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Abstract: For medium voltage applications, multilevel inverters are used. One of its classic topologies
is the Cascaded H-Bridge, which requires isolated DC voltages to work. Depending on the DC voltage
ratio used in the Cascaded H-bridge can be classified into symmetric and asymmetric. In comparison
between symmetric and asymmetric inverters, the latter can generate an AC output voltage with
more output voltage levels. DC voltage ratio most documented are binary and trinary. The last
can generate an AC voltage of 3n = 27 levels is obtained, using n = 3 inverters in cascade and NLM
modulation, which generates a flow power of the load to the inverters (regeneration). This work
analyzes the semiconductor losses (switching and conduction) and the THD of the AC output voltage
in function of index modulation, considering a non-regenerative modulation technique for a 27-level
single-phase asymmetric inverter. To confirm the theoretical analyzes, simulation and experimental
results are shown.

Keywords: DC—AC Converters; THD minimization; efficiency; asymmetric inverters

1. Introduction

In applications for medium and high voltage drives, multilevel inverters are used [1,2].
By using low-voltage semiconductor devices, it is possible to generate any AC voltage [3].
The classic topologies within multilevel inverters are NPC [4], Clamped capacitor [5], and
cascaded H-bridge (CHB) [6]. These topologies advantages are: (i) low distortion and low
dv/dt AC voltage, (ii) low switching frequency, and (iii) low common-mode voltage [7].

Depending on the multilevel inverter’s topology, the number of power cells or semi-
conductors used to achieve the desired number of AC voltage levels can be a problem.
An option to solve the problem indicated above is the use of CHB, with different DC
voltages, which is called an asymmetric inverter [8]. Depending on the DC voltage ratio,
this relationship can be binary [9] or tertiary [10], the latter being the most documented.

Some advantages of asymmetric inverters are: (i) generates an AC output voltage with
low THD (<3%), when DC voltage ratio is tertiary, 1:3:9, with a reduced number of power
cells and suitable modulation technique [10,11], (ii) minimize the switching frequency of
semiconductors devices, and (iii) use effectively use the blocking characteristics of each
device used in the power converter [12].

Despite these significant advantages, asymmetric inverters have the following disad-
vantages: (i) many isolated DC sources are required, this will depend on the number of
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output voltage levels [13], (ii) asymmetric power distribution, due to different DC voltages
in the power cells [14], (iii) loss of modularity, due to its different values at their DC volt-
ages [15], and (iv) depending on the DC voltage ratios, the existence of power flow between
its power cells is possible, regardless of the type of load that the asymmetric inverter feeds,
in specific when DC voltage ratio is trinary. The most traditional modulation technique
used in trinary asymmetric inverters is (Nearest Level Modulation) NLM, but it generates
the drawback indicated above. Thus, the use of this type of modulation in AC drives can
be a problem, complicating the topology and/or its control [16–19].

Solutions to the last drawback above indicated are found in the literature as in [20],
asymmetric inverters with 13 voltage levels have also been used [21], as well as the adequate
DC voltage ratio [22], but in all cases, the THD of the AC output voltage is not optimal.
On the other hand, a modulation technique with minimization of the output voltage THD
has been developed for an asymmetric inverter with 15 levels [23], in the same way for an
asymmetric inverter with 27 levels [24], both cases without flow of power from the load to
the inverters.

A point that is not considered in this work is the economic one. However, the increase
in the output voltage levels has a close relationship with reducing its harmonic content
and low THD, but the economic cost is not considered to achieve these desired technical
characteristics. The economic impact generated by the use and maintenance of a multilevel
converter, in this case asymmetric, must be considered, in addition to its installation. Fur-
thermore, when designing the converter, the number of components must be taken into
account, such as: switches, drivers, heatsinks, voltage sensors, filters (if necessary) according
to the converter’s power levels. A methodology for the above is explained in [25].

This work analyzes the 27-level single-phase asymmetric inverter without regenera-
tion [24], Figure 1. It considers the quality of its output voltage waveform va(t) THD and its
efficiency, evaluating the semiconductors losses before the variations of modulation index,
variation of the DC voltage in the power cells, and variation of the power factor of the load
that this inverter feeds. All of the above, in steady-state. Transient state analysis is not
considered in this work because under this condition, the physical variables must have
their limits both in value and time, such as blocking voltage, recovery current, dissipated
power, collector current in the IGBT, and voltage and current in the load, etc. Furthermore,
the modulation strategy analyzed considers the THD’s minimization in the voltage at
the load, which is calculated for a steady-state waveform. To demonstrate the theoretical
analyzes, simulation and experimental results will be shown.
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The manuscript is organized as follows; Section 2 explained the methodology used
to computed the efficiency in 27 Levels Single-Phase Asymmetric Inverter without Re-
generation, the Section 3 shows the topology used in this study. Section 4 analyzes the
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switching frequency in the semiconductor devices, which depends on the modulation
technique used in each power cell. Then, Section 5 presents the semiconductors losses.
These losses are divided into two: (i) switching losses and (ii) conduction losses; both
depend on the semiconductors devices parameters, the operating point of each power cell,
and the modulation technique. In Section 6, simulated results are displayed for steady-state
and disturbances, and in Section 7, experimental results are presented. Finally, in Section 8,
the conclusions of the work are explained.

2. Methodology

To estimate efficiency, based on semiconductors losses, in the 27 Level Single-Phase
Asymmetric Inverter without Regeneration, it is necessary to know specific parameters
and operating conditions of the power converter.

The first is necessary to know the operating point of the power converter and the
topology. In this case, these variables depend on the power cell, VDCi, IDCi, vai, (with i = 1,
2, 3), and others are common of the power cell, as load parameters (ZL, RL, LL, θ) and load
current IL.

The second step is mandatory to know the parameters of the semiconductor. In this
case, IGBT is used in all power cells because the VDC values are not high (experimental
results with low power prototype). These parameters are used to characterize the IGBT
turn-on, IGBT turn-off, and diode turn-off.

The third step is to analyze the modulation technique used in the power converter.
In particular is interesting to obtain the switching frequency device in function of index
modulation. In asymmetric inverters, this parameter depends on the power cell because
the firing pattern is not the same between them.

The fourth step is to analyze the modulation technique but considering the load
that feeds. Assuming that the asymmetric inverter feeds an AC motor, the simplified
steady-state behavior is represented as RL load. Thus, the conduction time inside the
semiconductor device depends on the θ of the load. When the voltage and current load has
the same sign, IGBT is on, but the voltage and current do not have the same sign; the diode
is on.

In the fifth step, the energy dissipated is estimated in the semiconductor devices
considering [26], and finally the sixth step, the efficiency is computed.

The summary methodology is depicted in Figure 2.
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3. Topology

Figure 1a, is shown the topology used for the asymmetric inverter. It is based on CHB,
in this case, by 3 H-bridge inverters connected in cascade. Using equal DC voltages, the
AC output voltage has seven levels. An alternative is to use different DC voltage ratios to
obtain a greater number of voltage levels at the output AC voltage.

Using a 1: 3: 9 trinary type DC voltage ratio, va(t) has 27 levels, obtaining a low THD.
Commonly for this type of asymmetric inverter, the NLM modulation technique is used,
which generates power flow between the power cells, Figure 3a, for specific values of the
modulation index, regardless of the type of load it feeds [16–19]. The use of AFE rectifiers
or dissipation resistors is necessary for specific applications, such as AC drives.
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An alternative is the use of an asymmetric inverter with a trinary DC voltage ratio,
1:3:9, where the calculation of the αi is done by minimizing the THD of the AC voltage,
Figure 1b, considering as limitation that the voltages of each inverter vai,1, i = 1, 2, 3, are
greater than or equal to zero. Avoiding the existence of regeneration [24], Figure 3b, but
obtaining an output voltage with low THD (<3.0% for m = 1.0), Figure 1c. This solution
eliminates the flow of power between the power cells, simplifying the converter’s topology
and control.

4. Semiconductors Losses
4.1. Switching Losses

The switching process in semiconductor devices is not-ideal Figure 4, as shown in [27].
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In asymmetric inverters, the semiconductor device used in each power cell depends
on the value of the DC voltage (blocking voltage) and the switching frequency, according
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to the switching pattern proposed by the modulation technique. Therefore, each power cell
should have a different semiconductor device.

Due to the switches available for experimental results, only IGBTs are considered to
analyze switching losses.

The losses in a switching period depend on the following factors: (i) the characteristics
of the diode (reverse recovery time and current peak), (ii) characteristics of the IGBT (rise
and fall time, tail time and tail current), and (iii) stray inductance. The diodes used in
modern IGBTs are fast recovery diodes; thus, the losses due to switching on the diode are
less than 1% compared to the losses due to switching off the diode [28]; they are neglected
in the analysis. The loss estimation considers the IGBT switching on, the IGBT switching
off, and the losses due to the diode switching off, as reviewed in [26].

4.2. Conduction Losses

In a semiconductor device, the conduction losses depend on the saturation voltage
vsat, and the current flowing through it [29]. A first-order approximation is used to model
the saturation voltage, considering threshold voltage VT, and series resistance RT, thus,

vsat(t) = VT + RT ·i(t) (1)

Then, the average power dissipated in the conduction of the semiconductors at the
fundamental frequency is given by,

PCOND = VT ·IAVG + RT ·I2
RMS (2)

where IAVG corresponds to the average value of the current flowing through the semi-
conductor, and IRMS is the RMS value of the semiconductor current. Finally, the energy
dissipated during a period is,

ECOND = PCOND·TCOND (3)

where TCOND is the conduction time of the semiconductor. In this work (3) is used to
calculate conduction losses.

5. Switching Frequency

In each power cell of an asymmetric inverter, the output voltage is different, Figure 1b.
This is to achieve full AC output voltage, with a high amount of levels and a low THD,
Figure 1c. Due to this, the switching frequency of semiconductor devices is different for
each power cell.

The switching frequency of a semiconductor device depends on the modulation index
of the modulation technique. As the modulation index m decreases, the THD of the AC
output voltage increases, Figure 5a. This is due to the disappearance of the firing angles
αi; they tend to a 90◦. Consequently, the inverter’s levels of the total output voltage
are decreasing.

The main inverter has a semiconductor device switching frequency (fswdev) of 50 Hz,
until m = 0.33; in the remaining two secondary inverters (named in this way for the power
supply to the load), their switching frequencies will depend on the pattern of firing of
semiconductors and index modulation, Figure 6. For the secondary inverters of 27-level
single-phase inverter without regeneration, the second inverter has fswdev = 250 Hz, and for
the third inverter, fswdev = 850 Hz, the indicated values are for m = 1.0, where the switching
frequency is maximum, and THD is minimum, Figure 5b. The gating pattern for m = 1.0
is shown in Figure 6a. As indicated aforementioned, when m decreases, the switching
frequency changes in the semiconductor device, in Figure 6b shown the gating pattern
for m = 0.7. Similarly, the gating signal activates the semiconductor device, in this case,
IGBT with diode in antiparallel, but the activation of one of these two will depend on the
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voltage’s polarity the current in the load. If the polarity of the voltage and current load is
the same, IGBT is on, otherwise the diode is turned on.
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6. Simulated Results
6.1. Steady-State Analysis

The asymmetric inverter of 27-level single-phase inverter without regeneration is
analyzed, simulated in PSIM 2020a® [30]. The simulation’s schematic is shown in Figure 7,
and the parameters are shown in Table 1, and the values of the αi used are presented in
Table 2.
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Table 1. Simulated parameters.

m VDC1 VDC2 VDC3 va,1 va1,1 va2,1 va3,1 ia,1 va,rms ia,rms RL LL

1.0
900[V] 300[V] 100[V]

1318[V] 1077[V] 206.9[V] 34.75[V] 9.265[A] 1319[V] 9.268[A]
114.1[Ω] 27.23[mH]0.7 923.1[V] 923.1[V] 0.000[V] 0.000[V] 6.484[A] 924.4[V] 6.484[A]

Table 2. Firing angles.

m α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13

1.0 2.13◦ 6.48◦ 10.9◦ 15.2◦ 19.9◦ 24.8◦ 29.6◦ 34.7◦ 40.2◦ 46.1◦ 52.7◦ 60.6◦ 71.1◦

0.7 3.00◦ 8.92◦ 15.4◦ 21.7◦ 36.3◦ 36.3◦ 44.1◦ 51.4◦ 65.3◦ 90.0◦ 90.0◦ 90.0◦ 90.0◦

In Figure 8a is shown va(t). This voltage has 27 levels, with a THD of 3%. The load
current is highly sinusoidal with a THD less than 1.0%. The spectrum harmonic of the
load voltage is shown in Figure 8b, where the harmonics’ amplitude does not exceed 1.0%.
Figure 8c shows the output voltage in each power cells vai(t); these are in phase allowing
the harmonics generated by them to cancel each other, not appearing in the load voltage
va(t); this condition is imposed by the THD minimization algorithm [24]. The above can be
verified by Figure 8b,d.

To check the modulation technique proposed in [24], it is simulated again for m = 0.7.
The output voltage va(t) is shown, Figure 9a, which has 17 levels, a low harmonic content
with a THD of 5.3% Figure 9b, and the load current is sinusoidal with a low THD of 1.3%.
The NLM modulation technique presents current circulation between the inverters with
lower DC link voltage [16–19], Figure 3a; this is because the phase between the voltage and
the load current are 180◦ out of phase, even though the load is purely resistive. In the case
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of the analyzed technique [21], the inverter does not present current circulation between
the inverters, Figure 9c; this agrees with what is shown in Figure 3b.
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It can be appreciated, the value of the fundamental is zero for va2(n) and va3(n) for the
value of m = 0.7, Figure 9d; this is imposed by the modulation technique proposed in [24].
With this, it is avoided that the asymmetric inverter’s secondary power cells have a power
flow between them. Avoiding regeneration.

For the analysis of semiconductor losses, the IRG4BC20UDPBF IGBT switch [31] is
considered. IGBTs are subjected to different dc voltages due to the voltage ratio used. This
also determines the type of output voltage that they will generate, defining the switching
frequency of the IGBTs.

The 27-level single-phase asymmetric inverter without regeneration has an efficiency
of 96.22% for m = 1.0 and load power factor 0.8(i), with a THD of va(t) of 3%, considered
the values shown in Tables 1 and 2. The semiconductor losses distribution in Figure 10a is
shown for the conditions listed above. It extends the previous analysis for the entire range of
the modulation index 0.0 < m < 1.0, but the same load, Figure 10b. It is appreciated that the
27 levels single-phase asymmetric inverter without regeneration for a range 0.8 < m < 1.0,
the output voltage has a THD < 5%, with an efficiency close to 96%.
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6.2. Analysis before Disturbances

In an AC electrical system, voltage variations are allowed within a range of ±10%,
where the equipment must be work. In applications such as AC drives, the DC voltage
link can have a ripple; this depends on several factors, such as the power converter’s
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topology, the DC capacitor’s size, the type of load fed, and the operating point of the power
converter [32].

Variations in AC voltage supply affect the DC voltage link in power cells. This
dramatically affects the modulation technique analyzed in this work, not allowing the
generation of the different output voltage levels, increasing its THD. We focus on analyzing
how the DC voltage variation affects the efficiency of the 27 levels single-phase asymmetric
inverter without regeneration.

As can be seen in Figure 11a, the DC voltage variation is ±10% [33], for a value of m
that varies between 0.0 < m < 1.0. Despite the DC voltage variation in the power cells, the
asymmetric inverter’s efficiency, for the same value of m, does not change more than 0.5%.
This is because this variation mainly affects switching losses, which are not very significant
regarding conduction losses for the modulation technique analyzed.
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On the other hand, a variation of the load power factor that can supply this 27 levels
single-phase asymmetric inverter without regeneration is analyzed for any value of m
between 0.0 < m < 1.0, Figure 11b.

The lowest efficiency is when the inverter feeds a pure resistive load, the worst case
is an efficiency of 91.81% and improves as the load has more inductive. This behavior is
explained below.

Depending on the load power factor, there are instances of time where each power
cell’s output voltage does not have the same polarity as the load current. This generates that
the IGBT does not conduct for these moments, but rather its diode connected in antiparallel.
According to the datasheet parameters, it consumes less energy in its conduction state than
the IGBT [31].

Additionally, it should be considered that conduction losses are of greater importance
for the modulation technique analyzed in this work, compared to switching losses.

7. Experimental Results

Finally, to verify what was theoretically exposed, a low-power experimental prototype
was implemented. The schematic is very similar, shown in Figure 7. The parameters of the
experimental results are shown in Table 3. The DSP TMS320C6713 is used to generate the
firing pulses to activate the IRG4BC20UDPBF IGBT switch [31]. Unlike other jobs that use a
look-up table. The authors use a polynomial approximation of the seventh degree to obtain
the firing angles, which depends on the modulation index and the desired phase angle.
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Table 3. Experimental parameters.

m VDC1 VDC2 VDC3 va,1 va1,1 va2,1 va3,1 ia,1 va,rms ia,rms RL LL

1.0
90[V] 30[V] 10[V]

132.1[V] 109.1[V] 20.58[V] 6.769[V] 1.750[A] 132.1[V] 1.792[A]
58[Ω] 138[mH]0.7 92.88[V] 93.33[V] 1.476[V] 1.223[V] 1.279[A] 93.07[V] 1.285[A]

Figure 12 is depicted the experimental results for m = 1.0. The output voltage va(t),
has a THD of 3.45%, and the load current ia(t) is almost sinusoidal with a THD < 2%,
Figure 12a. The voltage and current load is very similar to that shown in Figure 8a. The
harmonic spectrum of va(t) is the depicted in Figure 12b, this has low-frequency harmonics,
but amplitude is less than 2%. Compared with Figure 8b, it is slightly different due to
the sampling time used, TS = 50 [µS]. With this TS, the amount of points for a period is
400, with a resolution of 0.9◦, affecting the firing pulses for semiconductor devices. Then,
the individual voltages vai(t) and load current ia(t) are depicted in Figure 12c; these are
similar are shown in Figure 8c. As the asymmetric inverter feeds an RL load with a power
factor of 0.8 (i), in some instances, the load current and individual voltages have not the
same polarity; with this, the antiparallel diode in the IGBT is turned on. Thus, the diode’s
forward voltage is significant concerning VDC2 and VDC3, Table 3, generating an offset DC
in va2(t) and va3(t). Finally, Figure 12d shown the harmonic spectrum of the individual
voltages vai(t); these are similar to the ones shown in Figure 8d.
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Figure 12. Experimental key waveforms for m = 1.0. (a) output voltage va(t) and load current ia(t), (b) Harmonic spectrum
for output voltage va(n), (c) Individual inverter output voltages vai(t) and load current ia(t), (d) Harmonic spectrum va1(n),
va2(n), and va3(n).
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The second test is for m = 0.7, where the NLM strategy presents regeneration for
27 levels asymmetric inverter, and the analyzed technique does not. Figure 13a shows the
output voltage va(t) and load current ia(t), which is similar to the one shown in Figure 9a,
va(t) has 17 levels and low harmonic content with a 6.5% THD. The harmonic spectrum of
va(t) in Figure 13b, is similar at shown in Figure 9b. As mentioned above, the difference
between the simulated and experimental results is due to the resolution of 0.9◦ by point.
The individual voltages vai(t) and load current ia(t) are depicted in Figure 13c; the phase
shift present between the voltage and current is due to the load power factor. In this case,
the NLM approach presents a circulating current, creating regeneration in the lower DC
voltage inverters. Figure 13d shows the experimental spectra of va1(n), va2(n) and va3(n),
where the fundamental component of va2(n) and va3(n) is zero. On the other hand, the
diode voltage drop in the IGBT is significant, due to the low DC voltages used in the
experimental setup. Generating a slight displacement in va2(t) and va3(t). Despite the
above, the modulation technique avoids power flow between the power cells with lower
DC voltage.
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8. Conclusions

An efficiency analysis has been performed to 27-level single-phase asymmetric inverter
without regeneration, including THD of the output voltage. The analysis considers THD
of the output voltage va(t) and the semiconductors losses as a function of the modulation
index, DC voltage variation, and load power factor variation.
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The 27 levels single-phase asymmetric inverter without regeneration for m = 1.0 and
load power factor 0.8(i), has an efficiency η = 96.22%, with a THD of va(t) 3%. Considering
a wider modulation index range, 0.8 < m < 1.0, the efficiency is near (η ≈ 96%) with a THD
of va(t) < 5%. Furthermore, the analysis shows that when faced with variations in each
power cell’s DC voltage, the efficiency does not changes much. The opposite case is with
variations in the load power factor, where the efficiency can vary up to 5%, the worst case
being an efficiency of 91.81% for m = 0.01.

With this background, the 27-level single-phase asymmetric inverter, with a modula-
tion technique that prevents the flow of power between its power cells, is a good alternative
for low and medium voltage applications, thanks to its high efficiency and output voltage
with high quality.
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