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Abstract: A crucial step in nonintrusive load monitoring (NILM) is feature extraction, which consists
of signal processing techniques to extract features from voltage and current signals. This paper
presents a new time-frequency feature based on Stockwell transform. The extracted features aim to
describe the shape of the current transient signal by applying an energy measure on the fundamental
and the harmonic frequency voices. In order to validate the proposed methodology, classical machine
learning tools are applied (k-NN and decision tree classifiers) on two existing datasets (Controlled
On/Off Loads Library (COOLL) and Home Equipment Laboratory Dataset (HELD1)). The classifica-
tion rates achieved are clearly higher than that for other related studies in the literature, with 99.52%
and 96.92% classification rates for the COOLL and HELD1 datasets, respectively.

Keywords: nonintrusive load monitoring (NILM); time-frequency transform; Stockwell transform;
harmonics; feature extraction

1. Introduction

The massive use of electrical appliances in industrial, residential, and commercial
buildings continues to increase. This fact requires a continuous increase in energy produc-
tion, with the growth in electric energy needs in the last decade reaching 3.4% per year [1,2].
In addition, the diversity of the devices used has increased, especially with the remarkable
evolution of technology, most notably in the last few decades. This truth imposes an urgent
need to control the energy consumption related to these loads in order to more closely
monitor consumption and to act when necessary in the case of anomalies. Some studies
estimate the ability to save 20% of the energy consumed if we monitor energy consumption
in real time so that we can act in cases of anomalies, most notably in households [3,4].
According to [5], the best way to optimize energy savings is to monitor the consumption per
device [1]. This essentially requires load desegregation techniques that can be performed
by intrusive or nonintrusive load monitoring methods (ILM or NILM) [6]. Nonintrusive
load monitoring (NILM) consists of determining the individual energy consumption of
appliances connected to the electrical grid [7]. This can be done by measuring current
and voltage signals from one measurement point in order to apply signal processing and
machine learning methods to desegregate appliances. The nonintrusive mode is therefore
simpler to set up, contrary to the intrusive mode in which measuring equipment must be
installed next to each type of load and requires a large number of measuring points. One
crucial step in the NILM is feature extraction from voltage and current signals [8]. The
objective is to obtain relevant features capable of discriminating between the different types
of loads (e.g., linear, nonlinear, and multi-state loads ) and at the same time have physical
meanings. The NILM features extracted can be divided into two categories: the steady state
and transient state. The authors in [8] gave a summary of the proposed NILM features used
in the literature. Beyond classical features used for NILM as the step changes in real power
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(P) and reactive power (Q) from steady stage [7,9], which quickly showed their limits in
the case of nonlinear loads or in the detection of low-power loads, harmonic-based features
were massively explored to remedy to these limitations as macroscopic transients combined
with harmonic descriptors [10–12]. These also faced certain limitations, particularly that
they do not allow a user to discriminate efficiently the nonlinear and multi-state loads [8].
On the other hand, the time-frequency tools proved their utility in studying nonstationary
signals, for which statistical characteristics such as a current transient change with time.
In the past, time-frequency tools [13–17] were used in the NILM. These studies tried to
extract statistical descriptors of time-frequency representation by describing the spectral
envelope via short-time Fourier transform (STFT) [18] or by extracting the energy of the
wavelet coefficients in each discrete wavelet transform (DWT) level, but none of them
focused on the shape of the transient at targeted frequencies, which can be directly related
to the physical nature of the load. Other studies were interested in the shape of the current
raw signals [19] or the use of VI trajectories in order to more robustly represent the shape
of the current and the voltage signals [20]. However, these approaches still suffered from
limitations related to the fact that the descriptors are based on the time domain, which can
be very sensitive to noise.

Therefore, the aim of this study is to propose qualitative features from the time-
frequency domain in order to describe the shape of the electrical transient current sig-
nals on a specified frequency range. In other words, we focus on targeted features
based on the transient current signals as opposed to traditional approaches consisting
of extracting descriptors massively [21] or new blind approaches based on deep learn-
ing [22–24]. Moreover, traditional classifiers are used to validate the proposed features
since the objective of this paper is not to bring originality to the classification tools but
rather to focus on evaluation of the new proposed features. Concerning the available
data, for a few years, different datasets have been released, most of them containing
signals sampled at low frequencies (1 Hz or less). The low sampling frequency limits
the study of descriptors based on harmonics. However, other datasets do exist in the
literature with higher sampling frequencies [25–30] to study the transient state. In this
paper, in order to validate the proposed approach, we test the proposed features on two
datasets: Controlled On/Off Loads Library (COOLL) [26] and Home Equipment Labo-
ratory Dataset (HELD1) [29]. The description of these two datasets are given later. This
paper is organized as follow: Section 2 presents the proposed time-frequency features,
Section 3 describes the classification tools used in this study in order to evaluate the pro-
posed features. Section 4 is consecrated to the application of the proposed features on
two existing datasets: the COOLL [26] and HELD1 datasets [29]. The obtained results are
compared with related results in the literature [31] for the COOLL and [29] HELD1 datasets.
Finally, Section 5 presents the conclusion and some perspectives related to future work.

2. The Proposed Time-Frequency Features

In this section, we give a brief overview on Stockwell transform before presenting the
proposed features based on Shannon energy applied on time-frequency.

2.1. The Stockwell Transform (ST)

The proposed time-frequency features are based on a time-frequency analysis that can
be obtained with S-transform [32], defined as a hybrid version between continuous wavelet
transform (CWT) and short-time Fourier transform (STFT) [33]. It improves frequency
resolution at low frequencies and time resolution at high frequencies in time-frequency
representation. For a given signal x(t) ∈ L2(R), the S-transform can be defined as follows:

STx(τ, f ) =
∫ +∞

−∞
x(t)w(τ − t, f )e−2iπ f t dt (1)

where τ ∈ R is a time translation and w is a Gaussian window function of time and
frequency. It is chosen as follows:
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w(t, f ) =
1

σ( f )
√

2π
e−t2/2σ( f )2

(2)

The S-transform is a multi-resolution transform where the dilation σ is a function of
frequency and is defined as follows:

σ( f ) =
1
| f | f ∈ R∗ (3)

Using this logic for the variation in window width as a function of frequency, we favor
temporal resolution for high frequencies since the width of the window is narrower in this
case and vice versa for low frequencies.

2.2. The Proposed Time-Frequency Features

We propose a set of features, denoted β fn that characterize the transient signal.
The values β fn depend on the shape of the transient signal, which is directly related
to the physical nature of the load. Therefore, β fn is calculated on the frequency voices
denoted by fn (fundamental and harmonics frequencies), which can be given as fn =
{50, 150, 250, 350, . . . n× 50 Hz }. The proposed method is summarized in Figure 1.

.

.

.

TF Features

Time-Frequency
       matrix

x(t)

Figure 1. Scheme for extracting βn features from the time-frequency matrix.

The voice can be seen as the local instantaneous frequency of a signal [32]. By rewriting
Equation (1) as a convolution product between the signal x(t) and the Gaussian window
w(t) for a particular frequency fn, the voice calculated on a signal x(t) can be written
as follows:

STx(t, fn) =
∫ +∞

−∞
X(α + fn)e2π2α2/ f 2

ei2παt dα (4)

where α is related to the frequency translation of the spectrum of signal x(t) and X( f )
is the Fourier transform of the signal x(t). This rewriting allows us to take advantage
of the Fast Fourier Transform (FFT) algorithm in terms of low computing complexity to
generate the time-frequency coefficients. For each localized time and frequency region in
the time-frequency plan, the corresponding complex number can be given as follows:

STx(τ, fn) = A(τ, fn)eiφ(τ, fn) (5)

Before computing the features β fn , the voice related to fn needs to be normalized
as follows:

STx(t, fn) =
|STx(t, fn)| −min|STx(t, fn)|

max(|STx(t, fn)|)−min(|STx(t, fn)|)
(6)

The β fn feature at a specified frequency fn is then computed by applying the Shannon
energy on the module of the corresponding voice:

β fn = −
∫ +∞

−∞
STx(t, fn)

2 log(STx(t, fn)
2)dt (7)
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The logarithmic term in Equation (7) aims to reduce the high and low variation
impacts, which usually correspond to noise, and allow us to reduce the intraclass variations.
Figure 2 shows the variation in the applied energy measure (Shannon energy) on a linear
normalized signal (amplitude varies linearly between 0 and 1). The amplitude of the
signal is emphasized in the transformed signal between amplitudes 0.3 and 0.8 and is
attenuated elsewhere.

Figure 2. Variation of −|STx(t, fn)|2 log(|STx(t, fn)|2) as a function of the normalized
voice STx(t, fn).

The advantage of this approach is the rigorous summary of the shape of each enve-
lope of the transient current at the fundamental frequency and its harmonics by a single
discriminant feature instead of using an exhaustive feature extraction process.

3. Electrical Load Classification Methodology

To test the performance of the proposed features, we tested them on two distinct
databases: COOLL [26] and HELD1 [29]. A brief description of each database and the
corresponding results are given in the following sections. The calculated time-frequency
features are β50, β150 and β250. Taking into account the nature of the loads used in the
two bases, it is not necessary to delve further in the harmonic features, but this can be
adapted depending on the data and the nature of the used loads. We added to the set of
β features the Pmax feature, which is the maximum value of active power in the transient
period. Therefore, the total set of transient features F used for evaluation in this paper can
be given as follows:

F = {Pmax, β50, β150, β250} (8)

To evaluate the proposed features, two classical supervised classifiers are used: the
k-NN classifier with the euclidean distance and the decision tree with the Gini splitting
criterion. For K-NN classifiers, 4 values of K are tested (K = 3, 5, 7, and 9). To avoid a
random choice from the pair training and validation sets, a cross validation strategy is
applied. More precisely, a 10-fold cross validation is used for both classifiers to calculate the
classification rate. Therefore, each model is trained using 9 of the folds as training data and
the remaining fold is used for the test. Then, a loop is processed to ensure that each fold is
used as test data. This validation is repeated 100 times for each feature’s combination, and
the corresponding results are presented in Section 4.

Applied Analyzing Time-Window

In order to calculate the size of the time window in which we calculate the proposed
features, a threshold on the active power is applied. The value of the threshold is set
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empirically set to 1.3 W. This value can be adjusted depending on the power of tested
appliances. The threshold defines the start and the end instants τ1 and τ2 of the time
window, which correspond to the beginning and the end of the transient period.

Figure 3 shows the transient current envelope extracted from the fundamental fre-
quency 50 Hz based on a theoretical model presented in [5] with τ1 and τ2 instants.

Time (s)

A
m

pl
it

ud
e 

(A
)

Figure 3. Example of simulated frequency shape of transient current at the fundamental frequency
50 Hz.

Figure 4 shows the result of the theoretical envelopes E(t, 50), E(t, 150), and E(t, 250)
calculated from the same transient model [5].

Time (s)
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de
 (
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)

Figure 4. Simulated transient current using model [5] and its frequency shape.

We highlight here that the proposed features in this study do not require any model to
estimate them. They are based only on the measured current signal.

4. Results and Discussions
4.1. Datasets Descriptions
4.1.1. COOLL Dataset

Controlled On/Off Loads Library (COOLL) is a high-sampled current and voltage
measurement dataset for individual appliance consumption. In total, there are 42 appli-
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ances of 12 types measured with 100 kHz sampling frequency. The total measurements in
the COOLL dataset is 840 current signals. For each appliance, 20 controlled measurements
were made. Each measurement corresponds to a specific action delay ranging from 0 to
19 ms with a step of 1 ms in order to cover the whole time-cycle duration of the 50 Hz main
voltage [26]. This base is very useful for testing the robustness of the proposed features
against the initial conditions that might affect the waveform of turn-on transients.

4.1.2. HELD1 Dataset

The Home Equipment Laboratory Dataset (HELD1) contains current and voltage
signals of turn on and turn off events from 14 different appliances corresponding to
18 different consumers [29]. The sampling rate is 4 kHz, and the total used signatures in
this paper is 1365 transient current signals corresponding to 100 on/off events for each
device (except for the white refrigerator, where there are only 65 measured events).

4.2. Classification Results
4.2.1. COOLL

The classification rate for the COOLL dataset increases when combining the β features
(see Figure 5). Pmax alone gives a high classification rate (89.88%) already with the K-NN
for K = 9; see Table 1. It is important to point out that the power-based features are
inherently very discriminating (except for load with very close powers). The combination
of betas alone without power information show comparable performances (89.88% with
the decision tree). This shows the efficiency in describing the transient waveform, which is
completely decoupled from power information. The K-NN performance decreases when K
increases for the combined β50, β150, and β250 features (see Figure 5). A reverse phenomena
occurs for individual features (Pmax or β50 alone). The combination of both information
(Pmax, β50) reaches the highest performance: 99.52%, which is higher than the classification
rate reached in the literature (98.57%) based on the same dataset in which the authors apply
features from a transient model and use the K-NN classifier to classify loads [31]. The
confusion matrix for a selected iteration in the K-fold cross validation process obtained on
the COOLL dataset shows errors where the Drill load is classified as a Hedge trimmer (see
Figure 6). The addition of betas corresponding to higher harmonic shapes does not improve
the classification rate; this is strongly linked to the nature of the loads in the dataset.

Table 1. Classification rates of the proposed transient features combined with K-NN and decision tree
classifiers applied to Controlled On/Off Loads Library (COOLL) and Home Equipment Laboratory
Dataset (HELD1) datasets.

Classification Rate (%)

Datasets Features k-NN Tree

3 5 7 9

COOLL

Pmax 88.33 88.93 89.76 89.88 88.1
Pmax, B50 98.93 98.93 98.69 98.45 99.52

Pmax, B50, B150 98.45 98.21 97.5 97.02 99.17
Pmax, B50, B150, B250 98.45 98.21 97.5 97.02 99.17

HELD1

Pmax 81.47 82.27 82.71 82.71 81.47
Pmax, B50 95.53 94.8 94.36 94.36 95.38

Pmax, B50, B150 95.02 94.87 94.65 94.65 96.92
Pmax, B50, B150, B250 95.02 94.87 94.65 94.65 96.92
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k-NN k-NN k-NN k-NN

Figure 5. Boxplots of the classification rates for the different tested feature combinations and classi-
fiers (100 repeated K-fold cross validation in each case).



Energies 2021, 14, 1437 8 of 11

103

2

6

4

3

40

37

4

2

3

71

2

8

3

50

9

80

20

3

2

16

5

2

4

8

57

7

5

2

1

124

4

1

2

2

3

10

135

 85.83 %

  2.50 %

 10.00 %

  2.50 %

  2.14 %

100.00 %

 92.50 %

 20.00 %

  1.43 %

  2.50 %

 88.75 %

  3.33 %

  5.00 %

  2.50 %

 83.33 %

  5.62 %

100.00 %

100.00 %

  1.88 %

  5.00 %

 80.00 %

 25.00 %

  1.25 %

 20.00 %

 40.00 %

 95.00 %

  5.83 %

  6.25 %

  3.33 %

  5.00 %

 77.50 %

  3.33 %

  2.50 %

  2.50 %

 10.00 %

  5.00 %

  6.25 %

 96.43 %
Vacuum_cleaner

Saw

Sander

Router

Planer

Paint_stripper

Lamp

Hedge_trimmer

Hair_drayer

Grinder

Fan

Drill

Drill Fa
n

Grin
de

r

Hair
_d

ra
ye

r

Hed
ge

_t
rim

m
er

La
m

p

Pain
t_

str
ipp

er

Plan
er

Rou
te

r

San
de

r
Saw

Vac
uu

m
_c

lea
ne

r

Predicted Classes

Tr
ue

 C
la

ss
es

COOLL with Pmax

100

74

1

5

18

99

97

10

3

4

92

17

2

47

10

1

1

8

87

8

8

82

4

5

95

5

100

100

2

9

100

1

98

72

100.0 %

 74.0 %

  1.0 %

  5.0 %

 18.0 %

 99.0 %

 97.0 %

 15.4 %

  3.0 %

  4.0 %

 92.0 %

 17.0 %

  2.0 %

 72.3 %

 10.0 %

  1.0 %

  1.0 %

 12.3 %

 87.0 %

  8.0 %

  8.0 %

 82.0 %

  4.0 %

  5.0 %

 95.0 %

  5.0 %

100.0 %

100.0 %

  2.0 %

  9.0 %

100.0 %

  1.0 %

 98.0 %

 72.0 %
023 − LED lamp

022 − Multifunction
 Tool (Dremel)

021 − Fan

019 − Hairdryer 
(setting 1)

017 − Kettle

016 − Light 
Bulb Box

015 − Fluorescent 
Lamp

014 − Refrigerator 
(blue)

013 − Refrigerator 
(white)

011 − 
Desk Lamp

009 − Heat Gun 
(setting 1)

007 − Hair 
Straightener

003 − 
Radio

001 − 
Toaster

00
1 

− 

To
as

te
r

00
3 

− 

Rad
io

00
7 

− 
Hair

 

Stra
igh

te
ne

r

00
9 

− 
Hea

t G
un

 

(s
et

tin
g 

1)
01

1 
− 

Des
k L

am
p

01
3 

− 
Ref

rig
er

at
or

 

(w
hit

e)

01
4 

− 
Ref

rig
er

at
or

 

(b
lue

)

01
5 

− 
Fluo

re
sc

en
t 

La
m

p

01
6 

− 
Lig

ht
 

Bulb
 B

ox

01
7 

− 
Ket

tle

01
9 

− 
Hair

dr
ye

r 

(s
et

tin
g 

1)

02
1 

− 
Fa

n

02
2 

− 
M

ult
ifu

nc
tio

n

 To
ol 

(D
re

m
el)

02
3 

− 
LE

D la
m

p

Predicted Classes

Tr
ue

 C
la

ss
es

Held1 with Pmax

118

40

40

80

60

80

20

20

20

60

2

160

140

 98.33 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

  1.67 %

100.00 %

100.00 %
Vacuum_cleaner

Saw

Sander

Router

Planer

Paint_stripper

Lamp

Hedge_trimmer

Hair_drayer

Grinder

Fan

Drill

Drill Fa
n

Grin
de

r

Hair
_d

ra
ye

r

Hed
ge

_t
rim

m
er

La
m

p

Pain
t_

str
ipp

er

Plan
er

Rou
te

r

San
de

r
Saw

Vac
uu

m
_c

lea
ne

r

Predicted Classes

Tr
ue

 C
la

ss
es

COOLL with Pmax,β50

100

100

1

4

100

100

1

100

60

4

4

96

97

1

100

100

100

100

2

100

2

93

100.00 %

100.00 %

  1.00 %

  4.00 %

100.00 %

100.00 %

  1.54 %

100.00 %

 92.31 %

  4.00 %

  6.15 %

 96.00 %

 97.00 %

  1.00 %

100.00 %

100.00 %

100.00 %

100.00 %

  2.00 %

100.00 %

  2.00 %

 93.00 %
023 − LED lamp

022 − Multifunction
 Tool (Dremel)

021 − Fan

019 − Hairdryer 
(setting 1)

017 − Kettle

016 − Light 
Bulb Box

015 − Fluorescent 
Lamp

014 − Refrigerator 
(blue)

013 − Refrigerator 
(white)

011 − 
Desk Lamp

009 − Heat Gun 
(setting 1)

007 − Hair 
Straightener

003 − 
Radio

001 − 
Toaster

02
3 

− 
LE

D la
m

p

02
2 

− 
M

ult
ifu

nc
tio

n

 To
ol 

(D
re

m
el)

02
1 

− 
Fa

n

01
9 

− 
Hair

dr
ye

r 

(s
et

tin
g 

1)

01
7 

− 
Ket

tle

01
6 

− 
Lig

ht
 

Bulb
 B

ox

01
5 

− 
Fluo

re
sc

en
t 

La
m

p

01
4 

− 
Ref

rig
er

at
or

 

(b
lue

)

01
3 

− 
Ref

rig
er

at
or

 

(w
hit

e)
01

1 
− 

Des
k L

am
p

00
9 

− 
Hea

t G
un

 

(s
et

tin
g 

1)

00
7 

− 
Hair

 

Stra
igh

te
ne

r
00

3 
− 

Rad
io

00
1 

− 

To
as

te
r

Predicted Classes

Tr
ue

 C
la

ss
es

Held1 with Pmax,β50

118

40

40

80

1

2

60

80

20

20

20

60

160

139

 98.333 %

100.000 %

100.000 %

100.000 %

  0.714 %

  1.667 %

100.000 %

100.000 %

100.000 %

100.000 %

100.000 %

100.000 %

100.000 %

 99.286 %
Vacuum_cleaner

Saw

Sander

Router

Planer

Paint_stripper

Lamp

Hedge_trimmer

Hair_drayer

Grinder

Fan

Drill

Drill Fa
n

Grin
de

r

Hair
_d

ra
ye

r

Hed
ge

_t
rim

m
er

La
m

p

Pain
t_

str
ipp

er

Plan
er

Rou
te

r

San
de

r
Saw

Vac
uu

m
_c

lea
ne

r

Predicted Classes

Tr
ue

 C
la

ss
es

COOLL with Pmax,β50,β150

100

100

1

100

100

100

63

7

2

93

99

100

100

100

100

100

100

100.00 %

100.00 %

  1.00 %

100.00 %

100.00 %

100.00 %

 96.92 %

  7.00 %

  3.08 %

 93.00 %

 99.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %
023 − LED lamp

022 − Multifunction
 Tool (Dremel)

021 − Fan

019 − Hairdryer 
(setting 1)

017 − Kettle

016 − Light 
Bulb Box

015 − Fluorescent 
Lamp

014 − Refrigerator 
(blue)

013 − Refrigerator 
(white)

011 − 
Desk Lamp

009 − Heat Gun 
(setting 1)

007 − Hair 
Straightener

003 − 
Radio

001 − 
Toaster

00
1 

− 

To
as

te
r

00
3 

− 

Rad
io

00
7 

− 
Hair

 

Stra
igh

te
ne

r

00
9 

− 
Hea

t G
un

 

(s
et

tin
g 

1)
01

1 
− 

Des
k L

am
p

01
3 

− 
Ref

rig
er

at
or

 

(w
hit

e)

01
4 

− 
Ref

rig
er

at
or

 

(b
lue

)

01
5 

− 
Fluo

re
sc

en
t 

La
m

p

01
6 

− 
Lig

ht
 

Bulb
 B

ox

01
7 

− 
Ket

tle

01
9 

− 
Hair

dr
ye

r 

(s
et

tin
g 

1)

02
1 

− 
Fa

n

02
2 

− 
M

ult
ifu

nc
tio

n

 To
ol 

(D
re

m
el)

02
3 

− 
LE

D la
m

p

Predicted Classes

Tr
ue

 C
la

ss
es

Held1 with Pmax,β50,β150

118

40

40

80

2

60

80

20

20

20

60

160

140

 98.33 %

100.00 %

100.00 %

100.00 %

  1.67 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %
Vacuum_cleaner

Saw

Sander

Router

Planer

Paint_stripper

Lamp

Hedge_trimmer

Hair_drayer

Grinder

Fan

Drill

Drill Fa
n

Grin
de

r

Hair
_d

ra
ye

r

Hed
ge

_t
rim

m
er

La
m

p

Pain
t_

str
ipp

er

Plan
er

Rou
te

r

San
de

r
Saw

Vac
uu

m
_c

lea
ne

r

Predicted Classes

Tr
ue

 C
la

ss
es

COOLL with Pmax,β50,β150,β250

100

100

1

100

100

100

63

7

2

93

99

100

100

100

100

100

100

100.00 %

100.00 %

  1.00 %

100.00 %

100.00 %

100.00 %

 96.92 %

  7.00 %

  3.08 %

 93.00 %

 99.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %

100.00 %
023 − LED lamp

022 − Multifunction
 Tool (Dremel)

021 − Fan

019 − Hairdryer 
(setting 1)

017 − Kettle

016 − Light 
Bulb Box

015 − Fluorescent 
Lamp

014 − Refrigerator 
(blue)

013 − Refrigerator 
(white)

011 − 
Desk Lamp

009 − Heat Gun 
(setting 1)

007 − Hair 
Straightener

003 − 
Radio

001 − 
Toaster

00
1 

− 

To
as

te
r

00
3 

− 

Rad
io

00
7 

− 
Hair

 

Stra
igh

te
ne

r

00
9 

− 
Hea

t G
un

 

(s
et

tin
g 

1)
01

1 
− 

Des
k L

am
p

01
3 

− 
Ref

rig
er

at
or

 

(w
hit

e)

01
4 

− 
Ref

rig
er

at
or

 

(b
lue

)

01
5 

− 
Fluo

re
sc

en
t 

La
m

p

01
6 

− 
Lig

ht
 

Bulb
 B

ox

01
7 

− 
Ket

tle

01
9 

− 
Hair

dr
ye

r 

(s
et

tin
g 

1)

02
1 

− 
Fa

n

02
2 

− 
M

ult
ifu

nc
tio

n

 To
ol 

(D
re

m
el)

02
3 

− 
LE

D la
m

p

Predicted Classes

Tr
ue

 C
la

ss
es

Held1 with Pmax,β50,β150,β250

Figure 6. Evolution of the confusion matrices for the highest classification rates obtained on COOLL
(left column) and HELD1 (right column) data for different feature combinations and decision
tree classifiers.
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4.2.2. HELD1

As in the case of the COOLL dataset, the classification rate of HELD1 shows an
increasing trend when aggregating the β features. The highest classification rate 96.92% is
reached when combining the Pmax with β50 and β150 features and the decision tree classifier.
For individual features (Pmax and β50) and for couple combined features (β50 and β150, and
Pmax and β50), the K-NN classifier gives better results than the decision tree. The influence
of K for the K-NN is not very significant except for β50, where an improvement in the
performance of the classifier can be seen when k is greater than 5 (see Figure 5). For very
small values of K, the classifier tends to be overfit by trying to classify isolated points. The
same phenomena can be observed for COOLL data and for individual features. The errors
obtained on the HELD1 data are due to the fact that the white refrigerator is classified
7 times as a blue refrigerator and that the last one is classified twice as a white refrigerator
(see Figure 6).

4.2.3. On the Performance of the Proposed Features

In the case of both bases, the proposed features when tested alone show progressive
performance (see Figure 5). As we mentioned before, statistically describing the frequency
voices of the transient phases tells us about the physical nature of the load that is completely
disconnected from the energy consumption information that is expressed by power. Since
the objective of this paper is to explore the advantage of extracting transient phase features,
the power information is calculated as the maximum active power (called Pmax) reached in
the transient phase. In both cases (COOLL and HELD1), when adding Pmax information to
the feature’s vector, it significantly enhances the classification rate. For COOLL dataset,
the improvement is of the order of 10% and 13% for HELD1. The confusion matrices
(see Figure 6) clearly show the contribution of the βn features depending on the nature
of the loads. It seems that, for the HELD1 dataset, it is necessary to increase to β150. The
classification rate obtained with Pmax, β50 is 95.38%, while the results when adding β150
(Pmax, β50, β150) is 96.92%, which is the higher classification rate for this dataset. In contrast,
for the COOLL datset, it is already enough at β50, with the addition of β150 and β250
not improving the results; on the contrary, it deteriorates them slightly from 99.52% for
Pmax, β50 to 99.17% for Pmax, β50, β150 and Pmax, β50, β150, β250. Adding the β250 feature does
not improve the performance for COOLL. This means that the information provided by
the higher β is too noisy and scattered, which may be due essentially to the nature of the
loads that do not have high enough harmonics.

5. Conclusions and Perspectives

This paper presented new transient features based on the time-frequency domain. The
objective of the proposed features ws to characterize the turn-on electrical load transients
by describing the shape of the frequency harmonic voices. The Stockwell transform was
applied in this study to generate the frequency voices. Indeed, other transforms could be
used and compared, but the purpose of this paper was to validate the relevance of the
proposed approach independent of the used time-frequency transform. By combining the
proposed features with Pmax, which is the maximum active power in the window applied
on the transient phase, very high classification rates can be achieved. To validate the
proposed approach, the called F feature set was applied on two public datasets, COOLL
and HELD1, with 99.52% and 96.92% reached for the classification rates, respectively. It
turns out that, for COOLL data, only the first two features (Pmax and β50) are sufficient
to reach high performance; for HELD1 data, the feature β150 must be added to these last
features to significantly enhance the classification rate. The β features and their number
depend on the nature of the data and the contribution of the harmonics in their loads.
Therefore, the proposed number of harmonics features can be adapted according to the data.
The obtained results outperform the existing studies in the literature based on the same
data [29,31]. It is important to highlight that the presented methodology does not requires
a model to estimate the transient parameter, as in [31], which can be changed depending
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of the nature of the electrical loads. The tested data are constituted by controlled turn-on
loads for both datasets. As future work, more datasets will be tested and the proposed
features will be implemented in an embedded system in order to test the classification
accuracy in real time.
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