• Crossover rate: 0.7;
• Mutation rate: 0.001;
• Elitism rate: 0.1;
• Fitness function: as given in Equation (1).

A schematic of the genetic algorithm process is presented in Figure 1.
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It is crucial to obtain a general model for CC and ∆P/∆L predictions, since these are
the two parameters (genes) that are used by the genetic algorithm for flow rate and rpm
optimization. If CC and ∆P/∆L predictions are adequately generalizable, i.e., the neural
network is not overfit or underfit, and the optimization process will also be successful.

For the genetic algorithm, the chromosome consists of the flow rate and rpm values
and the fitness function is the linear combination of two neural network predictors (one for
cuttings concentration and one for pressure drop). The population size was chosen as 500
or 1000. The maximum number of generations was chosen as 100. Hence, the total time
complexity of the genetic algorithm is O(a × n), where a = 1000× 100× 2 and n represents
the number of neurons in each neural network.

For most practical purposes, the genetic algorithm found the optimal flow rate and
rpm values fairly quickly, since the overall time complexity was linear. Hence, it is possible
to use such a system in real-time. The genetic algorithm Matlab code that is developed for
this study is presented in Appendix B.2.
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2.1.3. Mechanistic Models

The mechanistic models used to compare the performance between the neural network
models include Zhang’s model [47] and Ozbayoglu’s model [48]. Both models were based
on the conservation of mass and momentum, and the solution was provided by using
certain constitutive equations related to hydrodynamics. In addition, the models consider
all wellbore inclinations from vertical to horizontal and the effect of pipe rotation on
hole cleaning. The major differences between these models include the methodology to
determine the flow patterns and the friction coefficients used. For the sake of not inflating
the size of this paper, detailed information regarding these models are not presented here,
but they can be found in the literature.

3. Results and Discussions

For this study, experimental data collected in the last 40 years at The University of
Tulsa—Drilling Research Projects were used. The selected database consists of 365 points,
including both cuttings concentration and frictional pressure loss data. A summary of the
data used in this study is presented in Table 1.

Table 1. A summary of the data used in this study.

Parameters Range

Wellbore Diameter 1, m (in) 0.2032 (8.0)
Pipe Outer Diameter, m (in) 0.0762–0.165 (3–6.5)

Pipe Eccentricity 0–1
Fluid Density, kg/m3 (ppg) 998–1318 (8.3–11)

Rotational Viscometer, θ600 Reading, rad (deg) 0.035–0.875 (2–50)
Rotational Viscometer, θ300 Reading, rad (deg) 0.017–0.556 (1–32)

Cuttings Diameter, m (in) 0.0015–0.003 (0.059–0.118)
Cuttings Density, kg/m3 (sp.gr.) 2595–2645 (2.5–2.7)

Flow Rate, m3/s (gpm) 0.0063–0.0347 (100–550)
Average Fluid Velocity 2, m/s (ft/s) 0.229–2.6 (0.75–8.5)

Well Inclination, rad (deg) 0–1.571 (0–90)
Rate of Penetration, m/s (ft/hr) 0.0021–0.01 (25–125)
Pipe Rotation Speed, 1/s (rpm) 0–1.571 (0–150)

Output 1: Cuttings Concentration, % 2.5–47.96
Output 2: Frictional Pressure Loss, Pa/m (psi/ft) 200.4–3381.2 (0.0088–0.1495)

Since wellbore diameter is constant for the dataset considered for this study, this term is not included for
artificial neural network (ANN) model training. 2 Not an input for the ANN model. It is listed in Table 1 for
informative purposes.

In this study, we used one of the best known and widely used machine learning classi-
fiers (multilayer perceptron (MLP)) in order to show the generalization capabilities of the
machine learning model and universal applicability of our proposed solution. Furthermore,
in a recent study [48], we compared various machine learning classifiers and MLP achieved
the best performance among others. This was another reason that we chose MLP as our
machine learning classifier in our study. We used 70% of the 365 data points in our study
for training; therefore, 255 points were used for training. We spared 15% of the data as cross
validation (55 points) and the remaining 15% as the test data (also 55 points). Partitioning
of the data was random, so the statistical distribution of each section was similar. We used
cross validation to prevent overfitting. We applied an early stop to the training as soon
as the cross validation error started to increase; hence, we made sure that our prediction
model behaved the same on new data. We made several attempts to achieve the best
all-around prediction performance on all fronts (training, CV), and test). We compared our
training errors against the cross validation and test errors. They were all in alignment and
showed similar performances.

Using this data, initially, the mechanistic models were used to acquire physical model
estimations. This was required to compare the results of the mechanistic models with
the neural network estimations. Such an analysis is expected to provide insight into
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whether the neural network method indeed is a decent approach to be used within the
optimization process.

3.1. Cuttings Concentration and Frictional Pressure Loss Determination

In this section, both mechanistic models and neural network models are compared
with the experimental results and their performances are compared.

3.1.1. Mechanistic Model Estimations

As mentioned, Ozbayoglu’s [48] and Zhang’s [47] models were used. Figures 2 and 3
show the model estimates of total cuttings concentration and frictional pressure loss
gradients versus measured values, respectively.
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When Figures 2a and 3a are compared, it can be seen that both models can estimate
the total cuttings concentration at an acceptable level. Zhang’s model seems to perform
better while estimating total cuttings concentration when compared with Ozbayoglu’s
model. The average percent differences between the measured and calculated values
for Ozbayoglu’s model and Zhang’s model are 53% and 36%, while the average relative
differences are 8% and 5%, respectively. Ozbayoglu’s model has a tendency to overestimate
the cuttings concentration, especially at lower concentrations. This may be due to the flow
pattern boundary definitions, which has room for improvement.



Energies 2021, 14, 1484 11 of 32

However, the frictional loss estimation performances are quite different, as seen in
Figures 2b and 3b. The average percent differences between the measured and calculated
values for Ozbayoglu’s model and Zhang’s model are 35% and 110%, while the average
relative differences are 370 Pa/m and 1070 Pa/m, respectively. Ozbayoglu’s model seems
to estimate the frictional losses to be slightly less than the measured values. However, more
significant discrepancies are observed in Zhang’s estimations. Considering the fact that, in
Zhang’s model, the constitutive equation coefficients (such as friction factors) are calibrated
for conventional annular geometries, i.e., Inner Diameter/Outer Diameter (ID/OD) is
around 0.5, the model performance may be lower at a narrow annulus.

Both models have significant room for improvement. Friction factors and flow pattern
boundaries can be calibrated further and modified in order to improve the performances.
However, as a result, both models provide invaluable information that is critical, especially
during the design stages.

3.1.2. Machine Learning Model Estimations

A similar analysis discussed in Section 3.1.1 was conducted using the neural network
models, and the results are presented in Figure 4.
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Figure 4a indicates a very accurate estimation of the total cuttings concentration using
the neural network model (Network 1) when compared with the measured values. The
average percent difference between the estimated and measured values of total cuttings
concentration is 14%, and relative difference is less than 2%. These numbers indicate a
superior performance of the neural network model over the mechanistic model perfor-
mances. For the cases when the cuttings concentrations in the annulus is very low, the
neural network estimates negative values for a couple of points, which are physically
meaningless. For these points, the cuttings concentrations are assumed to be very small
positive numbers for the sake of physical relevance.

The performance of the estimation of frictional pressure losses of the neural network
model (Network 2) is also impressive, as presented in Figure 4b. The average percent
difference between the estimated and measured values of total cuttings concentration
is 10%, and relative difference is less than 92 Pa/m. A summary of the comparison of
squared error analysis between the mechanistic model and ANN performances is presented
in Table 2.
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Table 2. A summary of the comparison of the squared error analysis between the mechanistic models and ANN.

Statistical
Parameters

Cuttings Concentration Frictional Pressure Loss

Mechanistic Models
ANN

Mechanistic Models
ANNOzbayoglu Zhang Ozbayoglu Zhang

Minimum 8.80 × 10−7 3.23 × 10−7 6.85 × 10−9 1.10 × 10−2 3.26 × 10−1 2.26 × 10−1

Maximum 8.37 × 10−2 7.25 × 10−2 8.48 × 10−3 3.18 × 106 6.09 × 108 4.22 × 105

Average 9.75 × 10−3 4.03 × 10−3 7.41 × 10−4 2.47 × 105 5.24 × 106 1.75 × 104

Std. Deviation 1.30 × 10−2 6.45 × 10−3 1.32 × 10−3 3.97 × 105 3.46 × 107 4.06 × 104

As seen from Table 2, ANN performance is superior when compared with the mecha-
nistic models for both cuttings concentration as well as frictional pressure loss estimations.

Although the estimations acquired by neural network models are significantly better
than the mechanistic models, there is still room for improvement. This can be obtained by
tweaking the network structure and by further training. However, the current performance
of the neural network is sufficiently successful based on the results presented in Figure 4.
Thus, the performances of the neural network models provide sufficient confidence that
they can be used in the optimization process as a tool.

3.2. Flow Rate and Pipe Rotation Speed Optimization

A flow rate and pipe rotation speed optimization attempt was introduced using the
genetic algorithm, considering effective hole cleaning while satisfying a fitness function, as
provided in Equation (1). The genetic algorithm provides the “best” flow rate for a given
rotation speed for effective hole cleaning using a fitness function and aims to minimize
cuttings concentration and frictional pressure loss (Equation (1)). Once these results were
collected, an optimization process was performed to determine the “best” flow rate and
pipe rotation speed combination while considering a cutoff cuttings concentration as a
constraint by coupling an objective function depending on flow rate and pipe rotation speed
(Equations (8) and (9)). Detailed information about this process is defined in Section 3.2.1.

For verification purposes, 6 different cases were defined based on the experimental
data. The cases selected for this study are summarized in Table 3.

Table 3. Cases considered for the analysis in this study.

Cases Well
ID (m)

Pipe OD
(m) Eccentricity

Mud
Density
(kg/m3)

θ600
(rad)

θ300
(rad)

Cuttings
Size (m)

Cuttings
Density
(kg/m3)

Inclination
(rad)

ROP
(m/s)

Case 1 0.2032 0.1651 1 998.1 0.035 0.017 0.0016 2595.0 1.571 0.0025
Case 2 0.2032 0.1143 0.62 998.1 0.035 0.017 0.0028 2644.9 1.571 0.0025
Case 3 0.2032 0.1143 0.62 1001.1 0.738 0.480 0.0030 2595.0 1.571 0.0025
Case 4 0.2032 0.1143 0 1001.1 0.875 0.542 0.0030 2595.0 1.134 0.0034
Case 5 0.2032 0.1651 1 1004.1 1.297 0.960 0.0016 2595.0 0.960 0.0041
Case 6 0.2032 0.1143 0.9 1006.5 0.532 0.367 0.0028 2644.9 0.873 0.0042

A wide range of flow rate and pipe rotation combinations were simulated using the
mechanistic models as well as neural network models for each case such that flow rate
varied from 0.00315 m3/s to 0.0536 m3/s and rotation speed varied from 0 1/s to 20.944 1/s.
Among these flow rates and pipe rotation speeds, optimal combinations of the flow rate
and pipe rotation speed were made. The methodology of how such decisions were made is
discussed in Sections 3.2.1 and 3.2.2.

After analyzing the experimental data, the optimal values for flow rate and pipe
rotation speeds were found based on visual investigation of the results for each case. At
a constant pipe rotation speed, a potential optimum flow rate is determined when the
followings are observed: (i) a sudden drop in the cuttings concentration, (ii) a sudden jump
observed in the frictional pressure loss, (iii) either the cuttings concentration or frictional
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loss reach a plateau such that further increase in flow rate does not change the results
significantly, and (iv) the change rate of either the cuttings concentration or the frictional
pressure loss starts to drop. Once the potential flow rates were determined for different
pipe rotation speeds, flow rate versus pipe rotation speed was plotted, and visually, the
optimal pipe rotation speed was found by selecting the minimum pipe rotation speed that
satisfies the condition in which the flow rate response with respect to pipe rotation increase
was not significant.

The optimal flow rates and pipe rotation speeds acquired by following the method-
ology described above for each case as well as the resulting cuttings concentration and
frictional pressure loss are presented in Table 4.

Table 4. Optimal flow rates and pipe rotation speeds, and the corresponding cuttings concentration
and frictional pressure losses observed when the experimental data were analyzed for each case.

Cases Q (m3/s) Rot. (1/s) Cc ∆P/∆L (Pa/m)

Case 1 0.0227 0 0.12 1402.3
Case 2 0.01577 4.189 0.103 357.3
Case 3 0.01735 4.189 0.1 441

Case 4 * 0.0315 10.72 0.14 474.9
Case 5 0.0221 0 0.13 3098
Case 6 0.0272 0 0.11 565.4

* Pipe rotation speed variation was very limited.

3.2.1. Optimization Function

As discussed in the previous section, determining the optimal flow rate and pipe
rotation speed considering cuttings transport efficiency and frictional pressure loss is a
challenging process. In order to make this process automated and independent from
subjectivity, a genetic algorithm methodology was introduced using a fitness function, as
given in Equation (1). The genetic algorithm is capable of determining the flow rate that
satisfies the minimum value of the fitness function for a preset rotation speed using the
fitness function ((Equation (1)) as the objective. The neural network models discussed in
Section 3.1.2 are the backbone of the process, since the cuttings concentration and frictional
pressure loss estimations are determined by using neural network models for a particular
flow rate and rotation speed. Thus, once all the runs are completed, a set of optimal
flow rate values are acquired using the genetic algorithm for various pipe rotation speeds.
However, which rotation speed and corresponding flow rate make up the true optimal
combination is not clarified at this point. In order to make this decision, a methodology
is proposed that enables us to determine the optimal flow rate and pipe rotation speeds
based on quantitative analysis rather than qualitative judgmental calls or decisions. The
main idea behind this quantification method is the total energy required for this process.
Since the variables to be optimized are flow rate and pipe rotation speed, a combination of
the energy consumption due to flow and rotation is quantified.

Hydraulic horsepower, by definition, is presented as in Equation (2) [49]:

HP = ξQP (2)

where HP is the hydraulic horsepower, Q is the flow rate, P is the pressure, and ξ is the
conversion factor. Since the frictional pressure loss is one of the main focuses regarding the
optimization process, which is also a result of the cuttings transport efficiency, hydraulic
horsepower lost due to frictional pressure losses must be determined. Frictional pressure
loss can be expressed empirically as a function of flow rate [49]:

∆Pf = cQm (3)
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where c and m are constants. Field experience shows that m takes values around 1.5–2.0.
Assuming that m = 2 and replacing P with frictional pressure loss, Equation (2) becomes

HP∆Pf = ξQ3 (4)

Considering pipe rotation, a linear relation between the rotation speed and consumed
horsepower is presented [49], such that

HProt = ζNT (5)

where N is the pipe rotation speed, T is the torque, and ζ is the conversion factor. In general,
the main contributor of the total torque is the bit, since resistance due to the cutting action
of the bit requires significant resistance to be overcome. If the portion of the torque in
consideration is isolated only due to friction between the transported cuttings and the
drill string while rotating the pipe, the horsepower required can be assumed to be directly
proportional to the pipe rotation speed, since torque required for this process will not vary
significantly and can be assumed constant. Thus, the total horsepower focused on cuttings
transport process is the combination of these two horsepower contributors: due to flow
rate and due to pipe rotation speed.

Adding up these horsepower definitions directly is not possible due to the difference
in magnitude of the two terms. Thus, a normalization process is conducted. Both flow rate
and pipe rotation speeds are divided by the maximum possible values of these variables
during operation. The maximum values can be determined by considering the operational
limits of the equipment used. For example, considering the dataset used for this study, the
test facilities where the data are collected have a maximum flow rate capacity of 0.0473
m3/s and a pipe rotation capacity of 20.944 1/s. Thus, the energy consumed due to the
circulation is calculated by

EQ ≈
(

Q
Qmax

)3
(6)

and the energy consumed due to the pipe rotation is estimated by

Erot ≈
N

Nmax
(7)

Thus, total energy consumed can be expressed as

ET1 = EQ + Erot (8)

where ET is the total energy, EQ is the energy consumed due to circulation, and Erot is the
energy due to pipe rotation. Instead of adding up the consumed energies to determine the
total energy, taking the square root after adding the squared terms is also possible.

ET2 =
√

EQ
2 + Erot2 (9)

After calculating the total energy consumed for different flow rate and pipe rota-
tion speed combinations, whichever combination provides the minimum value of total
energy consumed is considered the optimal values while considering the cutoff cuttings
concentration as a constraint. Cutoff cuttings concentration is simply the minimum cut-
tings concentration considered allowable in the annulus such that any flow rate and pipe
rotation speed combination that ends up with a cuttings concentration less than this cutoff
concentration is assumed to be “unnecessarily too high”. In this study, 2 different cutoff
concentrations are considered: 8% and 12%. Applying this methodology, the optimal
flow rate and pipe rotation speeds acquired from the genetic algorithm combined with
neural network models are presented in Tables 5–8. Tables 5 and 6 present the results when
different cuttings concentration cutoff values are used, and Tables 7 and 8 show the results
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when different values are used as the coefficient of the cuttings concentration in the fitness
function (Equation (1)). As seen in these tables, the results for both linear combinations as
well as the square root of the sum of the squares of the energy components to acquire total
energy consumed are presented.

Table 5. Optimal flow rate and pipe rotation speeds when the cutoff cuttings concentration is selected
as 8%.

Cases

ET1 =EQ+Erot ET2 =
√

EQ
2+Erot2

Q
(m3/s)

Rot.
(1/s) Cc ∆P/∆L

(Pa/m)
Q

(m3/s)
Rot.
(1/s) Cc ∆P/∆L

(Pa/m)

Case 1 0.0212 0 0.142 1272.8 0.0212 0 0.142 1272.8
Case 2 0.0244 2 0.080 330.3 0.0222 3 0.080 308.5
Case 3 0.0219 3 0.080 509.2 0.0219 3 0.080 509.2
Case 4 0.0321 0 0.080 833.1 0.0286 3 0.081 917.8
Case 5 0.0098 0 0.230 2376.0 0.0098 0 0.230 2376.0
Case 6 0.0352 0 0.104 438.9 0.0352 0 0.104 438.9

Table 6. Optimal flow rate and pipe rotation speeds when the cut-off cuttings concentration is
selected as 12%.

Cases

ET1 =EQ+Erot ET2 =
√

EQ
2+Erot2

Q
(m3/s)

Rot.
(1/s) Cc ∆P/∆L

(Pa/m)
Q

(m3/s)
Rot.
(1/s) Cc ∆P/∆L

(Pa/m)

Case 1 0.0213 0 0.141 1277.6 0.0213 0 0.141 1277.6
Case 2 0.0246 0 0.121 338.2 0.0198 2 0.120 300.2
Case 3 0.0227 1 0.116 315.7 0.02 2 0.119 300.4
Case 4 0.0321 0 0.080 833.1 0.0286 3 0.081 917.8
Case 5 0.0098 0 0.230 2376.0 0.0098 0 0.230 2376.0
Case 6 0.0352 0 0.104 438.9 0.0352 0 0.104 438.9

Table 7. Optimal flow rate and pipe rotation speeds when a1 = 5000 (Cc = 12%).

Cases

ET1 =EQ+Erot ET2 =
√

EQ
2+Erot2

Q
(m3/s)

Rot.
(1/s) Cc ∆P/∆L

(Pa/m)
Q

(m3/s)
Rot.
(1/s) Cc ∆P/∆L

(Pa/m)

Case 1 0.0213 0 0.1413 1277.6 0.0213 0 0.1413 1277.6
Case 2 0.0246 0 0.1208 338.2 0.0198 2 0.1204 300.2
Case 3 0.0227 1 0.1159 315.7 0.02 2 0.1188 300.4

Table 8. Optimal flow rate and pipe rotation speeds when a1 = 10,000 (Cc = 12%).

Cases

ET1 =EQ+Erot ET2 =
√

EQ
2+Erot2

Q
(m3/s)

Rot.
(1/s) Cc ∆P/∆L

(Pa/m)
Q

(m3/s)
Rot.
(1/s) Cc ∆P/∆L

(Pa/m)

Case 1 0.023 0 0.1213 1390.4 0.0216 1 0.1202 1240.5
Case 2 0.0246 0 0.1201 339.1 0.0198 2 0.1206 300.2
Case 3 0.02 2 0.121 536.1 0.02 2 0.121 536.1

In Table 5, where the cutoff cuttings concentration is 8%, the optimal values for the
flow rate and pipe rotation speed are tabulated for total energy consumed considering
that presented in Equations (8) and (9). A similar presentation is performed in Table 6
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while considering a cutoff concentration of 12%. From these tables, it can be seen that
the effect of flow rate on the process is slightly more emphasized when Equation (8) is
used and that pipe rotation effects are enhanced more when Equation (9) is used as the
decision maker. However, the differences between the determined optimal flow rates and
pipe rotation speeds are still in agreement, and the proposed method provides a decent
“ballpark values”, no matter which decision maker is preferred. Depending on the cases
and considering cutoff cuttings concentrations, it is observed that slight differences are
observed for the determined optimal flow rate and pipe rotation speed values when the
cutoff cuttings concentration is changed, when Equation (9) is used as the decision maker.
As expected, slightly higher rotation speeds and/or flow rates are required if the cutoff
cuttings concentration is set to a lower value.

Tables 7 and 8 were developed in order to analyze the effect of a1, which is the
coefficient of the cuttings concentration in the fitness function (Equation (1)) used in the
genetic algorithm. The reason this value is important is that it is required to define the
importance level of cuttings concentration during training of the genetic algorithm while
making decisions. When these 2 tables are compared, minor differences are observed,
which concludes that a1 does not affect the overall optimization process.

When Tables 4 and 5 or Table 6 are compared to investigate the performance of the
proposed optimization methodology, it can be seen that the observed optimal points based
on experiments and the genetic algorithm-based optimization methodology supported
by neural network models with energy consumption quantification model results are in
agreement. Naturally, there are some discrepancies present, such as in Case 5. However,
it should be noted that the experimental data do not cover a data matrix as wide as the
machine learning model does, since the models conduct runs for almost all available flow
rate and pipe rotation combinations whereas the experimental test matrix has limited
combinations of flow rates and pipe rotation speeds. Thus, the optimal points determined
from the experimental data are limited to the availability of the data, and the true optimal
points may be overlooked due to the absence of some flow rates and pipe rotation speed
combinations, which are the actual optimal points. Frictional pressure loss and cuttings
concentration estimations at the optimal flow rate and pipe rotation conditions are also in
good agreement when compared with the experimental data.

In general, the proposed optimization approach acquires very promising results, and
it can be a very useful tool for automation of the drilling process along with the well
design stages.

3.2.2. Optimization Attempt using Mechanistic Models

A wide range of runs were conducted using the mechanistic models instead of machine
learning methods, and the optimal flow rates and pipe rotation speeds were determined.
Since these runs and the analysis are quite time consuming and tedious, only 2 samples are
presented in this paper: Zhang’s model [47] for Case 1 and Ozbayoglu’s model [48] for Case
4. However, both models were used to determine the optimal flow rates and pipe rotation
speeds for all 6 cases. These sample runs are presented in Figures 5 and 6, respectively.

In Figure 5, the pipe rotation speed is 0 1/s. A local minimum cuttings concentration
point exists at 0.016 m3/s flow rate, which happens to be the minimum frictional pressure
loss as well. Thus, for 0 1/s pipe rotation speed, the optimal flow rate is selected to be
0.016 m3/s. If a similar analysis is conducted for the data provided in Figure 6, where the
pipe rotation speed is 6.283 1/s, the optimal flow rate determination is not as straightfor-
ward as shown in Figure 5. For this particular case, the cuttings concentration is analyzed
and the optimal point is the point where the rate of change of cuttings concentration with
respect to flow rate starts to decrease, which happens to be 0.028 m3/s. Thus, for 6.283 1/s
pipe rotation speed, the optimum flow rate is selected to be 0.028 m3/s.
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An analysis using both models reveals that, for a particular case, the optimal flow
rates do not vary significantly while the pipe rotation speed changes. In other words,
for a particular pipe rotation speed, the optimal flow rate is determined (either visually
or by applying the energy consumption methodology considering the set cutoff cuttings
concentration). If this process is repeated for different pipe rotation speeds, similar optimal
flow rates are acquired. However, the cuttings concentrations and frictional pressure losses
vary as the pipe rotation changes for a constant flow rate. Thus, for a constant flow rate,
one can plot cuttings concentration versus rotation speed and frictional pressure loss versus
pipe rotation speed and can conduct an analysis to determine the optimal rotation speed.
Figures 7–12 show this analysis using Ozbayoglu’s model (figures (a)) and Zhang’s model
(figures (b)). The dashed red lines indicate how the decision criteria is applied, such that
the flow rate at which cuttings concentration alignment shows a shift; that particular flow
rate is the optimum flow rate. The red solid arrows indicate which points are selected
as the optimum point. In some cases, such as Figure 7b, the cuttings concentration is
already showing a low enough value at 0 1/s pipe rotation speed, which is selected as the
optimal point.
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Ozbayoglu’s model and (b) Zhang’s model

The optimal points determined when conducting this analysis are compiled and
tabulated in Table 9. When the models are compared, their optimal flow rate estimations
are in agreement. However, the optimal pipe rotation speed suggestions are quite different.
The cuttings concentration estimations at optimum points are also in agreement. However,
in some cases, Zhang’s model significantly overestimates the frictional pressure losses.
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Table 9. Summary of the optimal flow rate and pipe rotation speeds obtained from Figures 7–12.

Cases
Ozbayoglu (2020) Zhang (2015)

Q
(m3/s)

Rot.
(1/s) Cc ∆P/∆L

(Pa/m)
Q

(m3/s)
Rot
(1/s) Cc dP/dL

(Pa/m)

Case 1 0.01578 2.094 0.105 1001.3 0.01578 0 0.105 456.1
Case 2 0.0284 4.189 0.134 349.2 0.02997 2.094 0.149 398.9
Case 3 0.0221 4.189 0.158 456.2 0.0189 6.283 0.152 725.8
Case 4 0.0284 6.283 0.179 1071.2 0.0379 0 0.121 1440.2
Case 5 0.011 2.094 0.137 2601.1 0.0142 2.094 0.136 13941.2
Case 6 0.0347 8.378 0.169 1266.4 0.0205 6.283 0.134 1331.4

When the mechanistic model’s optimal flow rate and pipe rotation speed estimations
are compared with the experimental results as well as proposed machine learning method-
ology estimations, in general, the optimal flow rate estimations seem to be acceptable,
but both models have a tendency to overestimate the optimal pipe rotation speeds. How-
ever, with further modifications and improvements, mechanistic model estimations may
approach the measured values.

3.2.3. Comparison of Optimization Results

For the comparison of the optimal flow rates and pipe rotation speeds acquired using
the proposed machine learning methodologies with energy consumption check and the
constraint of cutoff cuttings concentration, the experimental results and mechanistic model
estimations are presented in Figure 13. The flow rates and pipe rotation speeds were
normalized by dividing with the maximum possible values in order to make it possible to
compare on the same plot. The genetic algorithm with neural networks model estimates
combined with the minimum energy consumption concept and cutoff cuttings concentra-
tion constraint show reasonably good matches when compared with the experimental data
for the majority of cases. The mechanistic models also show promising results, but their
estimations are not as accurate when using the proposed machine learning approach.

One major advantage of the proposed model is that it eliminates user judgement
calls and quantifies and completely automates the process without requiring any user
aided decisions. In certain cases, the mechanistic model estimates during the optimization
process require judgement calls by the user to make reasonable decisions.

From Figure 13, it can be seen that the proposed model estimates are in good agreement
for both optimal flow rate and optimal pipe rotation speeds for Cases 1 to 4, and Case 6. In
Case 4, the experimental data for pipe rotation speed is only limited to a no-rotation case
and a 10.72 1/s case. Thus, the discrepancy regarding the estimated and measured pipe
rotation speeds is normal, since there are experimental data available between 0 1/s and
10.72 1/s. For Case 5, the flow rate estimate is slightly lower than the measured one. It can
also be seen that the machine learning approach provides more accurate estimations when
compared with mechanistic models, especially in Cases 1, 2, and 6.

In summary, the proposed model provides a promising methodology to select optimal
flow rates and pipe rotation speeds in a fast, reliable, fully quantified, and automated
way from the standpoint of cuttings transport process. The algorithm can be improved
by adding more data, such as including data points with not only water-based drilling
fluids but also oil-based and synthetic-based drilling fluids, including data with large hole
sizes, improving the energy consumption methodology by including more components
into it, and making it more comprehensive. This method can be implemented with other
optimization and automation tool kits, and as an ultimate goal, a fully automated drilling
operation can be conducted.
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It should be noted that the extrapolation capability of machine learning techniques
are limited and that the confidence range of such models are usually bounded by the data
range used for training. Although the dataset used for this study covers a wide range
of major drilling parameters, the proposed approach should be used with caution for
conditions out of the range of the training data, such as wellbore sizes besides 0.2032 m.

4. Conclusions

In this study, an optimization attempt to estimate flow rate and pipe rotation speed
was introduced using a machine learning approach. Experimental data accumulated over
many years at The University of Tulsa—Drilling Research Projects were used for this
purpose. Neural network models were developed and were capable of estimating cuttings
concentration and frictional pressure losses. A genetic algorithm was developed and
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aimed to minimize cuttings concentration and frictional pressure loss, a procedure was
introduced to determine optimized flow rate and pipe rotation speed considering cutoff
cuttings concentration as a constraint, and the overall decision was conducted using an
introduced minimum energy consumption concept. The proposed method was compared
with existing mechanistic models. The following were concluded:

1. The proposed machine learning approach provides very promising results. The
estimations of the proposed models are more accurate than the mechanistic model
estimates.

2. The proposed model quantifies and automates the optimization process, while an
analysis using the mechanistic models require user judgement calls and case-by-case
analysis with subjective decisions.

3. Neural network estimates of cuttings concentration and frictional pressure losses are
significantly more accurate than mechanistic model estimates.

4. The proposed methodology can be used as a tool for drilling automation as well as
during design stages.
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Appendix A

Appendix A.1. Artificial Neural Networks

Artificial neural networks (ANNs) are machine learning models inspired by the
connections of animal nervous systems. ANNs consist of layers, and those layers consist
of units. In the case of fully connected ANNs, each unit of a given layer is connected to
all units of its previous layer and its output is calculated using the output of the previous
layer units. This is similar to the synapses in neurons in the sense that neurons can signal to
other neurons to which they are connected. Input features are fed into this networks in the
input layer, and after processing this input through all the layers, an output is produced.
This output is compared to the label value, and the parameters of the ANN are updated
based on the label value and the output of the network. The general structure of an ANN
is illustrated in Figure A1.

Artificial neural networks have been used in many different applications in drilling
research [50]. Artificial neural networks are successful at creating complex input–output
relationships for certain applications where an underlying functional representation of
data is not available or is very difficult to construct. Meanwhile, the hierarchical nature
of multilayer neural networks provides implicit feature transformations between differ-
ent dimensions occurring in each layer. This implicit transformation is optimized by a
well-established learning algorithm called backpropagation based on gradient descent.
Interested users can find more detailed information on the subject from the relevant refer-
ence [51]. Although there are various artificial neural networks, the multilayer perceptron
(MLP) is by far the most preferred artificial neural network by researchers due to its
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well-established learning algorithm, ease of implementation, and successful generaliza-
tion capabilities.
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Appendix A.2. Genetic Algorithm

Genetic algorithm is the oldest and most commonly adapted evolutionary computa-
tion technique, generally used for metaheuristic search and optimization [52]. It is based
on the “survival of the fittest” principle of natural selection or evolution. The basic aim is to
find the best solution over the solution space by searching through the “chromosomes”, by
iteratively converging onto “better” ones, and by eventually finding the best “chromosome”
that represents the most desirable solution for the problem. Each chromosome consists of
genes. These genes are mostly associated with the features of the model. The overall ge-
netic search procedure resembles Darwinian evolution such that the “good” genes that are
successful are passed from one generation to the other, creating “stronger” chromosomes in
the population that are fit for the particular problem. Eventually, the final population only
consists of the “best” chromosomes and represents the optimal solution(s) for the problem.

There are two important components of the genetic algorithm that are crucial for suc-
cess of the whole search process. The first one is the chromosome itself. Each chromosome
should have sufficient and necessary ingredients (features) for the problem to be solved.
The optimization is achieved when the best representative chromosome is selected as a
result of the metaheuristic search. Hence, each chromosome is an interpretation of the
solution; some are bad representations, indicating not successful solutions, but some are
good, indicating desirable solutions. Our aim is to find the best solution in the whole
chromosome space (solution space). This is achieved by a search and compare process.
Each chromosome within the population is compared with each other using a fitness
function, which represents the suitability of the particular chromosome for the problem.
The higher the chromosome scores through the fitness function, the better. Therefore, it is
vital to construct an appropriate fitness function for the problem. The fitness function is
the second crucial component of the genetic algorithm. Since the fitness function decides
which chromosomes are better and which are unfit, the optimization process relies not
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only on the correct chromosome definition but also on correct formulation of the fitness
function. When these two components are configured properly, the genetic algorithm can
find the optimal solution in a very short time. It is also important to define a fitness function
that can be calculated instantly in O(1) since every chromosome needs to go through the
fitness function. A typical population size can range from 100 to several thousands. In
addition, hundreds of generations might be needed for the genetic algorithm to converge
to a desirable solution. Hence, passing through the fitness function must be instantaneous;
otherwise, the search process will take longer.

Appendix A.2.1. Genetic Algorithm Operators

Crossover

In order to obtain better chromosomes in future generations, the genetic algorithm
uses the crossover operation. Crossover divides a given chromosome into two or more
parts. Then, it performs the same cutting operation on another chromosome. Then, the two
chromosomes are mixed up (crossed-over) so that the contents of both chromosomes change
after the crossover but the length of each chromosome stays exactly the same as before
performing the crossover operation. The points at which cut(s) are made are randomly
selected; however, the same cut points need to be chosen for both chromosomes. The most
common implementation of the crossover operation is using only one cut-point, indicating
that each chromosome is divided into 2 sections. Then, the first section of Chromosome
1 is concatenated with the second section of Chromosome 2. In a similar fashion, the
second section of Chromosome 1 is concatenated with the first section of Chromosome
2. As a result, we now have two different chromosomes evolved from their “parents”. In
order to converge into the optimal solution, better chromosomes need to be created in the
populations in future generations. Figure A2 illustrates the crossover operation.
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Mutation

Sometimes, some of the genes are changed arbitrarily while being passed to the next
generations. This causes the chromosome to change its content, sometimes good but often
making things worse. However, this random alteration of genes is a crucial component of
natural evolution. This is called mutation. In the genetic algorithm, the mutation operation
is performed while changing one or more genes of some chromosomes randomly. However,
the mutation rate needs to be kept fairly small to prevent overall convergence of the system
into an optimal solution. Mutations are generally used to introduce some random variation
into the system. It often helps the system avoid getting stuck in a local minimum. Figure A2
illustrates the mutation operation.

Crossover and mutation are fundamental operations in the genetic algorithm. How-
ever, in most implementations, elitism is also used. Elitism is the process of maintaining a
certain percent of the best solutions obtained so far in the algorithm without performing
crossover on them. With that, we have a guarantee that at least some of the good chromo-
somes will be preserved; 10% elitism is typically used in implementations. A schematic for
this process is presented in Figure A3.

Energies 2021, 14, x FOR PEER REVIEW 26 of 33 
 

 

 
Figure A3. Schematic of a genetic algorithm. 

Appendix A.2.2. Genetic Algorithm Steps 
The genetic algorithm process is explained as follows: 

(1) Define the chromosome structure. 
(2) Define the fitness function. 
(3) Initialize the algorithm parameters (population size, number of generations, crosso-

ver rate, mutation rate, and elitism rate). 
(4) Create the initial population of chromosomes. 
(5) Calculate the strength (suitability) of each chromosome against the fitness function, 

and store the fitness score of each chromosome. 
(6) Based on the crossover rate and fitness scores of each chromosome, implement cross-

over operation between chromosomes. Chromosomes with higher fitness scores have 
higher chances of being selected for crossover. 

(7) Based on the mutation rate, alter some of the genes of some crossed-over chromo-
somes. 

(8) Repopulate the population with the new chromosomes (after crossover and muta-
tion). 

(9) Go to step 5 until either of the following is observed: 
a. The threshold for the acceptable number of generations has been passed. 
b. The population converged to a solution (most of the chromosomes are the 

same) 

Appendix B 
Appendix B.1. Neural Network Code, Weight, and Parameter Settings for Cuttings 
Concentration and Pressure Drop Estimation Models 

We used 10 hidden neurons for both neural networks (  and ΔP/ΔL). We chose the 
default training parameters that Matlab preconfigured for fitting tool. These represent the 
whole parameter settings and topology configuration information adapted in the study. 

In order to run the neural network, the user can issue the nnstart command to start 
the neural network tool and then select the Fitting app (nftool). It will open up the Neural 
Network fitting app. Then, the user can define the input data (as a matrix of data size × 
number of features) through Inputs selection and the output data (as a matrix of data size 
× 1) through Targets selection. The output can be  and ΔP/ΔL depending on which one 
is predicted. In the next three screens, training, validation, and test data are divided. We 
chose the 70–15–15% random partition, which is the default selection. In the next screen, 
the number of hidden neurons is selected. We chose 10. Then, in the next screen, we chose 

Figure A3. Schematic of a genetic algorithm.

Appendix A.2.2. Genetic Algorithm Steps

The genetic algorithm process is explained as follows:

(1) Define the chromosome structure.
(2) Define the fitness function.
(3) Initialize the algorithm parameters (population size, number of generations, crossover

rate, mutation rate, and elitism rate).
(4) Create the initial population of chromosomes.
(5) Calculate the strength (suitability) of each chromosome against the fitness function,

and store the fitness score of each chromosome.
(6) Based on the crossover rate and fitness scores of each chromosome, implement

crossover operation between chromosomes. Chromosomes with higher fitness scores
have higher chances of being selected for crossover.

(7) Based on the mutation rate, alter some of the genes of some crossed-over chromosomes.
(8) Repopulate the population with the new chromosomes (after crossover and mutation).
(9) Go to step 5 until either of the following is observed:

a. The threshold for the acceptable number of generations has been passed.
b. The population converged to a solution (most of the chromosomes are the same)
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Appendix B.

Appendix B.1. Neural Network Code, Weight, and Parameter Settings for Cuttings Concentration
and Pressure Drop Estimation Models

We used 10 hidden neurons for both neural networks (CC and ∆P/∆L). We chose the
default training parameters that Matlab preconfigured for fitting tool. These represent the
whole parameter settings and topology configuration information adapted in the study.

In order to run the neural network, the user can issue the nnstart command to start
the neural network tool and then select the Fitting app (nftool). It will open up the
Neural Network fitting app. Then, the user can define the input data (as a matrix of data
size × number of features) through Inputs selection and the output data (as a matrix of
data size × 1) through Targets selection. The output can be CC and ∆P/∆L depending
on which one is predicted. In the next three screens, training, validation, and test data
are divided. We chose the 70–15–15% random partition, which is the default selection.
In the next screen, the number of hidden neurons is selected. We chose 10. Then, in
the next screen, we chose the Levenberg–Marquardt backpropagation training algorithm,
which is the default selection, and pressed Train. The Matlab neural network fitting app
trained the data and stopped after the cross validation error was no longer reduced. The
user can evaluate the model performances through the Neural Network Training Screen
(nntraintool). If the user is satisfied with the results, he/she can save the network as a
“mat” file. The name for the network is “net”. In that network, the resulting weight results,
bias settings, and other network topology parameters are presented.

In addition, if the user wants to change the network weights to the ones that we used
in our study, we provide the weights in Tables A1–A6. The user can change the weights
within Matlab accordingly.

Cuttings Concentration Mlp Network Settings (Configured in Matlab)

net_CC =
Neural Network

name: ‘Function Fitting Neural Network’
userdata: (your custom info)

dimensions:

numInputs: 1
numLayers: 2
numOutputs: 1
numInputDelays: 0
numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 131
sampleTime: 1

connections:

biasConnect: [1; 1]
inputConnect: [1; 0]
layerConnect: [0 0; 1 0]
outputConnect: [0 1]

subobjects:

input: Equivalent to inputs{1}
output: Equivalent to outputs{2}
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inputs: {1 × 1 cell array of 1 input}
layers: {2 × 1 cell array of 2 layers}
outputs: {1 × 2 cell array of 1 output}
biases: {2 × 1 cell array of 2 biases}
inputWeights: {2 × 1 cell array of 1 weight}
layerWeights: {2 × 2 cell array of 1 weight}

functions:

adaptFcn: ‘adaptwb’
adaptParam: (none)
derivFcn: ‘defaultderiv’
divideFcn: ‘dividerand’
divideParam: .trainRatio, .valRatio, .testRatio
divideMode: ‘sample’
initFcn: ‘initlay’
performFcn: ‘mse’
performParam: .regularization, .normalization
plotFcns: {‘plotperform’, ‘plottrainstate’, ‘ploterrhist’,
‘plotregression’, ‘plotfit’}
plotParams: {1 × 5 cell array of 5 params}
trainFcn: ‘trainlm’
trainParam: .showWindow, .showCommandLine, .show, .epochs,
.time, .goal, .min_grad, .max_fail, .mu, .mu_dec,
.mu_inc, .mu_max

weight and bias values:

IW: {2 × 1 cell} containing 1 input weight matrix
LW: {2 × 2 cell} containing 1 layer weight matrix
b: {2 × 1 cell} containing 2 bias vectors

methods:

adapt: Learn while in continuous use
configure: Configure inputs & outputs
gensim: Generate Simulink model
init: Initialize weights & biases
perform: Calculate performance
sim: Evaluate network outputs given inputs
train: Train network with examples
view: View diagram
unconfigure: Unconfigure inputs & outputs

evaluate: outputs = net_CC(inputs)
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Table A1. Hidden layer weights (11 input × 10 hidden neurons).

−0.13 0.29 −1.05 −1.09 0.56 0.04 −0.44 −0.47 1.07 −0.45 0.39

−0.44 0.91 0.22 −0.86 −0.65 1.34 0.33 −0.11 0.46 −0.35 0.18

1.02 1.63 1.24 0.06 1.03 −0.52 0.55 1.36 −0.44 0.10 −0.01

−0.73 −0.33 0.23 1.34 0.19 −0.09 −0.24 −1.61 0.60 −0.32 0.87

−0.21 −1.22 0.22 −0.26 0.30 0.49 −0.40 0.63 0.10 0.08 −1.49

−1.03 1.84 −0.80 0.03 0.69 0.63 0.24 −1.15 −0.15 0.55 −0.97

1.44 1.02 0.05 0.38 −0.23 −1.73 −0.53 0.55 0.07 0.11 1.10

−0.37 0.51 −1.18 −0.04 −0.41 1.04 0.98 0.65 0.84 −0.93 0.85

−1.35 −0.38 −0.39 0.39 0.17 0.15 0.45 −0.96 −0.01 0.10 −0.15

0.73 −0.75 0.52 −0.62 0.43 −0.41 0.42 0.63 1.53 −0.18 0.20

Table A2. Output layer weights (10 hidden neurons × 1 output (CC)).

−0.57 0.99 −0.68 0.14 0.57 0.60 1.38 −0.38 1.44 1.04

Table A3. Hidden neurons bias values (10 hidden neurons).

−2.36 −1.47 −0.11 0.69 −0.61 −1.03 0.50 −1.67 −1.38 1.94

OUTPUT NEURON BIAS VALUE
−0.1515

B.1.2 PRESSURE DROP MLP NETWORK SETTINGS (CONFIGURED IN MATLAB)

net_dPdL =

Neural Network is the same as the MLP CC network

evaluate: outputs = net_dPdL(inputs)

Table A4. Hidden layer weights (11 input × 10 hidden neurons).

−1.74 −0.38 −0.10 1.04 −1.25 −0.70 0.17 −1.74 3.06 0.72 −0.05

−2.00 −0.54 −1.37 0.01 0.58 2.52 −1.00 −1.57 2.19 0.16 0.01

−1.75 0.77 1.10 −0.77 −0.23 0.09 3.97 0.16 −0.90 0.19 1.89

−0.48 0.37 1.84 −0.48 0.54 0.09 0.99 −2.02 −0.64 0.03 −2.48

−0.80 1.74 0.50 1.76 1.52 1.07 −0.73 −5.16 −0.48 −0.98 2.48

1.13 −0.41 −0.16 −0.71 0.67 0.17 0.17 0.06 −0.11 −0.09 0.20

0.08 −0.30 0.22 0.58 −0.14 −0.75 0.21 1.89 0.72 −0.15 −0.41

1.41 −1.15 0.45 1.58 2.25 −1.09 −0.57 −1.83 0.31 0.09 1.19

0.44 −0.40 −1.96 0.53 0.87 0.31 0.77 0.38 4.70 0.25 −1.54

−1.92 0.84 0.35 0.09 0.23 2.18 0.38 0.49 0.03 0.03 −0.29

Table A5. Output layer weights (10 hidden neurons × 1 output (CC)).

−0.29 −0.18 0.44 −0.11 −0.04 −2.78 0.47 0.35 −0.27 −1.93
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Table A6. Hidden neurons bias values (10 hidden neurons).

−0.86 −2.80 0.80 0.77 1.21 0.00 −0.29 1.90 0.80 −2.37

OUTPUT NEURON BIAS VALUE
−0.7999

Appendix B.2. Genetic Algorithm Code Blocks used for Optimization Purposes

As far as the genetic algorithm is concerned, we used the Genetic Algorithm (GA)
function for optimization. We have the following code blocks:

function y = simple_fitness_for_Q_only(x)
% A1 is the weight coefficient for CC
% General CC range is between 0 and 0.5
A1 = 10000;

% A2 is the weight coefficient for dP/dL
% General dPdL range is between 200 and 3300
A2 = 1;
% load (‘net.mat’);
load (‘net_CC.mat’);
load (‘net_dPdL.mat’);

% rpm value is defined by the user
% the algorithm determines the optimum flow rate for this particular rpm

rpm = 0;

% Case 1 input for all Dataset6 (365 data) 26-12-2020
% nn_input = [0.2032; 0.1651; 0.9; 999.283; 0.034989; 0.017488; 0.001499; 2644.925; x; 1.570796;
0.002963; rpm];

% Case 2 input for all Dataset6 (365 data) 26-12-2020
% nn_input = [0.2032; 0.1143; 0.62; 994.4902; 0.035013; 0.01749962; 0.003048; 2595.02; x;
1.514946; 0.00243; rpm];

% Case 3 input for all Dataset6 (365 data) 26-12-2020
nn_input = [0.2032; 0.1143; 0.62; 994.4902; 0.815594; 0.523242; 0.003048; 2595.02; x; 1.5132;
0.002523; rpm];

% Case 4 input for all Dataset6 (365 data) 27-12-2020
% nn_input = [0.2032; 0.1143; 0; 999.283; 0.874867; 0.542139; 0.003048; 2595.02; x; 0.698132;
0.003387; rpm];

% Case 5 input for all Dataset6 (365 data) 27-12-2020
% nn_input = [0.2032; 0.1651; 1; 1004.076; 0.633742; 0.438503; 0.0016; 2595.02; x; 0.959931;
0.004064; rpm];

% Case 6 input for all Dataset6 (365 data) 27-12-2020
% nn_input = [0.2032; 0.1143; 0.9; 1004.472; 0.532325; 0.366519; 0.002794; 2644.925; x;
0.872665; 0.004233; rpm];

% abc = net(nn_input);
cc = net_CC(nn_input);
dPdL = net_dPdL(nn_input);
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% You can adjust the values of A1 and A2 for aligning the
% optimization criteria in the following function. The following
% function will be minimized for optimization.
% y = A1*abs(abc(1)) + A2*abs(abc(2));
% y = A1*abc(1) + A2*abc(2);
if (cc < 0.12)
A1 = A1*(1/cc)*(1/0.12);
end
if (cc > 0.23)
A1 = A1*(1/0.23)*cc;
end
% if (dPdL < 20)
% A2 = A2*10000;
% end
y = abs(A1*cc) + abs(A2*dPdL);
% y = A1*cc + A2*dPdL;
end

Here is the code script for our genetic algorithm run. The last sentence implements
GA using the objective function defined by “simple_fitness_for_Q_only”

ObjectiveFunction = @simple_fitness_for_Q_only;

nvars = 1; % Number of variables
LB = [0]; % Lower bound
UB = [0.3]; % Upper bound
opts = optimoptions(@ga,’PlotFcn’,{@gaplotbestf,@gaplotstopping});
opts.PopulationSize = 500;
% [x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,[])
[x,fval] = ga(ObjectiveFunction,nvars,[],[],[],[],LB,UB, ...
[],opts)
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