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Abstract: In this paper the results of the EMC tests of the wideband power sources: the PWM-based
power source and audio power amplifier are discussed. They are intended to be used to supply the
measuring system developed for evaluation of the wideband transformation accuracy of instrument
transformers. Therefore, it is required to detect possible interferences that may be caused by the
power supply to its operation and that may cause a decrease in its accuracy. The tests concern the
conducted emission in the frequencies range from 150 kHz to 30 MHz and the radiated emission
in the frequencies range from 30 MHz to 1 GHz. Moreover, the level of conducted disturbances
in frequencies range from 100 Hz to 5 kHz generated into the supplying current is measured and
the immunity of both wideband power sources to low frequency conductive disturbances in the
supplying voltage and current is tested. Then, the voltage gain error and phase shift of the output
voltage are measured. The EMC tests of both power sources show lack of compliance with the
requirement of the standard IEC 61326-1. However, in system application of the audio power
amplifier is possible if required increased immunity to conducted emission of the measuring system
is ensured.

Keywords: wideband power sources; gain error; PWM inverter; power amplifier; generation of
distorted current; EMC; higher harmonics; conducted emission; radiated emission

1. Introduction

Wideband power sources are required in many applications, but one of the most de-
manding of them is supplying the measuring systems designed for testing of the inductive
instrument transformers [1–14]. This is due to the fact that all the electromagnetic compati-
bility (EMC) requirements must not interfere with the operation of the sensitive measuring
system, and simultaneously a high output power is required. This results from the nonlin-
earity of the magnetization characteristics of the magnetic core of the inductive instrument
transformers, and the necessity to be tested in their rated operating conditions [12,13].
Therefore, during testing of wideband accuracy of voltage instrument transformers and
dividers increases the exposure to the magnetic field from high voltage [1–8]. Additionally,
the supplying of the measuring system used for testing current instrument transformers
requires high immunity to the magnetic field from the high current track [6–14]. Wideband
testing procedures of transformation accuracy of inductive instrument transformers at har-
monics of distorted current or voltage and requirements for the measuring and supplying
systems are still under development [5,8–10,14,15]. The demand for such tests results from
the low power quality of current and voltage in the power networks [1,11]. According to
EU directive 2014/30/EU the electrical equipment should meet the requirements of electro-
magnetic compatibility [16]. It ensures that electrical and electronic equipment does not
generate, or is not affected by, electromagnetic disturbance. The wideband power sources
are subject to the standard IEC 61326-1 that covers specify requirements for immunity
and emission including the limits of radiated and conductive disturbances for electrical
equipment, operating from the circuit being measured [17]. In the field of conducted and
radiated emission of disturbances power sources are subject to the standard EN 55011,
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which complies with general requirements of the standard IEC 61000-6-4 for emission in
industrial environments [18,19].

In the paper [20], the development of a programmable three phase AC power source is
presented. It is capable of providing a stable voltage with variable amplitude and variable
frequency over a wide range. Moreover, it can generate low harmonic distortion arbitrary
waveforms. In the paper [21], the response for the need for calibrators of different elec-
trical equipment to generate non-sinusoidal voltages and currents is presented. Voltage
harmonics magnitude and phase angle closed control loops enable accurate and precise ad-
justment of waveform parameters. The aim of this work is the development of a wideband
power supply specified for laboratory testing with distorted current and voltage where the
level and phase of each higher harmonics are individually selectable. One tested power
source is self-made from audio power amplifier and arbitrary waveform generator and its
behavior is compared with an off-the-shelf source type Chroma 61504. The application
of the power source is to supply the step-up current or voltage transformer to test the
wideband transformation accuracy of inductive instrument transformers [9,11–15]. The
results of the EMC test of the audio power amplifier are compared with the results obtained
for the off-the-shelf source. Moreover, the different modes of operation tested to find the
worst condition concern the different loads and also the output frequency of the source.
Furthermore, the voltage gain error and phase shift between input and output of tested
power source at different frequencies are measured to determine if the input waveform
composed of many harmonics is accurately reproduced.

2. Objects of the Research

The EMC tests were performed on two wideband power sources. Device A is a
PWM-based power source model Chroma 61504 and device B is an audio power amplifier.
The PWM-based power source has four main elements: input stage with active power
factor correction, DC rail, PWM control circuit and output-stage inverter. The power factor
correction is provided the control of the current of the inductor and output capacitor by
the MOSFET drive in order to ensure that input current and the AC line voltage are in
phase with each other. A PWM-controlled inverter is formed by two transistors, each
one is used for the lower or upper part of the waveform generated as a series of various-
width rectangles [15,22]. The rated power of the tested PWM-based power source is equal
to 2 kVA. A total of two voltage ranges are available: 0 to 150 and 0 to 300 V, with the
maximum rms values of the output current equal to 16 or 8 A, respectively. Its frequency
band of operation with the rated apparent power is equal to 1 kHz.

The tested audio power amplifier is a linear amplifier of class H with the output
stage transistors operating in class AB. They are working in the push-pull topology. The
crossover distortion is reduced as each transistor is conducting for more than half of the
period. The H class amplifiers are more power efficient as they are designed to draw power
from the higher voltage rail only when the output voltage is higher than in the low voltage
rail. It has two channels that can either work separately or bridged to double the output
voltage. Common control of gain will automatically track each channel identically and the
input voltage of the first channel will be amplified in the counter-phase by each channel.
The rated output power is equal to 2 kW and is available into 2 Ω rated output resistance
per channel or 4 kW into 4 Ω in the bridge mode. The rms output voltage is equal to 70 V
for each channel separately or 140 V bridged. The rated rms value of the output currents is
equal to 28 A. The application of a linear amplifier to provide a wideband power source
requires an arbitral waveform generator to control the input signal. The wideband power
source composed of the audio power amplifier with an arbitrary generator enables for a 1

4 of
the price twice higher active output power than the PWM-based power source. The main
advantage of the off-the-shelf source is its ability for autonomous operation. However, its
frequency band of operation with its rated output power is only 1 kHz. Moreover, during
operation with high inductive impedance the output voltage of the audio power amplifier
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is limited by 2 [15]. It is a typical load when the step-up current and AC test transformers
are supplied [1–4,8,9,13,14].

3. Conducted and Radiated Emission Tests

The tests in the field of electromagnetic compatibility concern measurements of the
conducted emission according to the IEC 61326-1 standard in the frequencies range from
150 kHz to 30 MHz and the tests of radiated emission in the frequencies range from
30 MHz to 1 GHz [16]. The conducted disturbance emission was tested with the use of the
SMR 4503 measuring receiver, the LISN artificial network NNB-51 and a computer with
COMPLIANCE-3 software version 3.90 (Figure 1a). The emission of radiated disturbances
was tested with the use of the GTEM-1000 chamber, the SMR 4503 measuring receiver and
a computer with COMPLIANCE-3 software version 3.90 (Figure 1b).
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In the case of both power sources the tests were carried out to detect the influence
of the frequency of generated output voltage on the conducted emission. Measurements
were made for two selected frequencies: 50 and 1000 Hz. Additionally, the influence of the
output power of the device on conducted emissions was examined. Measurements were
made for three selected power levels: 1500, 770, 440 W. The results of the measurement
are shown in Figures 2–5. In Figure 2 the frequency spectrum of conducted emission of
PWM-based power source (device A) is presented. The frequencies of generated voltage by
the device under test are equal to 50 and 1000 Hz with the value of the active load power
equal to 1500 W.

The limiting values for conducted emission resulting from the standard IEC 61326-1
for the electrical equipment operating from the circuit being measured were not exceeded.
Moreover, for device A, no influence of the generated frequency on the level of disturbances
was observed.

In Figure 3 the frequency spectrum of conducted emission of PWM-based power
source (device A) is presented. The frequencies of generated voltage by the device under
test are equal to 50 Hz and the values of the active load power are equal to 1500, 770,
and 440 W.

A decrease in the value of the output power causes a slight reduction in the level of
generated conducted disturbances in the range from 400 kHz to 3 MHz by the PWM based
power source.

In Figure 4, the frequency spectrum of conducted emission of the audio power ampli-
fier (device B) is presented. The frequencies of the generated output voltage by the device
under test are equal to 50 and 1000 Hz with output load active power equal to 1500 W.
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and 440 W.

For device B, no influence of the frequency of generated output voltage on the level of
disturbances was observed, except for the range of 10–20 MHz. The limit specified for the
level of conducted disturbances in the IEC 61326-1 standard was exceeded by the audio
power amplifier. It is due to the fact that the device is not equipped by the manufacturer
with an appropriate EMI (electromagnetic interference) filter.

In Figure 5, the frequency spectrum of conducted emission of the audio power ampli-
fier (device B) is presented. The frequency of generated voltage by the device under test is
equal to 50 Hz and the values of the active load power are equal to 1500, 770, and 440 W.
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When the output power of device B is reduced, a decrease in the level of disturbances
in the range of frequencies from 150 kHz to 30 MHz is observed, except for the range from
7 to 14 MHz.

In the case of conducted emission tests no significant influence of frequency of gener-
ated output voltage on the disturbance spectrum of both devices was observed. The results
concerning the influence of the value of the output power confirm that it is an important
factor in the assessment of the electromagnetic compatibility of the power sources with the
requirements of the standard IEC 61326-1. Conducted disturbance emission measurements
should be performed at the rated output power for which the device is designed to operate.

The radiated emission was tested for two selected frequencies of the output voltage
equal to 50 and 1000 Hz with three levels of the output power: 1500, 770, and 440 W. The
measurement results are shown in Figures 6–9. In Figure 6, the frequency spectrum of
radiated emission of PWM-based power source (device A) is presented. The frequencies of
the generated output voltage by the device under test are equal to 50 and 1000 Hz with the
values of the active load power equal to 1500 W.
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Figure 9. Frequency spectrum of radiated emission of audio power amplifier (device B) for frequency of generated voltage
equal to 50 Hz and the values of the active load power equal to 1500, 770, and 440 W.

There is no detected influence of the frequency of generated output voltage on the
level of radiated disturbances. The limit specified for the level of conducted disturbances
in the IEC 61326-1 standard was exceeded by the PWM-based power source. The probable
cause of the problem is the PWM-controlled inverter. To reduce the radiated emissions
ferrite cores can be used.

In Figure 7, the frequency spectrum of radiated emission of PWM-based power source
(device A) is presented. The frequency of generated voltage by the device under test is
equal to 50 Hz and the values of the active load power are equal to 1500, 770, and 440 W.

In the case when the value of the output power of the PWM-based power source is
reduced a significant decrease in the level of radiated disturbances is detected.

In Figure 8, the frequency spectrum of radiated emission of an audio power amplifier
(device B) is presented. The frequencies of generated voltage by the device under test are
equal to 50 and 1000 Hz with active load power equal to 1500 W.
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The limiting values for radiated emission resulting from the standard IEC 61326-1
for the electrical equipment operating from the circuit being measured were not exceeded.
Moreover, for device B, no influence of the frequency of generated voltage on the level of
disturbances is observed.

In Figure 9, the frequency spectrum of conducted emission of an audio power amplifier
(device B) is presented. The frequency of generated output voltage by the device under test
is equal to 50 Hz and the values of the active load power are equal to 1500, 770, and 440 W.

Along with a decrease in the output power a significant decrease in the level of
radiated disturbances is detected.

The results of the measurements of radiated emissions show as well high importance
of the value of the output power of tested power source on the detected level of radiated
disturbances. Therefore, the tests of compliance of the power source with the requirements
of the standard IEC 61326-1 should be performed with the rated output power for which
the device is designed.

4. Conducted Disturbances Tests in Frequencies Range from 100 Hz to 5 kHz

The next stage of laboratory tests aims to determine the level of conducted distur-
bances produced by two tested power sources in the frequency range from 100 Hz to 5 kHz.
The measurements were made for inductive and resistive loads and different rms values of
output current. The measuring circuit used to determine the rms values of harmonics in
supplying current is presented in Figure 10.

Energies 2021, 14, x FOR PEER REVIEW 9 of 15 
 

 

of output current. The measuring circuit used to determine the rms values of harmonics 
in supplying current is presented in Figure 10. 

 
Figure 10. Measuring circuit used to determine the rms values of harmonics in supplying current 
of wideband power sources. 

In Figure 10, the following notations are used: AWG—arbitrary waveform generator, 
DPM—digital power meter, D-A/D-B—device A (PWM-based power source) or device B 
(audio power amplifier), PPS—programmable power supply, LO—load impedance of 
tested devices. 

Utilization of the programmable power source ensures the pure sinusoidal voltage 
of frequency equal to 50 Hz to supply tested devices. To determine the total harmonic 
distortion factors (THDi) of suppling current one module of the digital power meter 
(DPM) is used to measure the rms values of harmonics of current and voltage. Moreover, 
the second module is used to measure output power to ensure the required load. In ac-
cordance with the standard IEC 50160 THDi factor may be calculated from formula [23]: 

𝑇𝐻𝐷𝑖 = (𝐼 )  (1)

In Table 1 calculated values of THDi factors for supply currents of tested PWM-based 
power source and audio power amplifier are presented. The percentage values of a given 
higher harmonics are presented in Figure 11. 
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wideband power sources.

In Figure 10, the following notations are used: AWG—arbitrary waveform generator,
DPM—digital power meter, D-A/D-B—device A (PWM-based power source) or device
B (audio power amplifier), PPS—programmable power supply, LO—load impedance of
tested devices.

Utilization of the programmable power source ensures the pure sinusoidal voltage
of frequency equal to 50 Hz to supply tested devices. To determine the total harmonic
distortion factors (THDi) of suppling current one module of the digital power meter (DPM)
is used to measure the rms values of harmonics of current and voltage. Moreover, the
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second module is used to measure output power to ensure the required load. In accordance
with the standard IEC 50160 THDi factor may be calculated from formula [23]:

THDi =

√√√√ 40

∑
h=2

(Ih)
2 (1)

In Table 1 calculated values of THDi factors for supply currents of tested PWM-based
power source and audio power amplifier are presented. The percentage values of a given
higher harmonics are presented in Figure 11.

Table 1. The values of THDi factors of supply currents of tested PWM-based power source and audio
power amplifier.

PWM-Based Power Source Audio Power Amplifier

Load Type L R L R

rms output current [A] 2.5 1.0 6.5 2.5 2.5 20.0 2.5 20.0
THDi [%] 23.95% 27.85% 4.95% 23.95% 73.89 59.85% 73.29% 58.51%Energies 2021, 14, x FOR PEER REVIEW 10 of 15 
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Figure 11. Percentage values of a given higher harmonics in suppling current of the PWM-based
power source (D-A) and audio power amplifier (D-B).

The PWM-based power source has a much lower distortion of the supply current
in comparison with the audio power amplifier as results of determined values of total
harmonics distortion factor. This results from the application of the power factor correction
system that controls the time of charging of the output capacitor of DC rail through the
inductor [15]. The highest value of the THDi factor was detected in the case of the PWM-
based power source for the rms value of the output current equal to 1 A. The lowest value
is obtained for the maximum rms value of the output current equal to 6.5 A. There are no
detected changes in obtained values due to the type of the load. The results for the audio
power amplifier as well show no influence of the power factor but significant dependence
on the load value, therefore the rms value of the output current.

The audio power amplifier is characterized by a supply current consisting of higher
harmonics which rms values are significantly exceeding the limiting values specified
in the standard EN 61000-3-12 [24]. This results from a distortion of the waveform of
supply current presented in Figure 12b. It will increase the exposure of the measuring
systems connected to the same AC mains. Parts 3–16, covering limits for harmonic currents
produced by energy supplying equipment with a rated current less than or equal to 75 A
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per phase connected to public low-voltage systems, is still not available. The differences in
the percentage values of the higher harmonics generated into the supplying current of the
PWM-based power source result from the rms value of the output current. If the rms value
of the output current is equal to 6.5 A, the rms values of suppling current is the highest,
therefore the percentage values of higher harmonics are the lowest (Figure 11). In case
when its rms value drops to 2.5 A for both resistive and inductive loads the rms values
of harmonics of the input current are equal but significantly increased. In Figure 12 the
waveforms of the output and input currents and voltages measured for the PWM-based
power source and the audio power amplifier for these conditions are presented.
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The waveform of the suppling current of the audio power amplifier (Figure 12b) is
similar to a typical rectifier. The principle of operation of the power factor correction system
in the PWM-based power source ensures significantly lower distortion of the suppling
current. Moreover, its waveform is the same for inductive and resistance load, however the
rms values of output current and voltages are different [25].

5. Gain, Phase Linearity, and Conducted Disturbances Immunity Tests

The next stage of laboratory tests of the power sources was to determine the linearity
of their voltage gain and phase shift with frequency in the range from 50 Hz to 5 kHz
for sinusoidal and distorted input voltage. These tests were carried out in the measuring
circuit presented in Figure 13.

In Figure 13 the notations are used as in Figure 10, additionally: RVD—wideband refer-
ence voltage divider, DEC—wideband converter of differential voltage to single ended voltage.

The tested devices (D-A/D-B) are supplied by the programmable power source (PPS)
fed by the arbitrary waveform generator (AWG) which enables to generate any supply
voltage waveform required for the conducted disturbances immunity tests. The wideband
reference voltage divider (RVD) is used to step-down the output voltage of the tested
power source. The voltage ratio of the used RVD is selected in order to obtain the required
gain for a given test conditions [2,4,26]. The measuring system is composed of a digital
power meter (DPM), in which the second module is used to measure the rms values of
harmonics (up to 100th) of output voltage and current, as well as the phase shift between
them. Moreover, the value and power factor of the load is determined. To obtain the
values of voltage gain error and phase shift of harmonics caused by the tested device first
module of DPM is used to measure the rms values of harmonics of input voltage and the
rms values of harmonics of differential voltage between the output voltage of RVD and
the input voltage of tested power source. Application of the high impedance wideband
converter of differential voltage to single ended voltage (DEC) is required in ordered to
prevent the impact of measuring circuit on the output voltage of used RVD [6,14]. The rms
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values of the hk harmonic of the output voltage of the tested device is determined from
the equation:

UOUThk =
√

U2
RVDhk + U2

DEChk − 2·URVDhk·UDEChk· cos(ϕRVDDEChk) (2)
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UINhk—the rms values of a k-order harmonic of the input voltage of tested power
source, UOUThk—the rms values of a k-order harmonic of the output voltage of tested
power source, UDEChk—the rms values of a k-order harmonic of the output voltage of the
DEC which is equal to difference voltage between the output voltage of RVD and the input
voltage of tested power source, ϕRVDDEChk—the phase shift of a k-order harmonic of the
output voltage of DEC in relation to the same frequency harmonic in the input voltage of
tested power source.

The value of the voltage gain error of hk harmonic of the output voltage may be
calculated from equation:

∆UD−A/D−Bkh =
UOUThk − UINhk

UINhk
·100% (3)

The percentage value of the hk harmonic of the composite error resulting from its volt-
age gain error and additional phase sift in the output voltage is determined from equation:

∆εD−A/D−Bkh =
UDEChk
UINhk

·100% (4)

Determined hk values of the composite error and voltage gain errors are used to
calculate the value of the additional phase shift of harmonic of the output voltage:

δUD−A/D−Bkh = arcsin


√

∆ε2
D−A/D−Bkhk − ∆U2

D−A/D−Bkh

100%

 (5)

Gain and phase linearity test with the frequency of the input voltage during amplifica-
tion of sinusoidal of frequency equal to 50 or 500 Hz, and distorted input voltages were
performed when tested devices were supplied by the programmable power source. The
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percentage values of higher harmonics were equal to the required values by the relevant
standard [19]. Tests were performed in the no-load state and when the output active power
was equal to 1500, 770, and 440 W or apparent power was equal to 1500, 770, and 440 VA
with power factor equal to 0.45 were performed. The measurement results are presented in
Figure 14.
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Figure 14. Voltage gain errors (a) and phase shift (b) with the frequency of the input voltage.

In the case of the PWM-based power source the most significant impact on the value of
the voltage gain error and phase shift has the frequency of the input voltage. In the no-load
state the voltage gain errors (Figure 14a) have lower values than in the load state (from 20th
harmonic). This may result from increased additional voltage drop on internal elements
of the device for increased output current. The same values of voltage gain errors and
phase shift were obtained regardless of the value of the load power factor. Furthermore,
even for the case when conducted disturbances occur in the supply of PWM-based power
source, the frequency characteristics of voltage gain errors and phase shift are the same as
in Figure 14.

The frequency characteristic of voltage gain errors and phase shift for audio power
amplifier is presented in Figure 15.
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In the case of the audio power amplifier the most significant impact on the value of
the voltage ratio error has the frequency of the input voltage but it is negligible taking into
comparison the results determined for the PWM-based power source. This phenomenon
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is caused by the input low pass filter that is selected at too high a frequency. Moreover,
there are slight changes in the power factor and value of the load of the power amplifier
±0.5%. Furthermore, even for the case when conducted disturbances occur in its supply
voltage and current the frequency characteristics of voltage gain errors and phase shift are
the same as in Figure 15. The immunity to low frequency conductive disturbances results
from the conversion of the power by DC rail.

6. Conclusions

The EMC tests of both power sources show the lack of compliance with the require-
ment of the standard IEC 61326-1. In the case of the tested PWM-based power source the
problem concerned exceeded limits of the radiated emissions, while in the audio power
amplifier the level of conducted emissions was too high. In the case of conducted distur-
bances in the frequencies range from 100 Hz to 5 kHz generated into the supplying current
by the PWM-based power source their level results from the rms value of supply current.
This is caused by the pulsed operation of the rectifier in the PWM-based power source and
it is significantly lower than in the case of the audio power amplifier. This is ensured by the
application of the power factor correction system that controls the time of charging of the
output capacitor of DC rail through the inductor. The immunity of both wideband power
sources to low frequency conductive disturbances in the supply voltage and current results
from the conversion of the input power by DC rail. In the case of the PWM-based power
source the most significant impact on the value of the voltage gain error and phase shift has
the frequency of the input voltage. Therefore, the feedback loop used by the manufacturer
for the control of the rms values of harmonics of the output voltage is required. The results
of the research clearly show that the EMC tests of the wideband power sources intended to
be used for supplying the measuring systems are essential for their proper operation.
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