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Abstract: The traditional way to mitigate loss circulation in drilling operations is to use preventative
and curative materials. However, it is difficult to quantify the amount of materials from every
possible combination to produce customized rheological properties. In this study, machine learning
(ML) is used to develop a framework to identify material composition for loss circulation applications
based on the desired rheological characteristics. The relation between the rheological properties and
the mud components for polyacrylamide/polyethyleneimine (PAM/PEI)-based mud is assessed
experimentally. Four different ML algorithms were implemented to model the rheological data for
various mud components at different concentrations and testing conditions. These four algorithms
include (a) k-Nearest Neighbor, (b) Random Forest, (c) Gradient Boosting, and (d) AdaBoosting. The
Gradient Boosting model showed the highest accuracy (91 and 74% for plastic and apparent viscosity,
respectively), which can be further used for hydraulic calculations. Overall, the experimental study
presented in this paper, together with the proposed ML-based framework, adds valuable information
to the design of PAM/PEI-based mud. The ML models allowed a wide range of rheology assessments
for various drilling fluid formulations with a mean accuracy of up to 91%. The case study has
shown that with the appropriate combination of materials, reasonable rheological properties could
be achieved to prevent loss circulation by managing the equivalent circulating density (ECD).

Keywords: machine learning; lost circulation; polyacrylamide (PAM); polyethyleneimine (PEI);
smart drilling system

1. Introduction

Loss circulation is affected by many operational parameters, among the most impor-
tant ones are the type of the mud base, rheological parameters, and mud weight. Other
influential parameters can be attributed to the geomechanical properties such as in situ
stresses, formation pore pressure, fracture gradients, and natural fractures (Salehi and
Kiran, 2016). The design of drilling fluids and the selection of appropriate loss circula-
tion materials (LCMs) are based on understanding the different types of loss zones and
downhole conditions [1].

The strategy to manage loss circulation may vary on the severity of the loss. These
strategies include two types of approaches: (a) corrective treatment and (b) preventive
approach. The corrective treatment, which refers to any action taken after the occurrence of
the losses, is often used to stop the loss and quickly regain mud circulation. The preventive
treatment is a more reliable approach since it is a proactive treatment that aims to avoid the
loss before entering the expected risk zone. The preventive approach has been validated by
several experimental and field studies where substantial increases in fracture gradients,
reduced number of casing string, and reduced non-productive time (NPT) were achieved
through wellbore strengthening techniques [2].
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In this endeavor, various LCM types such as polymers and crosslinked polymers
are used [3,4]. Such materials are conducive to loss circulation prevention and viscos-
ity enhancement for drilling fluid and cement [5,6]. Polymers can also help drill high-
pressure/high-temperature (HP/HT) wells, where conventional water-based mud (WBM)
regularly exhibits severe rheology deterioration. The WBM formulations can be signifi-
cantly enhanced by using polymeric deflocculant to act as a rheology modifier and LCM.

Among many polymers used to enhance fluid-loss control and thermal stability, poly-
acrylamide (PAM) is the most favorable due to its exceptional rheological properties and
low cost [7]. PAM forms viscoelastic fluids when crosslinked with a proper crosslinker.
The crosslinking can be a chemical or a physical process that binds two or more molec-
ular chains of monomer units to form the three-dimensional network of the crosslinked
polymers [8].

Many crosslinkers have been widely used industrially for PAM crosslinking [9,10].
For example, organic crosslinkers have better durability and better gel control, particu-
larly at elevated temperatures because the organic crosslinkers form covalent bonds and
provide strong and thermally sfigure networks. One of the most abundantly used organic
crosslinkers is polyethyleneimine (PEI) because of its wide temperature window and good
gel control with retarders or accelerators [6,11].

1.1. Effect of Mud Composition on Rheology and Mud Hydraulics

In drilling operations, maintaining proper rheology is one of the main objectives of
drilling fluid design. Rheology plays a fundamental role in drilling fluid efficiency and
the ability to carry out its primary functions, such as cutting suspension and hole cleaning,
carrying of mud solid, as well as creating sufficient hydrodynamic pressure inside the
well [12,13]. The mud formulation and rheology also affect the fracturing of the rocks and
absorption of drilling mud into rocks or fluid-rock interaction, in addition to mitigating
formation damage [14,15]. Other mud functions include carrying out drilled cuttings to the
surface, regulating hydrostatic pressure in the well to balance formation pressure, cooling
and lubricating of the bit and drill string, plugging highly permeable formations, and
stabilizing borehole.

Measurements of rheology are usually performed using equipment mostly standard-
ized by the American Petroleum Institute (API) to quantify the relationship between the
shear stress and shear rate. Mainly, the measurements are conducted at low-pressure and
low-temperature conditions, which is not representative of downhole conditions. The high-
pressure high-temperature (HPHT) measurements give a better determination of rheology.
However, drilling fluids’ viscosity alternates due to contamination while drilling [16,17].
Currently, drilling bottom hole assemblies are equipped with downhole sensors for mea-
surements while drilling (MWD). It can provide information on mud properties such as
fluid density, viscosity, and flow rate [18]. Lie et al. (2013) conducted comprehensive
laboratory experiments to validate data collected from downhole sensors in temperatures
up to 347 ◦F. The experimental data showed a good correlation with the collected downhole
measurements [19]. Still, there are some difficulties in getting real-time data due to the
operational challenges and varying downhole conditions. Table 1 summarizes the different
approaches used in the oil and gas industry for rheology determination with their main
pros and cons.

Therefore, the management of drilling fluid components and rheological characteris-
tics of drilling fluid is a challenging process. Though, such problems can be solved in a
well by chemical processing of drilling fluid by various polymers [20–22].

Moreover, for polymeric fluids, investigation of rheology is more important for better
estimation of the gelation time and final gel strength [23,24]. A good estimate of the
gelation time, which is the time taken by the crosslinking polymer to transform from fluid
to gel, helps avoid gel formation in the piping system during the injection. Gelation is a
function of many parameters, such as the polymer’s concentration and crosslinker, salinity,
temperature, and resting time [25]. Additionally, proper mud formulation helps in the
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successful placement of the polymeric pill into the loss zone at the intended depth without
the risk of gelling during the injection process. Therefore, in this paper, the rheology of
polymer-based mud is investigated in interaction with different mud additives.

Table 1. Cons and pros for the used rheology determination approaches.

Approach Pros Cons

Laboratory experiments

• Easy to conduct
• Parametric and screening study at the

design stage
• Fundamental understanding of fluids

flow characteristics

• Difficulties in simulating reservoir
parameters

• Difficult to account for drilling
operational factors

• Downhole contaminations

Analytical modeling
• Direct
• Relatively not expensive
• An extended range of estimation

• Limited to assumptions and boundaries

Machine learning

• Identifying trends and patterns
• Handling multi parameters
• More comprehensive applications and

continuous improvement

• Requires a relatively large amount of
data

• Requires validation and careful
parameter evaluation

Downhole measurement tools • Have high accuracy
• Consider fluid contaminations

• Real-time measurement is a challenge
• Limited hole sizes
• Limited temperatures

1.2. Data Science and Machine Learning Techniques

The use of large amounts of data for decision-making became practical in the 1980s;
later, many studies described how different machine learning approaches can be applied to
various industry problems [26,27]. Currently, the term “data science” is increasingly used
in the industry. Data science implies using the knowledge extracted through systematic
studies involving data analysis and its role in inference. The scalability in decision making
that data science techniques have provided made it possible for the emerging of machine
intelligence, fueled by data and state-of-the-art analytics. The machine learning approach
surpasses the conventional statistical analysis in many ways; for example, analyzing
heterogeneous and unstructured data requires defining the complex relationship between
different entities, which is possible by machine learning [28].

In the quest for drilling data analysis, it is often difficult to accurately determine
flow parameters during complex drilling operations, where the correct ECD calculation is
crucial. Different fluid systems with various viscosity regimes are used at different stages
of drilling. For instance, in the shallow sections of the well, less viscous fluids are used,
such as water or brine, while more vicious clays can be added in the deeper sections [29,30].
Rheology characteristics of these different drilling fluids are usually evaluated by experi-
mental studies and empirical correlations to determine viscosity behavior and stability as
temperature changes [31].

Moreover, ECD management is possible with appropriate downhole pressure gauges
and a good hydraulic model. Weikey et al. (2018) reviewed some of the techniques used
to measure the rheology of drilling fluids [32]. However, the accuracy of such models
also depends mostly on the quality of the rheology data [33]. Andaverde et al. (2019)
developed a mathematical model for fluid flow analysis based on a nonlinear function that
matches the measured data for shear stress and shear rate [34]. In a recent study, Skadsem
et al. (2019) used the structural kinetics model proposed by Dullaert and Mewis [35] to
model thixotropy and steady shear rheological measurements. Their model consisted of
eight inputs of several different combinations of parameters and can produce predictions
that fit the experimental data [36]. Kiran and Salehi (2020) proposed machine learning
(ML)-based classification to identify the lost circulation zone based on drilling parameters
in advance [37]. The use of such frameworks, combined with the predictive ability of ML,
can be used to develop a preventive strategy for efficient drilling operations. The ML
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application in drilling fluids design is fairly new, and the goal here is to investigate ML
techniques for crosslinked polymeric mud comprising PAM and PEI.

2. Methodology
2.1. Materials

Several chemicals are used to enhance or customize the drilling fluid properties. One
of the materials used as a drilling additive to mitigate lost circulation is polyacrylamide
(PAM). PAMs are water-soluble polymers produced by polymerization of the acrylamide
monomer. In this study, unlike the common treatment, PAM is used as the main viscosity
additive, which at a proper concentration should provide sufficient rheological parameters
for drilling fluids. A commercial PAM consisting of acrylamide monomers was obtained
from SNF Floerger Group, France. The active matter of the received material was 20 wt.%,
dissolved in distilled water. PAM has a relatively low molecular weight (Mw) of about
200,000 Da and therefore provides moderate viscosity of about 70 mPa.s for a concentration
of 7%.

PAM forms viscoelastic fluid when crosslinked with a proper crosslinker. The crosslink-
ers can enhance the gel strength of the drilling fluid and form a strong mature gel at the
designed activation condition and subsequently serve as sealing materials for fractured
formations. The gel strength is required for the suspension of solids and weighting material
when circulation is stopped. In this study, an organic polymer, polyethyleneimine (PEI),
was used as a crosslinker. One of the major advantages of using such an organic compound
lies with its environmental compatibility. The crosslinker was a highly branched PEI with
Mw of 750,000 Da and a concentration of 33.3 wt.%. The chemical structures of PAM and
branched PEI are shown in Figure 1.
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In addition to the two above-mentioned fluids, other essential drilling fluid additives
including barite as weighting agent, caustic soda to raise the pH of the mud and clay
dispersion, and lignite as mud dispersant were used. Cedar fiber was also integrated with
the crosslinked polymer as an example of the conventional LCM used in the normal drilling
operation. All materials from commercial suppliers were used as received. The experimen-
tal matrix was designed to investigate the dependency of the rheological properties on
each component of the drilling fluid formula. The three major contributors to the rheology
are the amount of PAM, PEI, and bentonite. Therefore, these three components were varied
from the minimum to the maximum amount expected to result in reasonable viscosities
for drilling fluid application. The effect of other drilling fluid additives was incorporated
using an appropriate range of concentrations for each additive. Each parameter was varied
separately, keeping others constant at their optimum values, and each formula was tested
at four temperatures. This experimental matrix formed the rheological properties dataset
for a wide range of different component combinations under the selected temperature
conditions. Machine learning algorithms were then used to evaluate the relationship and
the rheology dependency for any fluid design based on this established interrelationship.
The selected concentrations are described in Table 2.
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Table 2. Mud component and their range of concentrations.

Component/Temperature Concentrations lb/bbl Weight %

PAM (lb/bbl) 5 6 7 7.5 8 9 10 12.5 17–44 5–12.5
PEI wt.% (lb/bbl) 0 0.25 0.5 0.8 1 1.25 1.5 0.8–5 0.25–1.5

Bentonite wt.% (lb/bbl) 1 2 2.5 3 3.5 4 5 0–5 0–1.5
Caustic soda (lb/bbl) 0 0.5 1 1.5 0–1.5 0–0.4
Mud weight (ppg)/

Barite (lb/bbl)
9.5/
10

10/
54

11.5/
90 10–90 2 to 30

Fiber (lb/bbl) 0 5 10 0–15 3.5
Temperature (◦F) 70 120 160 200

2.2. Rheology Measurements

An automated API certified speed dial viscometer was used for the rheological charac-
terization. The samples of drilling fluids were prepared in a specific mixing order, as they
appear in Table 2, to ensure good dispersion of additives and stability in the mixture with
the polymer and the crosslinker. The samples were prepared using different combinations
of additives with different concentrations, and the rheological measurements were obtained
for each at four different temperatures, 75, 120, 160, and 200 ◦F. The samples were heated at
4 ◦F/min while stirring at 100 rpm to ramp up to the desired temperature. After reaching
the desired temperature, the measurements were taken at various shear rates from 5.1 to
1021 s−1, equivalent to 3 to 600 rpm. Using these measurements, the apparent viscosity,
plastic viscosity, and yield point were calculated. These rheological properties are the most
important design factors for drilling fluids. The AV is the fluid viscosity measured at a
specific shear rate. According to API, the AV is defined for the Bingham plastic rheology
model as one-half of the dial reading at 600 rpm, which gives a shear rate of 1022 s−1. The
PV, on the other hand, represents the viscosity of the fluid corresponding to an infinite
shear rate. PV is the slope of the shear stress versus shear rate based on the Bingham plastic
rheology model. The PV is calculated from the difference between the dial reading at 600
and 300 rpm. YP is expressed in pounds per 100 ft2 and calculated by subtracting plastic
viscosity value from the dial reading at 300 rpm.

2.3. Data Analysis

With the rheological measurements, a workflow is constructed to automate the process
of identifying suitable drilling fluid for field applications. The suitability of the drilling
fluid depends on the compatibility and workability, based on its rheological properties.
After deciding the desired rheological properties, the material required to achieve these
rheological properties can be obtained using the machine learning programs. To build the
ML modules, the experimental data and rheological properties are used for training and
testing. The broader framework is illustrated in Figure 2. The experimental data are used as
input, which consist of the amount of materials, temperature, and the rheological properties
such as plastic viscosity, apparent viscosity, and yield point. The dataset consisting of 284
data points was randomly split in 80:20 to train and test different algorithms. The machine
learning algorithms used in this study were (a) k-Nearest Neighbor, (b) Random Forest, (b)
Gradient Boosting, and (d) AdaBoosting. The details of the algorithms are presented in the
next section. These algorithms were run 50 times to identify the deviation in the results by
repetitively running the algorithms and comparing the standard deviations.
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3. Machine Learning Algorithms

Various recipes of drilling fluids were prepared by using different combinations of the
selected additives. Different combinations of components were set at the ranges described
in Table 2. They were tested under each of the four targeted temperatures to generate
71 data sets consisting of 284 data points.

In the world of data science, machine learning is a highly sought technology to
implement in real-time operation. Machine learning algorithms have been constantly
used from operational optimization to fraud detection, from identifying the compressor’s
problem to predicting the customer’s choice. The ever-increasing implementations of these
algorithms are also widely used for the predictive purpose embedded in the datasets. A
word of caution must be described before proceeding further with the implementation
of such algorithms. The downhole operational datasets in oil and gas are different from
the workable day-to-day dataset (health data, financial data, customer preferences, etc.),
where the implementation has been highly successful. Hence, it becomes natural to test
different algorithms. Here, we have used four regression supervised learning algorithms
to train and test the regression models for the experimental rheological data. The following
section describes the regression models implemented in this study, which are (i) K-Nearest
Neighbor, (ii) Random Forest, (iii) Gradient Boosting, and (iv) AdaBoosting.

3.1. k-Nearest Neighbor (kNN) Algorithm

One of the most popular regression models is based on the k-Nearest Neighbor (kNN)
algorithm. This algorithm can be used in combination with other mathematical rules to
test the predictive capability. Modaresi et al. (2017) used kNN to evaluate the monthly
inflow of the Karkheh dam [38]. Other authors [39] proposed a kNN regression model for
geo-imputation for pattern-label-based short-term wind prediction of spatial–temporal
wind data. Similarly, [40] used it to map a demonstrated grasp motion by a human hand
to a robotic hand. Apart from other industries, the petroleum industry is frequently
implementing these algorithms for prediction purposes. One study [41] compared different
machine learning algorithms, including kNN, to predict reservoir fluid properties. The
success of this regression model is highly dependent on the distance metrics from the
nearest neighbors. One of the most commonly used metrics is Euclidean distance [42]. The
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algorithm uses the number of the nearest neighbors of the test instance for the label sets of its
neighboring instances. After identifying the desired nearest neighbors, the predictive value
for input data is the mean output of the identified samples. The algorithm is considered
slow due to its inbuilt nature of scanning the whole data set for each prediction [43].

3.2. Random Forest Regression

The Random Forest (RF) algorithm is a robust supervised machine learning algorithm,
which is a combination of decision trees. A decision tree algorithm can produce erroneous
results due to variance and overfitting in the predictions. Hence, to overcome this anomaly,
a set of decision trees is framed, and the average values of all decision trees are used to
produce the final result [44]. This RF regression model improves individual estimator
performance by adopting an ensemble-based combined performance strategy [45,46]. It
has been implemented in a range of predictive modeling, including object recognition,
chemoinformatic, bioinformatics, and air quality prediction [47–49]. In the oil and gas
industry, RF has also gained traction over time. Hedge et al. [50] used Random Forests to
predict the rate of penetration during drilling.

Breiman (2001) constructed a set of decision trees based on nonparametric regression
estimation for Random Forest modeling. A predictor is implemented, which consists of
a collection of randomized regression trees. The predictor estimate for the regression is
defined by the following function [51]:

mM,n(X; θ1, θ2 . . . ., θM, Dn)=
1
M

M

∑
j=1

∑
i∈D∗n(θj)

1Xi∈An(x;θj ,Dn)Yi

Nn
(
X; θj, Dn

) (1)

Equation (1) gives the predicted values for the number of trees (jth) at the query
point x. The prediction uses the independent random variables of the training sample
expressed as Dn, which is associated with the variable number (n). The predicted value at
(x) is denoted by mM,n(X; θ1, θ2 . . . ., θM, Dn) where θ1, θ2, . . . , θM are independent random
variables for each query point (x) located at m and n order. These are randomly distributed
and independent of the training sample variable (Dn). An represents the set of data points
selected before tree construction and expressed in the form of a matrix where An

(
x; θj, Dn

)
denotes the cell containing the query point x. The number (Nn) of the cell that falls into the
query point is expressed by the term Nn

(
X; θj, Dn

)
. Equation (1) also uses the output data

point (Yi) related to the query point ( i) to generate the predictions.
The error in RF predictions depends on the correlation between any two nodes in the

forest and individual nodes’ strength. The higher correlation between nodes leads to a
higher error rate, while greater strength reflects the reduction in error, which is affected
by the size of the subset of the variables used in tree building. The central theme of RF is
to improve the reduction in the variance of bagging by reducing the correlation between
the nodes without a substantial increase in the variance. This can be achieved by growing
the nodes through a random selection of the input variables [51]. The decision tree can be
expanded to its maximum depth using a combination of features from the input parameters.
RF also helps rank the features conducive to prediction estimates; however, we have only
seven different input parameters. Therefore, we have solely focused on testing the accuracy
of the test dataset.

3.3. Gradient Boosting Regression

Gradient Boosting (GB) is another type of ensemble supervised machine learning
program which utilizes an additive model in a forward stage-wise fashion [52]. Like the
Random Forest, it also uses decision trees as a basic building block for an ensemble of
weak models [53]. It uses an individual weak complementary regressor sequentially, where
a new weak learner is constructed to provide maximum correlation with the negative
gradient of loss functions at each stage of iterations [54]. After these loss functions are
implemented, a strategy similar to the artificial neural network is adopted. One of GB’s
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common loss functions is logistic regression, which is implemented in this case [55,56]. A
decision tree is then used to make a prediction based on a series of rules that consist of
different nodes. The difference between prediction and actual values depicts the error rate.
This error rate is represented in the form of a gradient, which is the partial derivative of
the loss function. The gradient is used to minimize the error for the next round of training.
The extreme Gradient Boosting speeds up tree construction and uses a new algorithm for
tree searching [57].

3.4. AdaBoosting Regression

The AdaBoost algorithm, inspired by numerical optimization and statistical estima-
tion, uses a sequence of a simple weighted weak base classifier to construct a strong
classifier. In each step, it attempts to find the optimal estimator as per weight distribution.
Each estimator’s performance defines its weight in the next iteration, and finally, accurate
predictors get more weightage eventually [58,59]. Friedman et al. (2000) used this concept
and implemented statistical concepts for stagewise additive logistic regression to minimize
the exponential loss function in additive boosting [60]. Lebanon and Lafferty (2002) stud-
ied the difference between AdaBoost’s approach and the maximum likelihood approach
relying on the normalization to form a conditional probability over labels by the latter [61].
Madhuri et al. (2019) implemented the algorithm to estimate house prices and compared it
with other regression techniques [62].

4. Results and Discussion
4.1. Rheology Data

The rheological data were generated based on the different mud recipes, amount of
materials, and sample temperature. In this section, the impact of PAM, bentonite, and
mud weight on the rheological properties (such as plastic viscosity, apparent viscosity) is
highlighted. Different PAM concentrations of 5 to 12 wt.% were considered to determine
the effect of the polymer concentration on the hydraulics of the drilling fluids and thus
the equivalent circulation density (ECD). Figure 3 shows the PV calculated from the vis-
cometer measurements of the different PAM concentrations prepared from non-crosslinked
PAM in distilled water. The AV values at shear rates of 1021, 10, and 5 s−1 for different
PAM concentrations are shown in Figure 4. The values presented also show the effect of
temperature, which was more pronounced in the low shear rates.

Both AV and PV were found to be exponentially increased with PAM concentration.
Rational values were obtained with polymer concentrations of 7.5 to 10 wt.%. Beyond
these PAM concentrations, the viscosities tended to increase drastically. Polymer tends to
exhibit high viscosities at this high concentration of 10 to 12.5 wt.%; however, at elevated
temperature (200 ◦F), a 70 to 75% reduction in viscosity was observed compared to the
values measured at surface temperature.
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Figure 4. Impact of PAM concentration and shear rate on AV of the PAM-based drilling fluid at
(a) 75 ◦F and (b) 200 ◦F.

Moreover, as the main viscosity additive in the water-based drilling fluids, bentonite
was given a special focus in this study. The interaction between bentonite and PAM/PEI
system was investigated. A significant improvement in rheology with bentonite addition
was observed. Since PAM fluid’s viscosity deteriorates as temperature increases, bentonite
enhanced the thermal stability of the PAM/PEI-based drilling fluid. Figure 5a,b shows the
enhancement on the 7.5/1 wt.% PAM/PEI fluid with bentonite addition in amounts of 1 to
5 lb/bbl, which is 0.25 to 1.24 wt.% of the mud recipe. The improvement in viscosity was
more pronounced under the high shear rates, especially at elevated temperatures (200 ◦F).
There was a noticeable improvement in the PAM/PEI solutions’ viscosity with bentonite
addition; the viscosity increased by approximately 170%. For example, PAM’s viscosity at
200 ◦F was tripled by adding 5 lb/bbl of bentonite. Similar behavior was observed at low
shear rate (10 and 5 s−1). It is worth mentioning that rheology of PAM/PEI with bentonite
depends on the mixing procedures; a stable suspension and high viscosity is observed
when bentonite is dispersed first in water before adding the crosslinked PAM/PEI polymer.
The value of 3.5 lb/bbl of bentonite yielded a local maximum at all shear rates.
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Figure 5. Impact of bentonite concentration on AV of the 7.5 wt.% PAM/PEI-based drilling fluid at
(a) 75 ◦F and (b) 200 ◦F.

Finally, after the mud recipe was prepared, the proper mud weight was obtained
by adding barite to the PAM/PEI based fluid. The nature of polyacrylamide interaction
with barite was investigated by rheological measurement and physical observation of the
PAM/PEI-based mud’s stability after barite addition. Barite sagging was lower at higher
PAM concentrations, given the fact that viscosity increased with PAM concentration, as
shown above. Moreover, Figure 6 shows that the interaction of barite particles with the
PAM/PEI system had a positive impact on viscosity. The AV of a 7.5 wt.% PAM/PEI
increased by 50% when mud weight increased from 9.5 to 11.5 ppg, and so did the PV. This
fact can be used to optimize the PAM concentration to match the targeted mud weight
dictated by the drilling program design. In some situations, conventual LCM such as fiber
may be used in the WBM formulations, which will alter the viscosity of the fluid. Figure 7
shows the effect of cedar fiber in concentrations from 0 to 10 lb/bbl. Generally, fiber
increased the viscosity of the mud and increased its thermal stability due to the gelation
effect at elevated temperatures. This phenomenon was clearly visible by the less decay in
viscosity versus temperature profile with fiber shown in Figure 7.
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Figure 6. Impact of mud weight on (a) AV and (b) PV of the 7.5 wt.% PAM/PEI-based drilling fluid at 200 ◦F.
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Figure 7. Impact of cedar fiber on (a) AV and (b) PV of the 7.5 wt.% PAM/PEI-based drilling fluid at
200 ◦F.

4.2. Tuning of Models Parameters

This section explains the tuning of parameters to obtain the highest accuracy by
each algorithm. First, a simple kNN algorithm was implemented to train the data set
based on input parameters consisting of the amount of different materials and operating
temperature and output parameters as plastic viscosity and apparent viscosity. The main
tuning parameters used in the kNN algorithm included weight, algorithm, leaf size, power
parameter, and metrics. A uniform weight was applied, and the algorithm implemented
was auto, which decides the most appropriate algorithm (BallTree and KDTree) based
on values passed to fit methods. The leaf size and power parameter used in this study
were 30 and 2, respectively. Standard Euclidean distance metrics were implemented. The
maximum accuracy for predicting plastic and apparent viscosity was 77.9% and 67.8%,
respectively.

As described earlier, the kNN algorithm’s accuracy depends on the number of nearest
neighbors. We varied the number of nearest neighbors to get an insight into the behavior of
the algorithm. A significant change in the predictive accuracy of the data set was observed
with the change in the nearest neighbors, as shown in Figure 8. The maximum accuracy was
found to be in the case of 3 closest neighbors sampling for plastic and apparent viscosity.

For the RF, the mean square error was used to measure the quality of split and
variant reduction. The nodes were chosen to expand until all leaves contained less than
two samples or all leaves were pure. The minimum number of samples for establishing
the leaf node and weight fraction of the sum total of weights was considered to be 1
and 0, respectively. This machine learning model is based on different materials; hence,
each parameter will be necessary to identify the rheological properties. Therefore, all six
parameters were used as features in the model. Other tuning parameters included a relative
reduction in impurity by specifying maximum leaf nodes, minimum impurity decrease
and split, bootstrap, out-of-bag samples, random state, verbose, warm start, minimum
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cost-complexity pruning, and maximum samples, which were set to the default value. The
main tuning parameter was the number of trees, which varied from 0 to 100. Figure 9
shows the accuracy of the prediction for plastic viscosity and apparent viscosity. In this
study, the accuracy increased with increasing the number of trees up to 20. After 22 trees
for PV and 13 trees for AV, it became asymptotic, as depicted in Figure 4a,b. The maximum
accuracies for RF prediction for plastic viscosity and apparent viscosity were 87.9% and
60.6%, respectively.
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Moreover, for the GB the least-squares regression was used for the optimization of the
loss function. The learning rate for shrinkage contribution from each tree was considered
to be 0.1. Additionally, the measurement of the quality of a split was estimated by the
mean-squared error with an improvement score by Friedman. Other tuning parameters
were incorporated as default. The main attribution used for testing the performance of the
model was the number of boosting stages. Past studies suggest that the number of boosting
stages directly impact the performance of the model. Hence, the number of boosting stages
and the accuracy of the test data for plastic viscosity and apparent viscosity are plotted, as
shown in Figure 5. The accuracy increased with an increase in the boosting stages as shown
in Figure 10, and it reached a steady-state in the vicinity of 20 iterations. The maximum
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from this algorithm for plastic viscosity and apparent viscosity was found to be 90.7 and
74.3%, respectively.
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Figure 10. The test dataset accuracy corresponding to the number of boosting stages for Gradient Boosting algorithm for
(a) plastic viscosity and (b) apparent viscosity.

Finally, for the AdaBoost algorithm, the main tuning parameters implemented in
this study were base estimator, number of estimators, learning rate, loss, and random
state. The base estimator and learning rate considered were 3 and 1, respectively. The
number of estimators was varied in the form of boosting stages. The AdaBoost algorithm’s
performance depends on the iterative steps, which improves estimators’ performance with
the boosting stage. In this study, the algorithm was tested corresponding to the increase
in the boosting stage. Results suggest that the maximum accuracy was achieved in the
vicinity of 25 boosting stages, as shown in Figure 11. The maximum accuracy was 88.5%
and 74.3% for plastic viscosity and apparent viscosity, respectively, as shown in Figure 6.
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4.3. Performance and Accuracy of Predictions

By using different algorithms, valuable predictions of rheological data can be obtained
for other systems of PAM/PEI and mud additives. Figure 12 compares the predicted values
of the testing data set with actual values using the four algorithms tested in this study
for the high shear rate values. It can be inferred that the overall predictive capability of
Gradient Boosting was higher than any other algorithm for plastic and apparent viscosity.
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However, AdaBoost’s performance in predicting a higher range of plastic and apparent
viscosity trumped other algorithm performances. Applying the same methodology for the
low shear rate data was challenging. The prediction performance reduced significantly,
and the predicted values differed from the actual values as shown in Figure 13. In pursuit
of assessing these algorithms’ efficiency, the dataset was randomly selected for training and
testing in a 20:80 ratio. For both viscosity values, each algorithm was executed 20 times,
and statistical analysis was conducted. Table 3 shows the overall result for each algorithm
for the high shear rate data.
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Table 3. Performance of algorithms in predicting plastic and apparent viscosity (R2).

Algorithms
Performance

Plastic Viscosity Apparent Viscosity

k-Nearest Neighbor 0.69 0.48
Random Forest 0.88 0.60

Gradient Boosting 0.89 0.74
AdaBoosting 0.75 0.37
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It is evident from the type of input parameters of rheological data that the data set
was imbalanced. Several researchers have concluded that the Gradient Boosting performs
better than other algorithms for imbalanced datasets (Brown and Mues, 2012; Ma et al.,
2017). Overall, it can be observed from the results compiled in Table 2 that the performance
of Gradient Boosting was better than other algorithms. Furthermore, it is worth mentioning
that increasing the size of the dataset increases the algorithms’ predictive capabilities.

In conclusion, with the proper amount of materials, PAM/PEI-based mud can be
designed to give the required rheological properties. PAM/BEI-based mud can work
efficiently in replacing water-based mud when loss circulation occurs. The gelation char-
acteristic of the crosslinked PAM/PEI mud will help to cure the loss circulation once the
mature gel develops in the formation after the fluid invades the loss zone, as shown in
our previous work [24]. However, one of the main challenges facing the drilling process is
managing the overbalance between the ECD and formation pressure, especially in wells
with a narrow window between the fracture gradient and the pore pressure gradient. The
tool we are developing here allows for recipe manipulation to come up with the proper
combinations of materials to provide the appropriate rheological properties that can have a
better impact on the ECD.

A case study was used to validate this finding. A well with the information provided
in Table 4 was drilled to 6000 ft using water-based mud. Figure 14 shows the ECD calculated
using water-based mud and PAM/PEI-based mud. From the results, it is clear that the same
well can be drilled using the PAM/PEI-based mud of 9.5 ppg. Moreover, the circulating
pressure obtained by the PAM/PEI-based mud was less than the one obtained by the WBM.
The crosslinked polymer-based mud used to calculate the ECD consisted of 7.5 wt.% PAM
and 1% PEI. Table 5 shows the full component and composition of the two mud systems.

Table 4. Mud and well information used for the hydraulic calculations.

Component Parameter Information

Mud information Mud Density 9.5 ppg
Water-based mud AV = 32, PV = 22 mPa.s

PAM/PEI-based mud AV = 27, PV = 26 mPa.s
Well information Well Depth 6000 Ft

Surface Hole Diameter 9 5/8 In
Main Hole Diameter 7 7/8 In

Casing Depth 3500 Ft
Drill Collar Information ID 2 1/4 In

OD 6 1/4 In
Total Length 270 Ft

Drill Pipe Information
ID 3 5/6 In
OD 4.5 In

Total Length 6430 Ft
Flow Rate Information Pump rate 275 gpm

Surface Pressure loss 100 Psi

Table 5. Composition of the PAM/PEI-based mud and the water-based mud.

Component PAM/PEI-Based Mud
lb/bbl

Water-Based Mud
lb/bbl

Water 312.3 318
Caustic soda 0.5 0.5

Lignite 0 4
Bentonite 3.5 20

Mud deflocculant 0 4
Calcium Carbonate 0 55

PAM 25.6 0
PEI 3.4 0

Barite 56.3 0.85
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5. Conclusions

The lack of a comprehensive predictive model for the rheological properties of
crosslinked polyacrylamide-based drilling fluid was the primary motivation behind this
study. Moreover, the nature of the interaction of PAM/PEI and the drilling fluid additives
is not fully understood. Therefore, a holistic experimental and computational solution
was developed to predict the rheological properties, which can address the loss circulation
problem at a certain depth and temperature.

First of all, the rheological data were collected in the experimental environment for
PEI/PAM-based drilling fluid. The experimental study quantified the appropriate amount
of PAM/PEI with other additives for reasonable and competent rheological properties con-
ducive to better ECD. Additionally, the experimental data were used in machine learning
algorithms to assess the best-suited model for rheological characterization. The machine
learning algorithms included regression-based models using k-Nearest Neighbor, Random
Forest, Gradient Boosting, and AdaBoosting algorithms. These models allowed a wide
range of rheology evaluation for different drilling fluid compositions comprising PAM
crosslinked with PEI. Overall, the following conclusions can be drawn from this study:

(a) Rheology of PAM/PEI-based mud is highly dependent on the PAM concentration
rather than PEI concentration. Best values ranged from 7 to 10 wt.%. Other materials
had less impact on viscosity; however, the PAM concentration should be optimized
accordingly to achieve targeted rheology, especially for the high solid contents such
as barite.

(b) In the case of an imbalanced dataset of rheological characterization, Gradient Boosting
performed significantly better than other algorithms, including k-Nearest Neighbor,
Random Forest, and AdaBoosting.

(c) The accuracy from the Gradient Boosting algorithm was 91 and 74% for plastic
viscosity (PV) and apparent viscosity (AV), respectively. This algorithm’s maximum
accuracy was obtained to be 91 and 74% for PV and AV, respectively. It is worth
noting that this variation can be minimized using a greater number of data-points.

(d) The rheology data at the low shear rate were challenging, although the performance
of prediction was very low; still, some good predictions were obtained at the low
values of viscosities where low concentrations of mud additives were used. Increasing
the size of the data set is expected to increase the performance of the model.

(e) The experimental study presented in this paper, along with the developed machine
learning approach, adds valuable information to help design the PAM/PEI mud
system. The optimized concentration of PAM and other materials formulated a
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PAM/PEI-based mud of 9.5 ppg that resulted in 100 psi less circulating pressure. This
reliable, highly accurate prediction of rheology that results from the interactions of
polymers and the drilling fluid additives is important for hydraulic calculations and
ECD management to prevent lost circulation.
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A Nodes in Random Forest Regression
AdaB AdaBoosting
AV Apparent Viscosity
D Diameter of the test pipe section
Dn Training sample of independent random variables
ECD Equivalent Circulating Density
f Fanning friction factor
GB Gradient Boosting
gpm Gallons per minute
jth Family tree
KNN K-Nearest Neighbor
lb/bbl Pounds per barrel
LCM Loss Circulation Materials
ML Machine Learning
mn Predicted values
Nn Number of nodes
NPT Non-Productive Time
PAM Polyacrylamide
PEI Polyethylenimine
ppg Pounds per gallon
PV Plastic Viscosity
RF Random Forest
Greek Symbols
ρ Density (kg/m3)
ε Roughness height (m)
θ Independent random variable
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