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Abstract: An efficient cooling system for data centers can boost the working efficiency of servers and
promote energy savings. In this study, a laboratory experiment and computational fluid dynamics
(CFD) simulation were performed to explore the performance of a two-phase cooling system. The
coefficient of performance (COP) and partial power usage effectiveness (pPUE) of the proposed
system was evaluated under various IT (Information Technology) loads. The relationship between
the interval of the two submerged servers and their surface temperatures was evaluated by CFD
analysis, and the minimum intervals that could maintain the temperature of the server surfaces
below 85 ◦C were obtained. Experimental results show that as server power increases, COP increases
pPUE decreases. In one experiment, the COP increased from 19.0 to 26.7, whereas pPUE decreased
from 1.053 to 1.037. The exergy efficiency of this system ranges from 12.65% to 18.96%, and the tank
side accounts for most of the exergy destruction. The minimum intervals between servers are 15 mm
under 1000 W of power, 20 mm under 1500 W, and more than 30 mm under 2000 W and above. The
observations and conclusions in this study can be valuable references for the study of cooling systems
in data centers.

Keywords: two-phase cooling; data center; CFD; immersion; optimization

1. Introduction

The boosting of digital technology (e.g., Internet of Things, artificial intelligence, big
data, 5G, cloud computing) and its extensive applications in many industries, such as
transportation [1], communication [2], manufacturing [3], medicine [4], and education [5],
demonstrate an increasing need for data processing, storage, and transmission. A data
center can be a building or part of a building where data are gathered, processed, and
stored [6]. According to a report by the Synergy Research Group, by the end of the third
quarter of 2019, there were 504 hyperscale data centers worldwide [7], and another report
predicted that this number would increase by 12–14% annually over the next five years [8].
Of all the data centers in 2019, approximately 40% reside in the US, and China, Japan, the
UK, Germany, and Australia collectively contain 32%. Data centers typically involve high
energy consumption. In the UK, data centers accounted for 1.5% of electricity usage in
2016, with power consumption projected to increase by 20% in 2020 [9]. In China, data
centers used 160.8 billion kWh of electricity in 2018, which exceeded the total electricity
consumption of all of Shanghai [10].

In addition to power equipment and accessory components, data centers consist of two
major energy-consuming parts, IT and heating, ventilation, and air conditioning (HVAC)
equipment, which account for approximately 90% of the total energy usage [11]. The
HVAC equipment itself has been reported to be responsible for 34% of this total energy [12],
because of the need to cool the all-day operation of high-power-density IT equipment and
maintain the indoor thermal environment within the appropriate temperature zones [13].
The HVAC system needs to be in operation for approximately 24 h per day. To improve
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the energy efficiency of a data center, optimizing the HVAC system is one of the key
steps. Power usage effectiveness (PUE) is an industry-preferred index for evaluating the
infrastructure energy efficiency of data centers [14]. A small PUE approaching 1.0 indicates
that the data center approaches optimal energy efficiency.

Data center cooling systems can be classified into two types—air-cooled systems [15,16]
and liquid-cooled systems [17]. The first type sends cold air to racks on which servers
are placed and then removes the heat generated by the servers. The advantages of this
type of system include the following: (1) this traditional air-cooling system is relatively
mature and easy to construct and (2) this system has promising potential for the use of
free cooling resources, such as natural cold air and water [18], which could substantially
benefit the reduction of power usage, decreasing the PUE from a value of 2.01 for a typical
computer room air conditioner system to a value as low as 1.1 with free cooling [19,20]. The
drawbacks of the air-cooled system are significant, such as a low heat transfer coefficient,
difficulty in the design and control of cold and hot air flow, asymmetrical cooling in dif-
ferent servers owing to the geometrical layouts of data centers, large power consumption
through the operation of chillers, fans, and pumps, and unstable cooling capacity caused
by the outdoor thermal environments [12,17,21,22].

The liquid-cooled system requires the removal of high-density heat, which is too
high to be removed by the air-cooled system; This heat is dissipated by high-performance
information and communication technology (ICT) devices. Based on the direct contact of
the liquid with the heat sources, the liquid-cooled system can be further categorized as
direct cooling and indirect cooling. For direct liquid cooling, the dielectric liquid absorbs
heat from the electronic components directly; this type of heat transfer can be highly
effective [17,23]. Passive two-phase cooling is a fluid-cooled approach in which electronic
components are submerged in a phase-changeable liquid bath in a closed box. When the
surface temperature of the electronic components exceeds the evaporation temperature of
the liquid, the process of boiling heat transfer is triggered, removing the extra heat in the
form of vapor bubbles. The produced vapor rises up and further condenses through a water-
based condenser installed above the bath. Finally, the heat is absorbed and removed by the
coolant; the vapor is then liquefied and drips back to the bath, driven by gravity [24,25].
Compared with the air-cooled system, the two-phase cooling system could reduce the use
of accessory equipment, such as chiller pumps and fans, potentially improving the energy
efficiency of data centers. In addition, this system could avoid the surface temperature
symmetry of electronic devices and guarantee their working environment.

Dashtebayaz and Namanlo [26] studied an air-based cooling system that performs
waste heat recovery and reported a coefficient of performance (COP) that varied in the
3–5 range with a PUE of approximately 2.5. Chen et al. [27] applied spray-cooling tech-
nology to the cooling of computer centers and suggested that the system COP is highly
dependent on the inlet water temperature, with COP possibly changing from 3 to 15 and
PUE ranging from 1.45–1.52. Cho et al. [28] proposed many green technologies that can be
applied to data center cooling systems under different climatic contexts and determined by
applying suitable strategies. The target PUE was in the range of 1.2–1.6. Dong et al. [29]
explored the effectiveness of using free-cooling resources to cool data centers and sug-
gested that natural cooling could increase the system COP by 23.7%, rising from 5.9 to 7.3.
Lu et al. [30] reported the PUE of data centers in Finland, highlighting its range of variation
of 1.2–1.5.

In a two-phase cooling system, the ICT equipment is completely submerged in the
dielectric liquid bath; nucleate boiling occurs on the server surface when the server tem-
perature reaches the boiling temperature of the dielectric liquid. Wu et al. [31] evaluated
a full-scale two-phase liquid-immersion DC cooling system in a tropical environment.
They found that the exergetic efficiency experienced a small rate of decrease, while the
supplied power rate increased. The highest efficiency of 69.9% was obtained at zero load,
whereas the lowest efficiency of 65.9% was observed at full load. Kanbur et al. [32] stud-
ied a two-phase liquid-immersion data center cooling system through experimental and
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thermo-economic analyses. They found that the optimal COP and PUE values occurred at
maximum operation loads of 6.67 and 1.15, respectively, whereas the minimum COP and
highest PUE were observed at the minimum operation loads of 2.5 and 1.4, respectively.
Choi et al. [33] used two-phase cooling (HFE-7100) for a polymer electrolyte membrane
fuel cell. They found that the two-phase boiling heat transfer coefficients of the HFE-7100
in mini-channels were strongly dependent on heat flux and vapor quality but less sensitive
to mass flux. However, at present, there are fewer research reports on the mining machine
motherboard of the two-phase liquid-immersion cooling system.

Computational fluid dynamics (CFD) simulations have been widely applied to vali-
date the performance of specific cooling systems for data centers and to present optimal
designs based on the detailed results of the simulations. Ahmadi et al. [34] verified the
energy-saving potential, optimal designs, and operation conditions for the computer
room air handling bypass method in cooling data centers by using CFD simulations.
Hassan et al. [35] performed CFD simulations in ANSYS Fluent and obtained the temper-
ature, airflow, and pressure distributions for a data center. The prediction provided a
three-dimensional (3D) thermal map of the data center and helped to optimize the cooling
system. Fulpagare et al. [36] explored transient CFD models to simulate the dynamic
requirements of cooling systems to achieve smart control in data centers, and the model
performance was validated based on experiments. Using CFD simulations, Nada et al. [37]
studied the performance of data centers under different configurations and summarized
the effects of the computer room air conditioning unit layout on the thermal performance
of the racks. Most previous CFD studies have focused on air-cooled systems; however,
studies that focused on two-phase cooling systems are scant. Cheng et al. [38] studied a
single-phase immersion cooling system (using 3 M Novec 7100) for single CPU cooling via
3D numerical analysis using ANSYS Fluent. The results of the simulations showed that
there was an unbalanced heat distribution around the CPU, and higher flowing speeds of
the liquid coolant led to the removal of more heat, resulting in lower CPU temperatures
and more balanced heat distribution around the CPU. Ali et al. [39] numerically inves-
tigated the thermal performance and stress analysis of enhanced copper spreaders for
nucleate boiling immersion cooling of high-power electronic chips. An et al. [40] developed
a 3D numerical model using ANSYS Fluent to study two-phase immersion cooling for
electronic components. They found that Novec 7000 can support cooling a 5 cm × 5 cm
heat source in a vertical orientation with power as high as 225 W (heat flux of 9 W/cm2).
However, less research was reported using CFD simulation to study the arrangement of
the server motherboards.

This study consisted of experiments and a series of CFD simulations. First, an inno-
vative cooling structure and procedure for a two-phase immersion cooling system were
developed. Six different cases were investigated to analyze the thermal management
performance in the operational load range of 1127–1577 W. The energy efficiency of the
system was evaluated based on the partial power usage effectiveness (pPUE) and COP
indices, and exergy analysis was performed. Finally, an arrangement of submerged servers
was proposed by CFD simulation. This study aimed to formulate an innovative two-phase
immersion cooling system for data centers, which includes an optimal arrangement of the
servers. Data from the two-phase cooling system were collected; the results and conclusions
presented herein may potentially serve as valuable references for researchers and engineers.
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2. Methodology
2.1. Experimental Study

A novel, innovative cooling structure and procedure of a two-phase immersion cooling
system were established for the cooling of ICT devices. The scheme of the proposed two-
phase cooling system is shown in Figure 1, which includes a primary heat exchanger and
a tank with coolant and server boards as ICT devices. The ambient air temperature was
maintained at 21–23 ◦C.
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Figure 1. Scheme of the proposed cooling system.

Figure 2a shows the tank where real servers were submerged in the dielectric liquid
Novec 7100 supplied by 3M (Minnesota Mining and Manufacturing, Saint Paul, MN,
USA) [41]. The dielectric liquid, being expensive, was filled in the tank only to submerge
all the servers (Figure 2c) during the experiments. For each experiment, the server power
output was maintained at a constant level. As the surface temperature of the servers rose
and reached the boiling point of Novec 7100, the surrounding liquid formed bubbles and
absorbed heat through evaporation. The produced vapor gathered on the top of the tank,
where condenser coils were placed around the wall, as shown in Figure 2c. The heat was
transferred from the vapor to the cold coolant circulating inside the condenser coils and
was removed from the tank. Thereafter, the vapor condensed into the fluid phase and
dripped back onto the liquid bath because of gravity. The heated coolant inside the coil
released heat to the environment by a primary heat exchanger, as shown in Figure 2d.

Table 1 lists the thermal characteristics of Novec 7100 at 25 ◦C, and the specific data are
listed in Table A1 in Appendix A. The dimensions of the tank were 650 × 450 × 1050 mm3

(length × width × height), and the tank was insulated to prevent the influence of the sur-
rounding thermal environment. The servers used in this study were application-specific inte-
grated circuit (ASIC) miners designed to “mine” a specific cryptocurrency. The type of server
board was T2T-25T, and the dimensions of each board were 235 × 182 × 8 mm3. There were
140 T2T CPUs on each board, and the dimensions of the CPU were 8 × 8 × 1 mm3, with an
average CPU TDP of 8.37 W/cm2. The server boards were placed at 100 mm intervals. This
type of server has several modes with rated power outputs ranging from 1000 to 2000 W.
The mode of each server can be controlled remotely through a computer program.
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Table 1. Properties of Novec 7100 at 25 ◦C.

Boiling Point
(◦C)

Vapor Pressure
(kPa)

Molecular Weight
(g/mol)

Density Liquid
(kg/m3)

Dynamic
Viscosity

(cSt)

Specific Heat
(J/kgK)

61 27 250 1510 0.38 1183

During the experiment, all the data were measured when the system was under a
stable status, characterized by a lack of fluctuations in the CPU surface temperature. Under
each condition, the system was kept running for 60 min before the data were recorded.
The temperatures of the server surface, liquid bath, and inlet and outlet coolant inside
the coils were recorded using a digital temperature controller (E5CC, OMRON, Kyoto,
Japan). The temperature was measured using K-type thermocouples (TT-K-24, OMEGA,
Norwalk, CT, USA), which were calibrated using a mercury thermometer with an accuracy
of ±0.1 ◦C. The core temperature of the servers was measured and recorded automatically
by the aforementioned computer program. The pressure in the tank was monitored by
an automatic pressure relief valve with a pressure sensor (ZSE40AF-01-T, SMC, Kyoto,
Japan), with the pressure set to 1.2 kg/cm2. The heat from the coolant was removed by a
heat exchanger (ERM-3K3UC Liquid Cooling System, Koolance, Auburn, AL, USA), and
the cooling capacity of the cooling system was 2600 W (8872 BTU/h). The power of the
cooling unit (including the pump and the fan) was monitored using a power meter that
can monitor and record real-time power consumption. The experiment consisted of six
conditions, and the stable data are listed in Table 2.
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Table 2. Operating conditions and experimental results.

Case
Room

Temperature (◦C) CPU Power(W)
Heat Exchanger

Coolant Temperature (◦C) Temperature of CPU (◦C)

Inlet Outlet Surface Core

1 21.9 1127 26.5 25.1 66.0 67.4
2 21.6 1396 27.1 25.8 68.8 71.2
3 22.4 1332 27.9 26.5 68.5 70.7
4 23.0 1494 29.2 27.6 70.5 72.3
5 23.3 1516 29.6 28.1 71.7 72.9
6 23.4 1577 30.1 28.4 71.9 73.3

2.2. CFD Simulation
2.2.1. Physical Model and Boundary Conditions

In this study, a commercial CFD tool, ANSYS Fluent, was used to complete the
simulation [42]. CFD simulations were intended to explore the effects of the interval
of adjacent servers on the performance of a two-phase cooling system and propose an
appropriate server arrangement. The assumption is that for a given power of servers and a
specific cooling setting, there is the shortest interval between submerged servers for which
each server should run in an ideal environment with core temperatures lower than the
requirements. The purpose of searching for the shortest interval is that the submerged space
in a two-phase cooling tank is limited; thus, a well-arranged matrix of servers facilitates
efficient usage of space, thereby providing savings in investment and running costs.

Building physical models is the first step in running a CFD simulation. The dimensions
of the simulated two-phase cooling tank are the same as those used in the experimental
study, which is 650× 450× 1050 mm3 (L×W×H), as demonstrated in Figure 3. Figure 3b
shows the mesh distribution near the server board, which was locally encrypted. The walls
of the tank were set as adiabatic, and three server boards were placed under a 50 mm
liquid bath, with the dimensions of each board at 235 × 182 × 8 mm3 (L × W × H).
There are 140 CPUs on each board, and each CPU has dimensions of 8 × 8 × 1 mm3.
During the simulation, the boundary conditions of the servers were set as constant heat
flow, which was consistent with the server power output. There are some assumptions
and simplifications in this model. The server boards, including printed circuit boards
and CPUs (covered with phenolic epoxy resin), were treated as an entire heating plate
covered with phenolic epoxy resin (thermal conductivity of 2.2 W/m K). The coolant-side
cooling equipment and heat transfer process were removed from the simulation, and the
top of the tank was considered as a pressure outlet. The assumption was that all the heat
from the vapor could be fully released to the environment by the heat exchanger. These
simplifications were applied because this simulation focused on the heat transfer between
the submerged servers and the liquid but not on the entire system. The grid chosen in this
study was “Tet/Hybrid,” which consisted of tetrahedrons and other hybrid elements. One
of the limitations of the model is that the detail of the CPU was ignored.
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2.2.2. CFD Modeling of Boiling Flow

In this study, a volume of the fluid model was used to simulate the boiling heat
transfer (two-phase vapor–liquid flow regimes) in the tank. In this multiphase flow model,
an Eulerian–Eulerian approach is applied, where both fluids are assumed to behave as
continuous media [43]. The mass and energy transfer between both phases during the
evaporation process, as shown in Equations (1)–(3) (Reynolds-averaged Navier–Stokes
(RANS) equations), and further details on these equations were provided by Versteeg g [44].
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where SM is the source term in the mass conservation equation (kg/m3 s), SF is the source
term in the momentum conservation equation (kg/m2 s2), and SE is the source term in the
energy equation (J/m3 s).

The RANS equations describe the transport of the averaged flow quantities in which
the entire range of turbulence scales is modeled. Because of the averaging, these equations
contain additional unknown variables called Reynolds stresses. By applying the Boussinesq
hypothesis [44], the Reynolds stresses are related to the mean velocity gradients. The
expression for the calculation of these Reynolds stresses corresponds to Equation (4).
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To solve this equation, an expression for the turbulent viscosity (µturb) is required.
The calculation of turbulent viscosity using the standard k-ε model is computationally
expensive. In the first step, two additional transport equations for the turbulent kinetic
energy k and the viscous dissipation of the turbulent kinetic energy ε are solved, which
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correspond with Equations (5) and (6). Finally, the turbulent viscosity is calculated as a
function of k and ε (Equation (8)).
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Many expressions describing the mass transfer during evaporation are based on
gas kinetic theory. A well-known equation for the net mass flux over the vapor–liquid
interphase during the evaporation process is the following Hertz–Knudsen equation [45]:

J′ = αc

√
M√

2πR

(
p√
Tv
− psat(Tl)√

T1

)
(9)

where J is the net mass flux over the vapor–liquid interface (kg/m2 s), αc is the accommo-
dation coefficient, M is the molecular weight (kg/kmol), Tv is the temperature of the vapor
phase (K), Tl is the temperature of the liquid phase (K), and psat is the saturation pressure
(Pa). In the case of condensation, αc is defined as the ratio of the experimentally observed
condensation velocity to the maximal theoretical condensation velocity. Meanwhile, in the
case of evaporation, this parameter is defined as the ratio of the experimentally observed
evaporation velocity to the maximal theoretical evaporation velocity [43]. The specific
calculation procedure for the mass and energy transfer during the evaporation process was
based on the study by Schepper et al. [43].

The semi-implicit method for pressure-linked equations (SIMPLE) algorithm was
used for pressure–velocity coupling. A body force-weighted scheme was used to discretize
the pressure terms. The momentum, energy transport, and turbulence equations were
solved using the quadratic upstream interpolation for the convective kinematics (QUICK)
scheme. The convergence criteria of the whole solution were defined with respect to the
residuals for mass, momentum, turbulence, and energy—-10−3 for the mass, momentum,
and turbulence residuals and 10−6 for energy residual. Table 3 shows a summary of the
applied CFD model settings.

2.2.3. Material Properties

The thermodynamic properties of the liquid and vapor were obtained from the Novec
7100 manual [41]. Each thermodynamic parameter was approximated by temperature-
dependent polynomial functions. Figures 4 and 5 provide two examples that show the
correlations between the temperature and the liquid dynamic viscosity/vapor conductive
coefficient. Table A2 in Appendix A lists all the temperature-dependent properties of the
thermodynamic parameters used in Fluent.
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Table 3. Settings of the computational fluid dynamics (CFD) Model.

Setting Parameters Type Settings/Options

Solver type Pressure-based

Turbulence model k–ε realizable model

Near-wall treatment Standard wall functions

Pressure-velocity coupling scheme SIMPLE

Spatial discretization

Gradient Least-squares cell-based

Pressure Body force-weighted

Momentum QUICK

Turbulent kinetic energy (k) QUICK

Turbulent dissipation rate
(ε) QUICK

Energy QUICK

Residuals

Continuity 0.001

X, Y, Z-Velocity 0.001

Energy 10−6

k, ε 0.001Energies 2021, 14, x FOR PEER REVIEW 9 of 21 
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2.2.4. Grid Independence

The analysis of the grid independence was conducted by running simulations with
different numbers of grid cells, as shown in Table 4. The time step (∆t) was 0.01 s, and
the maximum number of iterations was 20. The total number of time steps was 5000
(total physical time 50 s), which was sufficient to obtain steady-state conditions, and the
calculation time was nearly 23 h for one case. The initialization temperature was 331 K,
and the vapor volume fraction was 0. A computer (Thinkpad S3, i5-4210U, two cores,
four threads, Lenovo, Peking, China) with Windows 7 Home Edition was used for the
simulations. The mean surface temperature of the servers was taken as a comparative
index, and the results showed that the predicted surface temperature with 510,438 cells
changed by only 0.9%, with the corresponding temperature predicted with 121,471 cells. In
the following simulations, the grid setting of 121,471 cells was selected.

Table 4. Analysis of grid independence.

Cell Number Time Step (s) Mean Surface
Temperature (◦C)

Temperature
Difference (%)

121,471 0.01 72.65 -
246,680 0.01 72.28 −0.5%
510,438 0.01 71.63 −0.9%

2.2.5. CFD Model Validation

To begin the study, model validation was performed by comparing the experimental
results, as displayed in Table 5. In summary, the maximum error was found to be less than
5%, which implies that the CFD simulation precision reached the level of the experiment.
The heat transfer coefficients of HFE-7100 were assessed for the interval between every
two servers ∆l = 100 mm under different powers. The results showed that the heat transfer
coefficients in our study were within a reasonable range compared with those demonstrated
in other studies [46].

Table 5. Verification of the proposed CFD settings.

Power (W)

Experimental
Average
Surface

Temperature
(◦C)

Numerical
Average
Surface

Temperature
(◦C)

Error (%)

Numerical
Heat Transfer
Coefficients
(kW/m2 K)

Experimental
Average
Liquid

Temperature
(◦C)

Numerical
Average
Liquid

Temperature
(◦C)

1127 66.0 69.43 4.95 7.98 58.5 61.40
1332 68.5 71.56 4.28 10.16 61.5 64.13
1577 71.9 74.67 3.71 10.46 63.8 66.17

Ref. [43] - - - 6.1−18.5
(∆T = 10 ◦C)

2.3. COP and pPUE

COP and PUE are two important indices used to evaluate the system energy perfor-
mance. COP is defined as the ratio of cooling energy removed by a cooling system to the
consumed power [47]. With the assumption of all the input server power transferring to
heat, in this case, COP can be represented by Equation (10).

COP =
Wserver

Wtotal
(10)

where Wserver is the server power and Wtotal is the total cooling power consumption in units
of W.
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PUE is used to assess the thermal performance of cooling systems in data centers
and is recommended by ASHRAE (American Society of Heating, Refrigerating and Air-
Conditioning Engineers). In this study, owing to the two-phase immersion cooling system,
a component of the real ICT equipment cooling system. Therefore, the pPUE was used
to assess the efficiency of the two-phase immersion cooling system. It is defined as the
total energy within a boundary divided by the IT equipment energy within that boundary
(pPUE can only be calculated for zones with IT) [48]. Theoretically, pPUE should be larger
than 1.0, and a value close to 1.0 implies high energy efficiency. The pPUE, in this case, can
be calculated using Equation (11).

pPUE =
Wtotal + Wserver

Wserver
(11)

2.4. Exergy Analysis

Exergy analysis is based on the second law of thermodynamics and is an important
method to evaluate the efficiency of a cooling system [49–51]. The specific exergy flow in
any state can be expressed as

e f = h− h0 − T0(s− s0) (12)

where h is the specific enthalpy, kJ/kg; s is the specific entropy, kJ/(kg K); and “0” represents
the reference state of T = 293.15 K.

The exergy efficiency can be defined as the ratio, as shown in Equation (13). For each
part of the exergy destruction (

.
ED,i), its percentage can be calculated using Equation (14).

η = 1−
.
ED

Wtotal
(13)

pd,i =

.
ED,i

.
ED

(14)

The transfer of heat in the proposed two-phase cooling system is accompanied by
exergy destruction owing to an increase in entropy. On the tank side, the exergy destruction
results from the evaporation of the liquid bath by absorbing heat from the servers, Ed,1 and
condensation of the vapor through the loss of heat to the coolant inside the coils, Ed,2. The
heat received by the coolant from the condensed vapor, Ed,3, is released to the environment
through a heat exchanger, Ed,4.

When the liquid bath is heated and evaporated to gas, the exergy destruction Ed,1 is
calculated as

Ed,1 = Wserver + ml

(
e f ,l − e f ,g

)
(15)

where ml is the mass flow of the evaporated liquid (kg/s), ef,l is the specific exergy rate of
the liquid (kJ/kg), and ef,g is the specific exergy rate of the vapor, kJ/kg.

When the evaporated gas is condensed to the liquid phase by the condenser, the
exergy destruction Ed,2 is calculated as

Ed,2 = mg

(
e f ,g − e f ,l

)
−
(

1− T0

Tl

)
Q1 (16)

Q1 = mg
(
hg − hl

)
(17)

where T0 is the setpoint temperature. In this study, the temperature was set as the ambient
temperature 293.15 K, Tl is the temperature of the condensed liquid near the servers, K;
Q1 is the resealed heat of vaporization under relatively stable conditions, W; and mg is the
mass flow of condensed gas (kg/s).
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When the coolant is heated by the evaporated gas, the exergy destruction Ed,3 is
calculated as

Ed,3 = mw(ef,w,1 − ef,w,2) +

(
1− T0

Tw,l,2

)
Q2 + Wpump (18)

Q2 = mw(hw,l,2 − hw,l,1) (19)

where Tw,1,2 denotes the temperature of the output coolant (K), Q2 is the absorbed heat
of the coolant (W); mw is the mass flow of coolant (kg/s); ef,w,1 denotes the exergy rate of
the input coolant; ef,w,2 denotes the exergy rate of the output coolant, kJ/kg; hw,l,1 is the
enthalpy of the input coolant to the condenser; and hw,l,2 is the enthalpy of the output
coolant to the condenser, kJ/kg. Wpump is the power of the water pump, W.

When the coolant is cooled by the external heat exchanger, the destruction of exergy
Ed,4 is

Ed,4 = mw

(
e f ,w,2 − e f ,w,3

)
−
(

1− T0

Tw,l,3

)
Q3 −Whx (20)

Q3 = mw(hw,l,2 − hw,l,3) (21)

where Tw,l,3 is the temperature of the coolant in the heat exchanger, K; Q3 is the released
heat of the coolant, W; ef,w,3 is the exergy rate of coolant from the heat exchanger, kJ/kg;
and hw,l,3 is the enthalpy of the coolant from the heat exchanger, kJ/kg, where Whx is the
power of the heat exchanger, W.

The total destruction of exergy is the sum of the above components, written as
Equation (22).

Ed = Ed,1 + Ed,2 + Ed,3 + Ed,4 (22)

3. Results and Discussion
3.1. COP and pPUE

Table 6 lists the power outputs of servers and the “fan + pump” under six conditions.
The server power varies between 1127 W and 1577 W, whereas the power of the “fan +
pump” changed only a little because either the pump or the fan was set at the same level
under these conditions. Figure 6 shows the results of COP and pPUE calculated from the
experimental study. COP ranges from 19.0 to 26.7 and maintains an increasing trend, with
the highest value, 26.7, obtained for a power of 1577 W. Meanwhile, pPUE ranges from
1.037 to 1.053 and indicates an opposite trend—the highest value is obtained at a power of
1127 W. The reason for the observed monotonous relationships is that the server power
used in this study did not exceed the upper limit of the system cooling capacity. During
the study, the power of the fan and water pump was maintained stable at approximately
59.0 W. This allowed the external heat exchanger to release the heat dissipated by the
servers efficiently. Thus, there remains the potential for a higher COP or lower pPUE if the
server operates at higher power.

Table 6. Operation values under six conditions.

Case Wserver
(W)

Wfan+pump
(W)

hf,l
(kJ/kg)

sf,l
(kJ/kg K)

hf,g
(kJ/kg)

sf,g
(kJ/kg K)

hf,w,1
(kJ/kg)

sf,w,1
(kJ/kg K)

hf,w,2
(kJ/kg)

sf,w,1,2
(kJ/kg K)

1 1127 59.2 114.120 0.407 228.943 0.749 105.286 0.367 111.558 0.387
2 1396 59.4 114.120 0.407 229.802 0.750 108.631 0.376 113.649 0.394
3 1332 59.1 114.120 0.407 231.090 0.753 111.558 0.386 116.994 0.405
4 1494 59.0 114.120 0.407 231.520 0.753 116.158 0.402 122.430 0.423
5 1516 59.0 114.120 0.407 232.379 0.755 117.621 0.408 124.102 0.429
6 1577 59.0 114.120 0.407 233.238 0.756 119.503 0.412 126.193 0.436
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By comparing the performances of COP and pPUE, the two-phase cooling system
in this study appears to exhibit substantially better energy efficiency than many reported
cooling systems or strategies for data centers. The boiling heat transfer involving phase
changes could remove heat away from the CPU by a small mass flow of vapor. By compari-
son, the air-cooling system generally has a lower convective heat transfer coefficient, and to
compensate for this, a high-volume airstream is needed, which requires fans to provide a
significant amount of power, thus consuming more energy. The second reason is that there
is no chiller in the system; thus, considerable energy is conserved. Unlike many air-cooling
systems with a chiller, this system does not need compressed refrigerants to remove heat
but rather uses circulated coolant to cool the tank. Except for the servers, the only energy-
consuming components in this system are the fan and pump. In addition, the outlet coolant
temperature can be considerably high, which allows the supply of high-quality waste heat
to be further used to enhance the efficiency of the entire system.

3.2. Exergy Analysis

Table 6 lists enthalpy and entropy values of the media in the two-phase cooling system,
which were used to calculate the exergy balance equations. The calculated destructions of
exergy are presented in Table 7, and Figure 7 indicates the exergy efficiencies of the pro-
posed two-phase cooling system under six experimental conditions. The exergy efficiency
ranges from 12.65% to 18.96%, with an average of 14.84%. Kanbur [32] also analyzed exergy
data from a two-phase cooling system and found the average exergy efficiency to vary
from 7.9% to 18.9%. The differences between our study and that of Kanbur can be because
the room temperature present during the operations in the study by Kanbur was 3–5 ◦C
higher than that in ours. As stated in their study, the operating temperature can affect
the heat transfer of the system and, therefore, influence the exergy efficiency. Díaz [52]
computed the exergetic efficiency of a typical air-cooled system for data centers, finding an
upper limit of approximately 12% for the exergetic efficiency, which was approximately
3% lower than the value in our study. Relatively less total power input can be one of the
reasons for the higher exergy efficiency of the two-phase cooling system. In this cooling
system, there is no chiller to cool the air; thus, no large fans are used to circulate the air.
This results in notable energy and exergy savings, as previous studies have suggested
that chillers account for a large part of energy consumption and exergy destruction in the
air-cooled system [49]. In addition, the two-phase cooling system involves fewer instances
of heat transfer, compared with that in the air-cooled cooling system, which also helps
reduce exergy destruction induced by heat transfer. Another advantage of the two-phase
cooling system is that it can produce high-quality waste heat, which can be further used
to promote the energy efficiency of the entire system. Due to the high boiling point of the
phase-changeable liquid (as high as 61 ◦C), the output temperature of the coolant leaving
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the tank can theoretically approximate 61 ◦C, which could lead to a high-quality stream
of exergy. This type of waste energy can be directly used as a heat source to supply heat
or produce cooling energy through an absorption refrigeration system. Meanwhile, for
a typical air-cooled system in a data center, the hot aisle temperature is generally near
35 ◦C [53], which is relatively lower than that of the proposed two-phase cooling system,
limiting the further reuse of its waste heat.

Table 7. Exergy destruction under six cases.

Power (W) Ed,1 (W) Ed,2 (W) Ed,3 (W) Ed,4 (W) Ed Exergy Efficiency (%)

Case 1 1127 864.91 19.8 27.27 14.28 926.26 18.96%
Case 2 1396 1092.95 19.54 74.99 45.64 1233.12 15.24%
Case 3 1332 1038.41 29.85 70.79 38.37 1177.42 12.65%
Case 4 1494 1163.08 37.61 45.91 60.92 1307.52 13.41%
Case 5 1516 1176.93 46.45 33.15 31.86 1288.39 15.90%
Case 6 1577 1190.93 56.82 107.42 33.01 1388.18 12.86%

Ref. [30] 1150 - - - - - 18.94%

The COP of the proposed two-phase cooling system in this study is generally 4–23 units
higher than the values reported in the above references, and pPUE in this study is also the
lowest among the reported values. Two reasons contribute to the high energy efficiency
of the proposed two-phase cooling system. First, the heat transfer efficiency of immersed
cooling is significantly higher than that of many traditional systems, such as air-cooling
systems [54]. Meanwhile, there are some similarities between these two types of cooling
systems. In this study, the exergy analysis indicates that the tank side contributes nearly
90% of the total exergy destruction, whereas, in an air-cooled cooling system, most of the
exergy loss occurs at the chiller side [49]. Although there is no chiller in the two-phase
cooling system, the tank itself can be considered as a location where servers are “chilled.”
Therefore, a large amount of exergy destruction results; this indicates that the tank-side or
server-side modification should be first considered for the optimization of the two-phase
cooling system and improvement of its exergy efficiency. Based on experimental results and
theoretical analysis, the dominant heat transfer mechanism of HFE-7100 in mini-channels
was determined to be nucleate boiling.
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3.3. Simulation Results

The thermal maps for the server boards (with a power of 1577 W) are shown in
Figure 8a. As the thermal map shows, there is a significant hotspot on the upper server
board. Figure 8b shows the temperature distribution on the second server board. From the
thermal maps, the heat transfer is not uniform in the vertical direction, and hot spots can
occur in the top region because boiling occurs during the heat transfer. The heat transfer
behavior during the boiling process is shown in Figure 9. As the temperature of the server
board increased, the coolant near the wallboard was heated. Evaporation occurs when
the coolant is overheated (T ≥ Tcoolant + ∆T), quickly expanding the small bubble near the
board. Most of the bubbles grow and reach the interface, where surface evaporation occurs
(T > Tboiling). Some of the bubbles in the liquid condense near the coolant (T ≤ Tboiling).
Finally, the steam condensed near the top condenser coils (T ≤ Tboiling).
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Figure 9. Schematic view of the heat transfer behavior during the boiling process.

Figure 10 shows the predicted surface temperatures of the servers under different
powers and interval settings. The power of the servers was set at five different levels, i.e.,
500 W, 1000 W, 1500 W, 2000 W, and 2500 W. The interval between every two servers was ∆l,
as shown in Figure 3, and set to 10 mm, 15 mm, 20 mm, 25 mm, and 30 mm. The box plots
show distributions of the server surface temperatures, and different colors suggest values
under different power levels. Generally, in a specific interval setting, a higher power rate
leads to higher surface temperatures. For example, when servers were placed in an interval
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of 10 mm, the average surface temperatures under an output power of 2500 W were 14.0 ◦C,
21.3 ◦C, 31.3 ◦C, and 42.4 ◦C higher than the average surface temperatures under output
powers of 2000 W, 1500 W, 1000 W, and 500 W, respectively. The same change trend can
also be seen in the other four figures with different interval settings. This is because high
powers bring more heat flux dissipated from servers to the liquid bath; if the space between
the servers is too narrow, a mass of bubbles is produced, accumulating near the servers,
and thus restricting the generation of new bubbles. Therefore, the cooling capacity of the
liquid bath in a phase change may not be consistent with the output of the servers, causing
an increase in the surface temperature. The results from CFD simulations indicate that
widening the interval between the servers could help reduce the server temperature.

Figure 11 demonstrates the correlations between the server power and surface tem-
peratures at various intervals. The surface temperatures shown in this figure came from
the middle server because this server was highly affected by the adjacent servers and was
thus more susceptible to the interval settings. Notably, the surface temperature of servers
could significantly influence the working efficiency of CPUs, providing CPUs a suitable
thermal environment to work under high-efficiency conditions. The surface temperature
should not exceed 85 ◦C. In Figure 11, the dots indicate the simulated surface temperatures
under five levels of power from 500 W to 2500 W, and the different interval settings are
shown in different colors. Generally, higher power and smaller interval would lead to a
higher surface temperature. An interval of 10 mm was found to be sufficiently large for
servers with a power of 500 W to maintain the surface temperature below 85 ◦C. When
the power was increased to 1000 W, an interval of 15 mm could overcome this limitation.
For a power of 1500 W, the interval should be at least 20 mm. As the power is enhanced to
2000 W or 3000 W, even an interval of 30 mm is not sufficient to maintain the server surface
temperature below 85 ◦C.
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In addition, the reduction of the server surface temperature caused by expanding the
interval was greater for the servers with a higher power. Figure 12 presents the differences
in the server surface temperature at intervals of 10 mm and 30 mm from powers of 500 to
2500 W. The surface temperature calculated here is the average value of the three servers.
The dots in Figure 12 indicate the surface temperature differences, and the dashed line
shows the changing trend. The results show that the temperature reduction increased from
12.2 ◦C to 39.3 ◦C as the power of the servers increased from 500 W to 2500 W after the
interval increased. This implies that the extended interval imposes a greater influence on
high-power servers and reflects a high space requirement for the operation of a two-phase
change cooling system.
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4. Conclusions

In this study, the reliability and energy efficiency of a novel two-phase cooling system
for data centers were analyzed via a series of laboratory experiments, and the arrangement
of the submerged servers was optimized based on surface temperatures obtained via CFD
simulation. The main results and conclusions are summarized as follows:

1. The COP of this system changed from 19.0 to 26.7 and increased with increasing
server power, ranging from 1127 W to 1577 W. The proposed COP was generally
4–20 units higher than that of many previously reported air-cooled or water-cooled
cooling systems for data centers;

2. The pPUE of this system decreased from 1.053 to 1.037 as the power of the servers
increased. This value was relatively smaller than that of the pPUEs for an air-cooled
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or water-cooled cooling system. The proposed two-phase cooling system was found
to be more energy efficient;

3. The exergy efficiency of the proposed system ranged from 12.65% to 18.96%, with an
average of 14.84%. A majority of the exergy destruction occurred on the tank side.

4. For a given fluid-containing tank, a closer interval between servers would cause a
higher server surface temperature. CFD simulations demonstrated the predicted
surface temperatures of the servers under various IT loads;

5. To maintain the surface temperature of the servers below 85 ◦C, an interval of 15 mm
was needed for the server power to reach 1000 W. For a power of 1500 W, the interval
must at least 20 mm. For a power larger than 2000 W or 3000 W, even an interval of
30 mm was not sufficiently large to maintain the surface temperature below 85 ◦C.

The COP and PUE were dependent on the room temperature and the fan and pump
speed of the external heat exchanger. It would be interesting to study these influence factors,
and this could allow for a more transparent interpretation of the results in future studies.
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Abbreviations

CRAC Computer room air conditioning
PUE Power usage effectiveness
pPUE Partial power usage effectiveness
COP Coefficient performance
CFD Computational fluid dynamic
ICT Information communication technology
U Mean velocity component (m/s)
ε Turbulent dissipation rate
h Enthalpy (kJ/kg)
S Entropy (kJ/kg K)
T Temperature (K)
Wserver Power of server (W)
Wtotal Power total cooling (W)
ED Exergy destruction (W)
η Exergy efficiency
SM Source term in the mass conservation equation (kg/m3 s)
SF Source term in the momentum conservation equation (kg/m2 s2)
SE Source term in the energy equation (J/m3 s)
u Dynamic viscosity (Pa s)
ui Velocity component in the xi-direction (m/s)
uj Velocity component in the xj-direction (m/s)
µturb Turbulent viscosity (Pa s)
ρ Density (kg/m3)
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Q Heat exchange (W)
m Mass flow (kg/s)
σ Surface tension (N/m)
σc Condensation coefficient
σe Evaporation coefficient
k Turbulent kinetic energy (m2/s2)
Tboiling Boiling point
0 Status at reference temperature
l Fluid state
g Vapor state
w Coolant side

Appendix A

Table A1. The thermal properties of Novec 7100.

Temperature
(◦C)

Density
(kg/m3)

Viscosity
(m2/s)

Dynamic
Viscosity
(kg/m s)

Kinematic
Viscosity

(m2)/s)

Specific Heat
(J/kg K)

Thermal
Conductivity

(W/m K)

Saturated
Vapor

Pressure(Pa)

−90 1825.19 6.04 × 10−6 0.0110 11.025 953 0.0913 12.904
−80 1798.27 3.64 × 10−6 0.0065 6.542 973 0.0893 35.987
−70 1771.35 2.44 × 10−6 0.0043 4.319 993 0.0873 90.718
−60 1744.43 1.76 × 10−6 0.0030 3.075 1013 0.0854 209.684
−50 1717.51 1.35 × 10−6 0.0023 2.310 1033 0.0834 449.593
−40 1690.59 1.07 × 10−6 0.0018 1.803 1053 0.0815 902.934
−30 1663.67 8.7 × 10−7 0.0014 1.446 1073 0.0795 1712.302
−20 1636.75 7.24 × 10−7 0.0011 1.185 1093 0.0776 3087.064
−10 1609.83 6.14 × 10−7 0.0009 0.988 1113 0.0756 5321.763

0 1582.91 5.28 × 10−7 0.0008 0.835 1133 0.0737 8815.499
10 1555.99 4.6 × 10−7 0.0007 0.715 1153 0.0717 14,091.424
20 1529.07 4.05 × 10−7 0.0006 0.619 1173 0.0698 21,815.442
30 1502.15 3.61 × 10−7 0.0005 0.542 1193 0.0678 32,813.298
40 1475.23 3.24 × 10−7 0.0004 0.478 1213 0.0658 48,085.294
50 1448.31 2.94 × 10−7 0.0004 0.426 1233 0.0639 68,818.070
60 1421.39 2.69 × 10−7 0.0003 0.383 1253 0.0619 96,393.020
70 1394.47 2.49 × 10−7 0.0003 0.346 1273 0.0600 132,391.102

Table A2. Thermodynamic properties of the Novec 7100 (vapor and liquid).

Physical Parameters Liquid Vapor

Density (kg/m3) y = − 2.692T + 1582 y = 0.0034T2 − 0.103T + 2.337

Specific heat (J/kgK) y = 2T + 1133 y = 216.4 + 4.749T + 0.00144T2 + 4.265 × 10−6T3

+ 1.758 × 10−9 T4

Conductive coefficient y = − 0.00027T + 0.073 y = 0.01293 + 4.74 × 10−5T

Dynamic viscosity (kg/m s) y = 4 × 10−5T4 − 1 × 10−7T3 + 2 ×
10−7T2 –1 × 10−5T + 0.0008 y = 8.294 × 10−4 − 1.15× 10−5T + 6.75 × 10−8T2
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