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Abstract: This paper addresses very short-term (10 s) forecasting of power demand of highly variable
loads. The main purpose of this study is to develop methods useful for this type of forecast. We
have completed a comprehensive study using two different time series, which are very difficult
to access in practice, of 10 s power demand characterized by big dynamics of load changes. This
is an emerging and promising forecasting research topic, yet to be more widely recognized in the
forecasting research community. This problem is particularly important in microgrids, i.e., small
energy micro-systems. Power demand forecasting, like forecasting of renewable power generation, is
of key importance, especially in island mode operation of microgrids. This is due to the necessity
of ensuring reliable power supplies to consumers. Inaccurate very short-term forecasts can cause
improper operation of microgrids or increase costs/decrease profits in the electricity market. This
paper presents a detailed statistical analysis of data for two sample low voltage loads characterized
by large variability, which are located in a sewage treatment plant. The experience of the authors
of this paper is that very short-term forecasting is very difficult for such loads. Special attention
has been paid to different forecasting methods, which can be applied to this type of forecast, and
to the selection of explanatory variables in these methods. Some of the ensemble models (eight
selected models belonging to the following classes of methods: random forest regression, gradient
boosted trees, weighted averaging ensemble, machine learning) proposed in the scope of choice of
methods sets constituting the models set are unique models developed by the authors of this study.
The obtained forecasts are presented and analyzed in detail. Moreover, qualitative analysis of the
forecasts obtained has been carried out. We analyze various measures of forecasts quality. We think
that some of the presented forecasting methods are promising for practical applications, i.e., for
microgrid operation control, because of their accuracy and stability. The analysis of usefulness of
various forecasting methods for two independent time series is an essential, very valuable element of
the study carried out. Thanks to this, reliability of conclusions concerning the preferred methods has
considerably increased.

Keywords: microgrids; operation control; big dynamics loads; power demand; very short-term
forecasting; machine learning; interval type 2 fuzzy logic system

1. Introduction

Microgrids, i.e., small energy micro-systems, are autonomous systems which can
operate in two different modes: in synchronous (parallel) mode with grids of distribu-
tion system operators or in the island mode. In both modes, one of the most important
challenges is how to control the microgrid. In particular, this problem is essential in the
island mode which needs for its operation proper very short-term forecasts of power
demand and power generated from renewable energy sources. Especially, it is a key issue
in industrial microgrids or in some public utility microgrids with big dynamics of power
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demand. In this way, the issue of very short-term power demand forecasting is gaining
prominence, in particular due to the necessity of ensuring reliable electricity supplies to
consumers in such microgrids. It is also worth mentioning that inaccurate very short-term
forecasts can cause improper operation of microgrids or increase costs/decrease profits in
the electricity market.

1.1. Related Works

The first parts of the publications related to this paper are the ones which specifically
address microgrids.

The subject of microgrids has been described thoroughly in the literature. A formal
definition of microgrids as well as detailed characteristics of different kinds of microgrids
are presented in [1,2]. Many other publications describe the idea of microgrids, e.g., [3,4].
A lot of publications concern the topic of microgrids operation control [3–14]. These papers
address different aspects of the control with the use of active components of microgrids. A
very comprehensive overview of publications concerning optimal control in microgrids is
presented in [5,13,14]. These contributions describe different ways of controlling microgrids,
in particular, they discriminate between two main control strategies: centralized control
logic and decentralized (distributed) control logic. The centralized control logic is presented,
e.g., in [6,13]. Papers [7–9,13,14] describe the distributed control logic in microgrids.
In [13,14], the problem of optimal control operation in rural low voltage microgrids with the
use of the centralized control logic and the Particle Swarm Optimization (PSO) algorithm
as well as the decentralized (distributed cooperative) control logic and a modified Monte
Carlo method is addressed. The subject-matter of implementation of optimal operation
control algorithms in microgrids is presented in [10]. The model of predictive control in
microgrids is described in [6]. Meanwhile, other papers [6,9,11] address the problem of
microgrid operational control in the island mode. Paper [12] presents the use of fuzzy
logic to build a coordinated control system of energy storage and dispatchable generation
for microgrids.

The second part of the literature sources related to this paper are the ones which
address short-term forecasting. Within this area, we distinguish between power generation
forecasts and load demand forecasts.

Many different methods (models) can be used to prepare short-term or very short-
term forecasts of wind power generation. Some examples are given as follows: the model
of wavelet decomposition and weighted random forest optimized by the niche immune
lion algorithm utilized for ultra-short-term wind power forecasts [15]; hybrid empirical
mode decomposition and ensemble empirical mode decomposition models (for wind
power forecasts) [16]; a neuro fuzzy system with grid partition, a neuro fuzzy system with
subtractive clustering, a least square support vector regression, and a regression tree (in
the forecasting of hourly wind power) [17]; different approaches for minute-scale forecasts
of wind power [18]; the Takagi–Sugeno fuzzy model utilized for ultra-short-term forecasts
of wind power [19]; the integration of clustering, two-stage decomposition, parameter
optimization, and optimal combination of multiple machine learning approaches (for
compound wind power forecasts) [20]; hybrid model using modified long short-term
memory for short-term wind power prediction [21]; extreme gradient boosting model
with weather similarity analysis and feature engineering (for short-term wind power
forecasts) [22]; a model for wind power forecasts utilizing a deep learning approach [23];
hybrid model using data preprocessing strategy and improved extreme learning machine
with kernel (for wind power forecasts) [24]; the use of dual-Doppler radar observations
of wind speed and direction for five-minute forecasts of wind power [25]; the multi-stage
intelligent algorithm which combines the Beveridge–Nelson decomposition approach, the
least square support vector machine, and intelligent optimization approach called the
Grasshopper Optimization Algorithm (for short-term wind power forecasts) [26]; hybrid
model, which combines extreme-point symmetric mode decomposition, extreme learning
machine, and PSO algorithm (for short-term wind forecasts) [27]; chicken swarm algorithm
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optimization support vector machine model for short-term forecasts of wind power [28];
hybrid neural network based on gated recurrent unit with uncertain factors (for ultra-short-
term forecasts of wind power) [29]; discrete time Markov chain models for very short-term
wind power forecasts [30].

Similarly, different methods (models) can be used for very short-term or short-term
solar (photovoltaic) power prediction. The examples are: using smart persistence and
random forests for forecasts of photovoltaic energy production [31]; an ensemble model
for short-term photovoltaic power forecasts [32]; hybrid method based on the variational
mode decomposition technique, the deep belief network and the auto-regressive moving
average model (for short-term solar power forecasts) [33]; a model which combines the
wavelet transform, adaptive neuro-fuzzy inference system, and hybrid firefly and particle
swarm optimization algorithm (for solar power forecasts) [34]; a physical hybrid artificial
neural network for the 24 h ahead photovoltaic power forecast in microgrids [35]; a hybrid
solar and wind energy forecasting system on short time scales [36].

Another aspect to be considered is short-term load demand forecasting. Selected
methods used for this purpose are presented here: a random forest model utilized for
short-term electricity load forecasts [37]; a technique based on Kohonen neural network
and wavelet transform (for short-term load forecasts of power systems) [38]; univariate
models based on linear regression and patterns of daily cycles of load time series (for
short-term load forecasts) [39].

Several publications, e.g., [40–42], present the problem of very short-term forecasting
of power demand. A very comprehensive overview of ultra-short-term and short-term
load forecasting methods is offered in [43]. This overview addresses topics such as forecast
time horizons and different areas and location types to which forecasts can be dedicated
(small city, microgrid, smart building). Mainly, different kinds of neural networks are used
in the papers for ultra-short-term and short-term power demand forecasts.

In the analyzed publications, loads associated with big dynamics of power demand
are very rarely addressed by very short-term forecasting exercises. This is the clue and
the key aspect of this paper. Very short-term forecasts refer to microgrid components
characterized by significant dynamics in the level of received power. Two of the main
technological components of a sewage treatment plant play the role of loads characterized
by considerable power demand variability. Some other active and passive components are
also part of the microgrid.

Very short-term forecasting of power demand of loads with big dynamics is presented
in paper [44]. The current paper very significantly builds on [44]. In comparison with the
study described in [44], the scope of studies presented in this paper has been significantly
expanded. Two time series from a December day instead of the one from the same month
described in [44] are analyzed. Thanks to this, the credibility of conclusions has consider-
ably increased. Fifteen forecasting methods were subjected to extensive testing, including
advanced ensemble methods, which utilize machine learning, in comparison with six
forecasting methods described in [44]. Many more nonlinear forecasting methods have
been tested. The number of evaluation (quality) criteria of forecasts has been increased
from 4 to 7. Thanks to this, the analysis of obtained results has significantly deepened.
The selection of explanatory variables to the models as well as the choice of predictors to
ensemble methods is also a novelty in comparison with the study described in [44].

1.2. Objective and Contribution

The main objectives of this paper are described as follows:

• Conduct statistical analysis of two distinct time series of values of 10 s power de-
mand together with the initial choice of input data with the use of six different
selection methods;

• Verify the efficiency of 10 s horizon power demand forecasting with the use of
15 forecasting methods, including ensemble methods; more than 150 various models
with different values of parameters/hyperparameters have been tested for this purpose;
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• Verify a newly developed strategy of choosing the best four predictors to be included
in ensemble methods; the strategy, apart from the criterion of the least RMSE error of
forecasts as well as dissimilarity of predictors action, utilizes an additional criterion,
with the biggest differences in rests from the forecasts obtained with the use of methods
being candidates for inclusion into the ensemble;

• Check whether there are any effective methods for very short-term forecasting of 10 s
power demand (characterized by big volatility of loads) which can be used in practice;

• Indicate forecasting methods which are most efficient for this type of time series based
on our analysis of forecasting results obtained for the two time series studied here.

Below are described selected contributions of this paper:

• This study has been done using two distinct time series, very difficult in practice to
access, of 10 s power demand of highly variable loads, which is a significant novelty
in the area of forecasting. It is a new, very promising topic yet to be widely recognized
by forecasting researchers;

• Very comprehensive analyses concerning usefulness of different forecasting methods
have been conducted for two distinct time series—starting from methods utilizing only
time series itself, to the newest machine learning techniques, and finally to ensemble
methods using additional explanatory variables;

• The authors of the study have developed some of the ensemble models proposed in
the range of choice of methods sets constituting the models set;

• Very significant, detailed suggestions concerning the most effective methods for very
short-term forecasts of power demand of big dynamics of load changes have been
developed; similarly, a list of the least useful methods for this type of time series has
also been presented;

• The analysis of usefulness of various forecasting methods for two independent time
series of very big dynamics of load changes is an essential, very valuable element of
our study. Credibility of conclusions concerning the preferred methods has increased
considerably thanks to the mentioned analysis.

Our studies allow us to conclude that there exist effective very short-term forecasting
methods for 10 s power demand (characterized by big dynamics of load changes), which
are suitable to practical use, although such a forecasting task is very complicated.

The remainder of this paper is organized as follows: Section 2.1 presents statistical
analysis of the two time series of power demand data considered in this paper. The analysis
leading to the selection of proper explanatory variables for forecasting methods is presented
in Section 2.2. Section 3 describes the methods employed in this paper. The criteria used to
evaluate the quality of individual forecasting models are discussed in Section 4. Section 5
presents an extensive comparative analysis of very short-term forecasts obtained with
the use of different forecasting methods. Section 6 discusses the results and presents the
findings of this paper. Main conclusions resulting from our study are included in Section 7.
The paper ends with a list of references.

2. Data
2.1. Statistical Analysis of the Two Time Series of Power Demand Data

Power demand data in particular circuits of the sewage treatment plant were acquired
using the WAGO PFC200 PLC controller, a part of a modern microprocessor system whose
modular design allowed us to create a set matching the needs of our measurements.
Measurements of network parameters on individual circuits were carried out using a
special three-phase power measurement module. The module provides all measurement
values, including: active/reactive/apparent power, energy consumption, power factor,
phase angle, without involving large computing power of the control system. These
numerous measurements allowed us to conduct comprehensive analysis of the power
supply via a network located inside the facility considered here. The switching functions
were realized by two-state input/output modules. Through the built-in router with a 3G
modem, the acquired data were sent in an event-based manner directly to the server with
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the SCADA system for further analysis. The mobile sim card worked in a dedicated private
network within a private APN. This solution ensures that the communication system is
isolated from the public communication network at the level of the mobile operator’s
network. Additional encryption was implemented at the level of the communication
protocol based on IEC 61850-7 standard.

Statistical analysis is based on two time series from one December day. Each of the
time series is the active power demand in different technological parts of the sewage
treatment plant being components of the microgrid. The first time series represents a
circuit which supplies power to the main process of the sewage treatment plant. The
second time series represents a circuit supplying power to another important process of
the sewage treatment plant. The daily time series includes 8640 periods of 10 s. In the
first time series, 169 data points are missing. In the second time series, 144 data points are
missing. Missing data from the December day were supplemented with information about
the values neighboring the missing ones. Missing data occur in rather random places of the
time series. In several cases, a longer fragment of the time series (several minutes) has been
missing. The data from both time series were normalized separately for anonymization to
relative units (1 relative unit is equal to an average value from the time series). The real
power demand in both time series ranges from about 20 W to about 40 kW. The relationship
between both time series is very small—the value of Pearson linear correlation coefficient is
0.100 (statistically significant at the 5% significance level). Table 1 shows selected statistical
measures of the two mentioned time series of power demand.

Table 1. Statistical measures of the two time series of the power demand in the technological parts of
the sewage treatment plant.

Statistical Measures Time Series No. 1 Time Series No. 2

Max power [p.u.] 5.7789 4.6195
Min power [p.u.] 0.0032 0.0024
The ratio of maximum power to minimum power 1806 1925
The biggest power ratio between two consecutive
10 s periods [%] 848 1401

Average power [p.u.] 1 1
Median [p.u.] 0.8580 0.9572
Standard deviation [p.u.] 0.7150 0.4867
Variance [-] 0.5112 0.2369
Coefficient of variation [%] 71.4952 48.6662
Skewness [-] 0.2363 0.3138
Kurtosis [-] −0.3084 1.1299

The first time series has characteristics significantly different from the second time
series. The first time series has (more than two times) greater variance than the second
one. Forecasting errors will be probably higher for the first time series, assuming that the
random component is dominant. The Kolmogorov–Smirnov and Lilliefors tests show that
both time series of power demand do not have normal distribution. Figure 1 shows the
percentage distribution of cases in both time series depending on power demand. Power
demand below 1 p.u. is definitely dominant in both time series. As much as 22% of power
demand from the first time series are very small values, below 0.05 p.u. (which is at least
20 times less than the average value). In contrast, the second time series has only 5% of
very small values (below 0.05 p.u.).

Figure 2 shows the two daily time series of power demand for the December day
considered here. Dynamic changes (rapid jumps) in power demand are clearly visible.
For both time series, periods of different length with very similar power demand are
characteristic. These periods are usually alternated by much shorter periods (or isolated
periods) of much bigger power demand. Meanwhile, Figure 3 shows a specific part of the
December day for both time series (from 8:00 to 8:30 a.m.).
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The seasonality problem of the time series of power demand was not analyzed due
to unavailability of data. For both time series, it was examined whether there were daily
variations in power demand in 1 h periods (see Figure 4). For each hour, average 10 s
power demand was calculated. For the first time series, R2 equal to 0.3588 was obtained
for the function of polynomial degree 8. For the second time series, R2 equal to 0.7464
was obtained for the function of polynomial degree 8. The value of the determination
coefficient is low for the first time series and high for the second one. The function of
polynomial degree 8 explains about 75% of the variability of the explanatory variable for
the second time series. The value of Pearson linear correlation coefficients between the first
time series and the second time series of average power demand in 1 h periods calculated
based on the functions of polynomial degree 8 is 0.2956 (statistically significant at the 5%
significance level).
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For the first time series, the autocorrelation coefficient dynamically decreases from
0.946 (1 period back) to 0.300 (90 periods back, i.e., 15 min) (see Figure 5). The autocorrela-
tion coefficient temporarily increases (a big peak) up to 0.439 (150 periods back, i.e., 25 min).
After 240 periods back (40 min), the autocorrelation coefficient falls to almost zero.
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For the second time series, the autocorrelation coefficient dynamically decreases from
0.910 (1 period back) to 0.169 (90 periods back, i.e., 15 min) (see Figure 6). Unlike in the first
time series, there are also temporary, repeated increases in the autocorrelation coefficient
(big peaks) every 180 periods (i.e., 30 min) for the second time series. Autocorrelation
coefficient for the first peak is 0.400. The next peaks gradually decrease. It means that
the process element of the sewage treatment plant (second time series) probably has a
30 min periodicity.
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For both time series, the partial autocorrelation coefficients are statistically significant
(5% significance level) only for the first several values and several single values distant
from each other (see Figures 5 and 6).

The Table 2 shows, for both time series, Pearson linear correlation coefficients between
10 s power demand and the potential explanatory variables considered. All correlation
coefficients are statistically significant (5% level of significance). For the variable coded
AVEW (weighted average), optimal weights were calculated by optimization process
using the Newton optimization algorithm which maximized the value of the correlation
coefficient between the values of the AVEW and the time series. The sum of weights is
equal to 1 (the limit for weights).

Table 2. Values of Pearson linear correlation coefficients between 10-second power demand of the first time series and the
second time series and the explanatory variables considered (partially based on [44]).

Code of
Variable

Potential Explanatory Variables Considered
Pearson Linear Correlation Coefficient

Time Series
No. 1

Time Series
No. 2

POW1 10 s power demand in period t − 1 0.9464 0.9100

POW2 10 s power demand in period t − 2 0.9114 0.8868

POW3 10 s power demand in period t − 3 0.8999 0.8707

POW4 10 s power demand in period t − 4 0.8882 0.8538

POW5 10 s power demand in period t − 5 0.8773 0.8412

POW6 10 s power demand in period t − 6 0.8657 0.8234

POW7 10 s power demand in period t − 7 0.8539 0.8092
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Table 2. Cont.

Code of
Variable

Potential Explanatory Variables Considered
Pearson Linear Correlation Coefficient

Time Series
No. 1

Time Series
No. 2

PEAK1 10 s power demand in period t- first_peak, where first_peak is 150 (the
first time series), and first_peak is 180 (for the second time series) 0.439 0.400

FUNC 24 h profile of the variation of power demand—the value of the
polynomial function of degree 8 of power demand in a given hour 0.374 0.510

HOUR The hour (number from the range 1–24) of power demand 0.0070 0.0061

AVE3 Average value of power demand from periods t − 1, t − 2, and t − 3 0.9402 0.9199

AVE2 Average value of power demand from periods t − 1, and t − 2 0.9418 0.9195

AVEW
Sum of power demand values for period t − 1 with the weight w1, and
period t − 2 with weight w2, where w1 is 0.841, w2 is 0.159 (for the first
time series), and w1 is 0.636, w2 is 0.364 (for the second time series).

0.9478 0.9211

It is noteworthy that the sum of the power demand values from period t − 1 with
weight w1 and period t− 2 with weight w2 (AVEW) has the maximum correlation coefficient
of all potential explanatory variables for both time series. Moreover, the 24-h profile of
the variation of power demand (FUNC) seems to be definitely a much better explanatory
variable than the hour of power demand (HOUR).

2.2. Analysis of Potential Input Data for Forecasting Methods

Only time-lagged variables are used for the explained variable for methods based on
the time series. The selection of explanatory variables is very often related to the process of
testing the quality of models.

In the case of other methods using also exogenous variables, the process of selection
of adequate explanatory variables can be supported by various methods of selection.
Theoretically, for methods other than those based on time series, the forecasting model may
contain 1 to 13 explanatory variables (see Table 2). Finding the optimal set of input variables
for each model involves checking 8192 (213) different combinations of variables (brute force
method). Six methods of selection were used to select proper explanatory variables (see
Figure 7).
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The purpose of using these methods was to obtain a reduced set of explanatory
variables without losing important information for the model and to eliminate non-essential
explanatory variables from the model. The results of the selection of explanatory variables
are only suggestions for the expert (see Tables 3 and 4). The expert makes the final decision
on the selection of proper explanatory variables by testing forecasting models with various
sets of explanatory variables.

Table 3. Results of initial selection of explanatory variables for all 6 methods of selection—selection for time series No. 1.

Method of Selection
Codes of All 13 Potential Explanatory Variables

PEAK1 FUNC HOUR AVEW AVE3 AVE2 POW1 POW2 POW3 POW4 POW5 POW6 POW7
1-Stepwise forward

regression + + − + + + + + + + + + +

2-Stepwise backward
regression + + − + + + + + + + + + +

3-Sensitivity analysis + + − + + + + + + + + + +
4-Genetic algorithm + − − + + + + + + + − + +
5a-Graph analysis
(strict selection) + + − + − − − − − − − − −

5b-Graph analysis
(inaccurate selection) + + − + + + + − − − − − −

6-Analysis of
variances − − − + + + + + + + + + +

Summary—the
number of indications 6 5 0 7 6 6 6 5 5 5 4 5 5

Remark: five best explanatory variables are bolded in the summary.

Table 4. Results of the initial selection of explanatory variables for all 6 methods of selection—selection for time series No. 2.

Method of Selection
Codes of All 13 Potential Explanatory Variables

PEAK1 FUNC HOUR AVEW AVE3 AVE2 POW1 POW2 POW3 POW4 POW5 POW6 POW7
1-Stepwise forward

regression − + − + + + + + + + + + +

2-Stepwise backward
regression + + + + + + + + + + + + +

3-Sensitivity analysis − − − + + + + + + + + − −
4-Genetic algorithm + + + + + − + + + + − − +
5a-Graph analysis
(strict selection) + + − + − − − − − − − − −

5b-Graph analysis
(inaccurate selection) + + − + + + + − − − − − −

6-Analysis of
variances − − − + + + + + + + + + +

Summary—the
number of indications 4 5 2 7 6 6 6 5 5 5 4 3 3

Remark: five best explanatory variables are bolded in the summary.

The analysis of the selection of input variables has shown that for both time series
(No. 1 and No. 2) the input variable coded HOUR is the input variable most often selected
for elimination. Therefore, the input variable coded HOUR has been eliminated from the
forecasting process. The most often indicated input variables are coded AVEW (seven
indications), AVE3, AVE2 and POW1 (six indications). For time series No. 1, the input
variable coded PEAK1 also yielded six indications.

3. Forecasting Methods

This section describes the methods employed in this paper. Forecasts are made using
single methods based only on the time series, the other single methods using also addi-



Energies 2021, 14, 1290 11 of 29

tional exogenous variables, including machine learning methods and the most advanced
(complex) ensemble methods.

Autoregressive Integrated Moving Average. The autoregressive (AR) part of Au-
toregressive Integrated Moving Average (ARIMA) indicates that the evolving variable of
interest is regressed on its own lagged values. The moving average (MA) part indicates that
the regression error is actually a linear combination of error terms whose values occurred
contemporaneously and at various times in the past. The term I (integrated) indicates
that the data values have been replaced with the difference between their values and the
previous values. The model has three parameters for tuning: p is the order (number of time
lags) of the autoregressive model, d is the degree of differencing (the number of times the
data have had past values subtracted) if the time series is not stationary, and q is the order
of the moving-average model. The model is fitted using the least squares approach [45,46].

Autoregressive model. This is a simplified model of ARIMA. There is only one
parameter for tuning—p which is the number of time lags. The model with p = 1 is only
used for research, assuming that this model is a quality reference model for other methods.
The model is fitted using the least squares approach [47,48].

Multiple Linear Regression model. This is a linear model that assumes a linear
relationship between input variables (more than one) and the single output variable. The
input data are chosen values of lags of the forecasted output variable and other input
explanatory variables corelated to the output variable. The model is fitted using the least
squares approach [49].

K-Nearest Neighbors. The k-nearest neighbors algorithm is a non-parametric method
used for classification and regression [49]. The input consists of k closest training examples
in the feature space. In k-nearest neighbors (KNN) regression, the property value for the
object is the output. This value is the average of the values of k nearest neighbors. The
main hyperparameter for tuning is the number of nearest neighbors. Distance metric is the
second hyperparameter.

Support Vector Regression. Support vector machine (SVM) for regression of the
Gaussian kernel (non-linear regression) transforms the classification task into regression
by defining a certain tolerance region with the width of ε around the target [49,50]. The
learning task is reduced to the quadratic optimization problem and dependents on several
hyperparameters: regularization constant C, width parameter σ of the Gaussian kernel,
and tolerance ε.

Type MLP artificial neural network. This is a class of feedforward artificial neural
networks (ANNs). MLP is a popular and effective non-linear or linear (depending on the
type of activation function in hidden layer/layers and output layer) global approxima-
tor [51,52]. It consists of one input layer, typically has one or two hidden layers, one output
layer and often uses the backpropagation algorithm for supervised learning. The main
hyperparameter for tuning is the number of neurons in hidden layer(s). The Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method used for solving unconstrained non-linear
optimization problems has been chosen as a learning algorithm of the neural network.

Interval Type-2 Fuzzy Logic System. Type-2 fuzzy logic systems (T2 FLSs) use type-2
fuzzy sets (T2 FS). Type-2 fuzzy sets were defined by L. Zadeh in 1975 as an extension of
type-1 fuzzy sets (T1 FS). Further works on the subject were carried out by Karnik, Mendel
and Liang [53–55]. T2 FSs are characterized by 3-dimensional membership functions (MF),
which include footprint of uncertainty (FOU) [56]. The FOU and the third dimension of
MF deliver additional degrees of freedom, which enables them to deal with uncertainties.
The structure of type-2 fuzzy logic inference system is presented in Figure 8. The following
components of T2 FLSs can be distinguished: fuzzification block, fuzzy inference block,
base of fuzzy rules, type reduction block, and defuzzification block. The conversion of T2
FS to T1 FS takes place in the type reduction block. The Karnik–Mendel (KM) algorithm is
usually applied for type reduction [54].
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Taking into account computational complexity of T2 FLSs, interval type-2 fuzzy logic
systems (IT2FLSs) (see, e.g., [56]) are often used in practice [57]. The latter systems are
characterized by a smaller computational effort of inference process in comparison with T2
FLSs. The IT2FLS with Takagi–Sugeno–Kang inference model, i.e., the IT2 TSK FLS [56], or
the IT2FLS with Sugeno inference model, i.e., the IT2 S FLS, can be distinguished among
the different IT2FLSs. The latter systems require a lower number of model parameters
and in this way, they seem to be easier to use. In the training process of the system being
designed to determine values of its particular parameters, genetic algorithm (GA) or PSO
algorithm can be used.

Ensemble methods, using more than one individual predictor and supported by a
simple or more complex integration system of individual forecasts, are addressed next.
The general scheme of establishing an ensemble of predictors is presented in Figure 9.
The simplest integration system is weighted averaging of individual predictors. The most
advanced integrator systems are based on machine learning methods.
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Random Forest Regression. Random forest is an ensemble method based on many
single decision trees. Random forest is a versatile machine learning algorithm that can
perform both classification and regression tasks. In the regression task, the prediction in a
single decision tree is the average target value of all instances associated with the single
leaf node. The final prediction is the average value of all m single decision trees. The
regularization hyperparameters depend on the algorithm used, but generally restricted
are: the maximum depth of the single decision tree, maximum number of levels in each
decision tree, minimum number of data points placed in a node before the node is split,
minimum number of data points allowed in a leaf node and maximum number of nodes.
The number of predictors for each of the m single decision trees is made by the random
choice of k predictors from all available n predictors [49,58,59].

Gradient Boosted Trees for Regression. Gradient boosting refers to an ensemble
method that can combine several weak learners into a strong learner. It works by se-
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quentially adding predictors (single decision tree) to the ensemble, each one correcting
its predecessor. The method tries to fit the new predictor to the residual errors made by
the previous predictor. The final prediction is the average value from all m single deci-
sion trees. This machine learning method is very effective and is recommended in many
papers for forecasting tasks [22,60,61]. In comparison with random forest, this method
has one additional hyperparameter—learning rate which scales the contribution of each
tree [49,59,62,63].

Weighted Averaging Ensemble. This is an integration of the results of selected pre-
dictors into final verdict of the ensemble. The final forecast is defined as the average of the
results produced by all m predictors organized in an ensemble [50]. The final prediction
result is calculated by Formula (1). This formula makes use of the stochastic distribution of
the predictive errors. The process of averaging reduces the final error of forecasting.

ŷi =
1
m

m

∑
j=1

ŷj
i (1)

where, i is the prediction point, ŷi is the final predicted value, ŷj
i is predicted value by

predictor number j, and m is the number of predictors in ensemble. Note: all weights are
equal in this case.

The averaging of the forecast results is an established method of reducing the variance
of forecast errors. An important condition for including the predictor into the ensemble is
independent operation from the others and also similar level of prediction error [50]. Two
main strategies of predictor choice were tested:

• The choice of predictors based on RMSE (code WAE_RMSE). Three or four predictors
based on the smallest RMSE errors on validation subset and only predictors of different
types are selected to the ensemble;

• The choice of predictors based on RMSE and R (code WAE_R/RMSE). The time series
of the residues from forecasts should be most different from each other and RMSE
error should be small. The choice algorithm of predictors based on RMSE and R is
presented in Figure 10.
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Machine Learning (ML) as an Integrator of Ensemble. This is an integration of the
results of the selected predictors into final verdict of the ensemble using ML model. Four
predictors based on the smallest RMSE errors on validation subset are included in the
ensemble, and these predictors must be of different types. Four ML methods are adopted
as the integrator of the ensemble: MLP, KNN, random forest (RF) and linear regression
(LR). Each ML integrator uses forecasts of power demand from four individual predictors
as input data and the real values of power demand as the output. A training dataset is used
for training ML integrator, and a validation dataset is used for RMSE control and tuning
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of hyperparameters. Finally, the evaluation criteria are verified against the test dataset.
The general structure of four machine learning methods as an integrator of ensemble is
presented in Figure 11 [49,64].
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Summary description of fifteen tested forecasting methods is shown in Table 5. There
are two methods based on time series and thirteen methods based on time series and
exogenous input data. The eight methods are ensemble methods, and the seven ones are
single methods. Ten methods all are machine learning methods.

Table 5. Summary description of fifteen tested forecasting methods.

Name of Method Method Code Category
Complexity

(the Number of
Predictors)

Type of Input Data

Autoregressive model AR(1) Linear/
parametric Single Time series

Autoregressive Integrated Moving
Average ARIMA(p,d,q) Linear/

parametric Single Time series

Multiple Linear Regression model LR Linear/
parametric Single Time series and

exogenous variables

Type MLP artificial neural network MLP
Non-linear or

linear/
parametric

Single Time series and
exogenous variables

Interval Type-2 Fuzzy Logic System IT2FLS Non-linear/
parametric Single Time series and

exogenous variables

K-Nearest Neighbors KNN Non-linear/
non-parametric Single Time series and

exogenous variables

Support Vector Regression SVR Non-linear/
non-parametric Single Time series and

exogenous variables

Random Forest Regression RF Non-linear/
non-parametric Ensemble Time series and

exogenous variables

Gradient Boosted Trees for regression GBT Non-linear/
non-parametric Ensemble Time series and

exogenous variables
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Table 5. Cont.

Name of Method Method Code Category
Complexity

(the Number of
Predictors)

Type of Input Data

MLP as an Integrator of Ensemble MLP [p1 *, . . . ,p4]
Non-linear or

linear/
parametric

Ensemble Forecasts from 4
predictors

RF as an Integrator of Ensemble RF [p1,...,p4] Non-linear/
non-parametric Ensemble Forecasts from 4

predictors

KNN as an Integrator of Ensemble KNN [p1,...,p4]
Non-linear or

linear/
non-parametric

Ensemble Forecasts from 4
predictors

LR as an Integrator of Ensemble LR [p1, . . . ,p4] linear/
parametric Ensemble Forecasts from 4

predictors

Weighted Averaging Ensemble based
on RMSE

WAE_RMSE [p1,
. . . ,pm]

Non-linear/
parametric Ensemble Forecasts from m

predictors

Weighted Averaging Ensemble based
on R and RMSE

WAE_R/RMSE
[p1,..,p4]

Non-linear/
parametric Ensemble Forecasts from 4

predictors

Remark: * denotes first predictor in ensemble of four predictors.

4. Evaluation Criteria

In order to have a broader view of the quality of individual forecasting models, seven
evaluation criteria are used. The main evaluation criterion is Root Mean Square Error
(RMSE) due to the specificity of the forecast time series (more important for predictions of
values which are greater than values close to zero or very small). Other major evaluation
criteria are Maximum Absolute Error (MAE), Symmetric Mean Absolute Percentage Error
(sMAPE) and Mean Absolute Percentage Error (MAPE) errors. Three auxiliary evaluation
criteria are R (Pearson linear correlation coefficient), Mean Bias Error (MBE) and Maximum
Absolute Error (MaxAE).

Root Mean Square Error is calculated by Formula (2). RMSE is sensitive to large errors
and is more useful when large errors are particularly undesirable.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (2)

where, ŷi is the predicted value, yi is the actual value, and n is the number of prediction points.
Mean Absolute Error is calculated by Formula (3)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

In the process of forecasting of electric power demand, changes in RMSE and MAE
have the same trend, and the smaller the two error values, the more accurate
the prediction results.

Maximum Absolute Error is calculated by Formula (4)

MaxAE = max
i=1,...,n

|yi − ŷi| (4)

Mean Absolute Percentage Error is calculated by Formula (5). MAPE is asymmetric
and it puts a heavier penalty on negative errors (when forecasts are higher than actuals)
than on positive errors. This is due to the fact that percentage error cannot exceed 100%
for forecasts that are too low. Meanwhile, there is no upper limit for forecasts which
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are too high. As a result, MAPE will favor models that yield under-forecast rather than
over-forecast.

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ · 100% (5)

Symmetric Mean Absolute Percentage Error is calculated by Formula (6). sMAPE
error overcomes the asymmetry of MAPE error— the boundlessness of the forecasts that
are higher than the actuals and it has both the lower (0%) and the upper (200%) bounds.

sMAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi + ŷi

∣∣∣∣ · 200% (6)

Mean Bias Error captures the average bias in the prediction and is calculated by
Formula (7)

MBE =
1
n

n

∑
i=1

(yi − ŷi) (7)

Pearson linear correlation coefficient of the observed and predicted data is calculated
by Formula (8)

R =
Cyŷ

std(y) · std(ŷ)
(8)

where, Cyŷ is the covariance value between the actually observed and predicted data, and
std denotes standard deviation of the appropriate variable.

The bigger the error R value (range from−1 to 1), the more accurate the prediction results.

5. Results

This section presents an extensive comparative analysis of very short-term forecasting
methods for active power demand in two different technological elements of the sewage
treatment plant.

Both time series, including 8640 periods of 10 s, were divided into three subsets—
training and validation subsets were composed of the initial 85% of time series (division
into training and validation subsets which are different depending on the forecasting
method) and the test subset comprised the last 15% of the time series. The training subset
is used for estimation of model parameters. The validation subset is used for tuning
hyperparameters of parts of methods. The test subset is applied to the final results of errors
of the applied methods. For most of the methods, a random strategy choice of data for
training and validation subsets was applied to get the right representation of data in each
subset. Some methods, e.g., gradient boosted trees (GBT), used bootstrap technique for the
choice of the training and validation subsets from the initial 85% data of the time series.
Some other methods, e.g., AR, used only the training subset (the initial 85% of data in the
time series) without validation subset.

Table 6 shows performance measures of proposed single methods (on test subset) for
time series No. 1. Detailed description of the results of hyperparameters tuning for the
single methods tested is provided in Table A1 of Appendix A.

Table 6. Performance measures of proposed single methods (on test subset) for time series No. 1.

Method Code Input Data Codes RMSE MAE MaxAE R MBE MAPE [%] sMAPE [%]

MLP(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.2196 0.0641 3.0142 0.9454 −0.0019 123.71 25.25

LR(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.2197 0.0638 3.0195 0.9454 −0.0014 135.51 27.32

LR(6_inputs)

PEAK1, POW1, POW2, POW3,
POW5, POW7 (the choice

based on backward stepwise
regression from all input data)

0.2198 0.0663 3.0201 0.9453 0.0009 134.20 27.31
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Table 6. Cont.

Method Code Input Data Codes RMSE MAE MaxAE R MBE MAPE [%] sMAPE [%]

ARIMA(5,1,1) POW1—POW5 0.2200 0.0640 3.0020 0.9455 0.0030 129.44 26.46

MLP(5_inputs) PEAK1, AVEW, AVE3,
AVE2, POW1 0.2204 0.0733 2.9908 0.9450 0.0018 116.39 25.97

IT2FLS(5_inputs) PEAK1, AVEW, AVE3,
AVE2, POW1 0.2321 0.0715 2.9976 0.9360 −0.0035 204.83 33.29

AR(1) POW1 0.2332 0.0661 3.0214 0.9396 0.0199 143.23 29.40

KNN(5_inputs) PEAK1, AVEW, AVE3,
AVE2, POW1 0.2347 0.0653 3.0036 0.9377 0.0160 94.15 14.94

KNN(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.2372 0.0908 3.0361 0.9376 0.0249 140.24 30.14

SVR(5_inputs)
PEAK1, AVEW, AVE3, AVE2,
POW1 (the choice based on

initial selection from Table 3)
0.2441 0.1278 3.0397 0.9425 −0.0186 447.35 39.30

SVR(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.2510 0.1484 3.0087 0.9401 −0.0914 462.63 41.21

IT2FLS(4_inputs) POW1-POW4 0.2936 0.0924 3.0033 0.9012 0.0191 167.17 22.03

Remarks: The forecasts based on IT2FLS models were created using Matlab environment with Fuzzy Logic Toolbox and Optimization
Toolbox. Three best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is printed in red.

Table 7 presents performance measures of proposed ensemble methods (on test subset)
for time series No. 1. Detailed description of the results of hyperparameters tuning for the
ensemble methods tested is provided in Table A2 of Appendix A.

Table 7. Performance measures of proposed ensemble methods (on test subset) for time series No. 1.

METHOD CODE Input Data Codes RMSE MAE MaxAE R MBE MAPE
[%]

sMAPE
[%]

GBT(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.2102 0.0591 2.9823 0.9501 0.0016 121.35 25.55

LR [LR(11_inputs),
RF(6/12), MLP(11_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble * 0.2126 0.0537 2.9968 0.9490 0.0034 108.63 24.50

GBT (5_inputs) PEAK1, AVEW, AVE3, AVE2,
POW1 0.2134 0.0536 2.9967 0.9487 0.0047 97.75 22.81

MLP [LR(11_inputs),
RF(6/12), MLP(11_inputs,
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.2140 0.0526 3.0011 0.9483 0.0047 94.22 20.45

WAE_RMSE
[LR(11_inputs), RF(6/12),
MLP(11_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.2147 0.0587 3.0073 0.9479 0.0013 119.43 25.66

WAE_RMSE
[LR(11_inputs),
MLP(11_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.2147 0.0608 3.0054 0.9479 −0.0006 126.71 26.09

WAE_R/RMSE
[KNN(5_inputs),
RF(10/12), AR(1),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.2181 0.0583 3.0004 0.9462 0.0066 111.85 25.29
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Table 7. Cont.

METHOD CODE Input Data Codes RMSE MAE MaxAE R MBE MAPE
[%]

sMAPE
[%]

RF [LR(11_inputs),
RF(6/12), MLP(11_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.2185 0.0569 2.9998 0.9460 0.0047 79.20 18.41

KNN [LR(11_inputs),
RF(6/12), MLP(11_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.2191 0.0583 3.0002 0.9458 0.0039 67.12 10.23

RF(10/12)

For each tree random choice of
10 inputs from 12: PEAK1,

FUNC, AVEW, AVE3, AVE2,
POW1—POW7

0.2261 0.0582 3.0170 0.9421 0.0051 89.83 22.58

RF(6/12)

For each tree random choice of
6 inputs from 12: PEAK1,

FUNC, AVEW, AVE3, AVE2,
POW1—POW7

0.2261 0.0567 3.0131 0.9421 0.0070 97.87 23.53

Remarks: * Input datasets for each predictor in ensemble are described in Tables 6 and 7. Three best fitting results for each fitting measure
are printed in bold in blue. The worst fitting result is printed in red.

Table 8 shows performance measures of proposed single methods (on test subset) for
time series No. 2. Detailed description of the results of hyperparameters tuning for the
single methods tested is provided in Table A3 of Appendix A.

Table 8. Performance measures of proposed single methods (on test subset range) for time series No. 2.

Method Code Input Data Codes RMSE MAE MaxAE R MBE MAPE [%] sMAPE [%]

LR(6_inputs)

FUNC, AVE2, POW1, POW3,
POW4, POW5 (the choice

based on backward stepwise
regression from all input data)

0.1827 0.0652 2.5893 0.9318 0.0008 94.83 14.04

LR(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.1832 0.0658 2.6106 0.9314 −0.0011 98.19 14.22

ARIMA(3,1,1) POW1—POW3 0.1841 0.0640 2.6843 0.9330 −0.0001 96.08 13.96

MLP(5_inputs) FUNC, AVEW, AVE3, AVE2,
POW1 0.1859 0.0686 2.7409 0.9293 −0.0026 129.88 14.89

MLP(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.1861 0.0691 2.7101 0.9291 −0.0010 87.81 14.18

SVR(5_inputs)
FUNC, AVEW, AVE3, AVE2,
POW1 (the choice based on

initial selection from Table 3)
0.1893 0.0960 2.7513 0.9269 −0.0118 61.78 16.38

SVR(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.1992 0.1178 2.6727 0.9293 −0.0416 286.28 20.36

KNN(5_inputs) FUNC, AVEW, AVE3, AVE2,
POW1 0.2017 0.0998 2.7910 0.9179 0.0045 282.84 18.16

IT2FLS(5_inputs) FUNC, AVEW, AVE3, AVE2,
POW1 0.2035 0.0778 2.8036 0.9048 0.0033 218.13 14.86

AR(1) POW1 0.2048 0.0700 2.7143 0.9173 0.0007 129.19 14.69

KNN(11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.2080 0.1064 2.6502 0.9119 0.0180 231.56 18.21

IT2FLS(4_inputs) POW1-POW4 0.2410 0.1033 2.8139 0.8799 0.0048 197.56 17.34

Remarks: Three best fitting results for each fitting measure are printed in bold in blue. The worst fitting result is printed in red.
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Table 9 presents performance measures of proposed ensemble methods (on test subset)
for time series No. 2. Detailed description of the results of hyperparameters tuning for the
ensemble methods tested is provided in Table A4 of Appendix A.

Table 9. Performance measures of proposed ensemble methods (on test subset) for time series No. 2.

Method Code Input Data Codes RMSE MAE MaxAE R MBE MAPE
[%]

sMAPE
[%]

MLP [LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),
GBT(11_inputs)]

Different, depends on predictor
in ensemble * 0.1721 0.0693 2.5275 0.9398 −0.0043 96.95 13.93

GBT (11_inputs) PEAK1, FUNC, AVEW, AVE3,
AVE2, POW1—POW6 0.1723 0.0660 2.5283 0.9397 0.0028 92.90 13.35

LR [LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.1726 0.0645 2.5364 0.9394 0.0032 89.47 13.11

WAE_RMSE
[LR(11_inputs),
MLP(5_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.1777 0.0635 2.5455 0.9356 0.0003 104.84 14.15

WAE_RMSE
[LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.1790 0.0632 2.5520 0.9346 0.0002 102.60 14.07

GBT (5_inputs) FUNC, AVEW, AVE3, AVE2,
POW1 0.1808 0.0647 2.6952 0.9332 0.0045 125.21 14.31

WAE_R/RMSE
[MLP(5_inputs), RF(10/12),
AR(1), GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.1815 0.0635 2.5485 0.9330 0.0034 108.46 13.96

KNN [LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.1848 0.0689 2.5961 0.9309 0.0135 75.77 12.79

RF [LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),
GBT(11_inputs)]

Different, it depends on
predictor in ensemble 0.1929 0.0762 2.5664 0.9257 0.0202 87.51 14.64

RF (10/12)

For each tree random choice of
10 inputs from 12: PEAK1,

FUNC, AVEW, AVE3, AVE2,
POW1 –POW7

0.2008 0.0746 2.7032 0.9182 0.0127 87.79 14.26

RF (6/12)

For each tree random choice of
6 inputs from 12: PEAK1,

FUNC, AVEW, AVE3, AVE2,
POW1 –POW7

0.2024 0.0741 2.7194 0.9177 0.0175 93.98 14.19

Remarks: * Input dataset for each predictor in ensemble are described in Tables 8 and 9. Three best fitting results for each fitting measure
are printed in bold in blue. The worst fitting result is printed in red.

6. Discussion

This section discusses the forecasts obtained for active power demand in two different
technological parts of a sewage treatment plant.

Based on the results from Table 6, the following preliminary conclusions can be drawn
regarding the proposed single methods for time series No. 1:
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• The best methods in terms of RMSE value are, respectively: MLP, LR, ARIMA; for
MLP and LR, a more favorable solution is to utilize all 11 input data instead of 5 input
data selected on the basis of the analysis of variables selection;

• An advantage of the LR method in comparison with MLP is very short time of
calculations, low computational complexity and no necessity of proper selection
of hyperparameter values which are required by MLP (only selection of the most
advantageous input data may be needed);

• Qualitative differences between the best three methods are very small;
• The worst methods in terms of RMSE value, in comparison with the reference method

AR(1), are: SVR, KNN and IT2FLS; for IT2FLS method the use of five input data instead
of four last time-lagged values of variables of time series being forecast allowed to
decrease RMSE error;

• A disadvantage of IT2FLS is very long time of calculations (the time depends on CPU
and RAM memory of computer being used) and the necessity of proper selection of
many hyperparameter values; for the KNN method with five input data, the smallest
MAPE and sMAPE errors have been obtained from all tested methods, although the
RMSE error for the method is significant in comparison with the best methods.

In turn, based on the results from Table 7, it is possible to formulate the following
preliminary conclusions concerning the proposed ensemble methods for time series No. 1:

• The best ensemble methods are, respectively: GBT and LR as an integrator of ensemble;
for GBT, it is more useful to utilize all 11 input data;

• GBT ensemble method seems to be more useful than LR as an integrator of ensemble,
considering greater simplicity of the method (no necessity to integrate four different
method types), in which the ensemble is an internal component of the algorithm
(single decision trees);

• All ensemble methods have smaller RMSE errors than the reference AR(1) method;
• Among ensemble methods, only RF as an integrator of ensemble has greater RMSE

error than the best single method, i.e., MLP; it clearly shows that using ensemble
methods (except RF) is justified in this forecasting exercise and allows us to decrease
RMSE error in comparison with single methods;

• Similarly, as in the KNN single method, using KNN as an integrator of ensemble
allows us to get the smallest MAPE and sMAPE errors of all tested ensemble methods,
at the same time the RMSE error for the method is significant in comparison with the
best ensemble methods;

• WAE_R/RMSE ensemble method is less advantageous than WAE_RMSE ensemble
method;

• RF is the worst of all ensemble methods.

Based on the results from Table 8, the following preliminary conclusions can be drawn
which concern the proposed single methods for time series No. 2:

• The best methods in terms of RMSE value are, respectively: LR, ARIMA and MLP; for
MLP and for LR, it is more useful to utilize 5 input data, selected on the basis of the
analysis of variables selection, instead of all 11 input data;

• Qualitative differences among the best three methods are very small;
• The worst methods in terms of RMSE value, in comparison with the reference method

AR(1), are: KNN utilizing 11 input data and IT2FLS; for IT2FLS, the use of five input
data instead of four last time-lagged values of variables of time series being forecast
allowed us to decrease RMSE error.

Lastly, based on the results from Table 9, the following partial conclusions can be
formulated concerning proposed ensemble methods for time series No. 2:

• The best ensemble methods are: MLP, GBT and LR as an integrator of ensemble; for
GBT, it is more useful to utilize all 11 input data;

• GBT ensemble method seems to be more useful than MLP as an integrator of ensemble
because of the greater simplicity of the method (no necessity to integrate four different
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method types), in which the ensemble is an internal algorithm component (single
decision trees);

• All ensemble methods have smaller RMSE errors than the reference method AR(1);
• Among ensemble methods, only the last four ones in the ranking (as integrators

of ensemble) have a greater RMSE error than the best single method, i.e., LR(6); it
suggests that using an ensemble method (except for the last four ones) is justified in
this forecasting exercise and allows us to decrease RMSE error in comparison with
single methods;

• As for the KNN single method, using KNN as an integrator of ensemble resulted
in the smallest MAPE and sMAPE errors of all tested ensemble methods, at the
same time the RMSE error for the method is significant in comparison with the best
ensemble methods;

• WAE_RMSE ensemble method is more useful than WAE_R/RMSE ensemble method;
• RF is the worst of all ensemble methods.

Table 10 shows the best eight methods chosen from single and ensembles methods for
both time series sorted in descending order by RMSE and the basic (reference) method.

Table 10. Summary comparison—the best eight methods chosen from single and ensembles methods for both time series
sorted in descending order by RMSE and the basic (reference) method.

Results for Time Series No. 1 Results for Time Series No. 2

Method Code RMSE Difference
[%] Method Code RMSE Difference

[%]

GBT (11_inputs) 0.2102 - MLP [LR(11_inputs), ARIMA(3,1,1),
MLP(5_inputs), GBT(11_inputs)] 0.1721 -

LR [LR(11_inputs),RF(6/12),
MLP(11_inputs), GBT(11_inputs)] 0.2126 0.24 GBT (11_inputs) 0.1723 0.02

GBT (5_inputs) 0.2134 0.32 LR [LR(11_inputs), ARIMA(3,1,1),
MLP(5_inputs), GBT(11_inputs)] 0.1726 0.05

MLP [LR(11_inputs), RF(6/12),
MLP(11_inputs, GBT(11_inputs)] 0.2140 0.38 WAE_RMSE [LR(11_inputs),

MLP(5_inputs), GBT(11_inputs)] 0.1777 0.56

WAE_RMSE [LR(11_inputs),
RF(6/12), MLP(11_inputs),
GBT(11_inputs)]

0.2147 0.45
WAE_RMSE [LR(11_inputs),
ARIMA(3,1,1), MLP(5_inputs),
GBT(11_inputs)]

0.1790 0.69

WAE_RMSE [LR(11_inputs),
MLP(11_inputs), GBT(11_inputs)] 0.2147 0.45 GBT (5_inputs) 0.1808 0.87

WAE_R/RMSE [KNN(5_inputs),
RF(10/12), AR(1), GBT(11_inputs)] 0.2181 0.79 WAE_R/RMSE [MLP(5_inputs),

RF(10/12), AR(1), GBT(11_inputs)] 0.1815 0.94

RF [LR(11_inputs), RF(6/12),
MLP(11_inputs), GBT(11_inputs)] 0.2185 0.83 LR(6_inputs) 0.1827 1.06

AR(1)—basic (reference) method 0.2332 10.94 AR(1)—basic (reference) method 0.2048 19.00

Actual values from test range (subset) of time series and the forecasted values by the
best method are presented in Figure 12 for time series No. 1 and in Figure 13 for time series
No. 2.
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7. Conclusions

Very dynamic random rises of power demand of only 10 s duration (basic time interval)
have been a major problem, and are impossible to forecast very accurately in practice. It
is difficult to identify the best of the single methods. However, for both time series, the
following three methods have always performed best: MLP, LR and ARIMA. Finally, from
the point of view of forecasting efficiency (RMSE error value) and complexity level of the
method, the most beneficial method is the GBT ensemble method, which utilizes all 11
input data. Comparative analysis of the results obtained for both time series shows that
single methods—KNN, IT2FLS (with the use of four last time-lagged values of variables
of time series being forecasted) and SVR—belong to the category of less recommended
methods for this type of forecasting exercise.

Other observations and conclusions of the study can be summarized as follows:

(1) The fact that the two time series being forecast are untypical ones means that achieving
significantly smaller RMSE errors than in the case of the reference method AR(1) is
difficult, but the studies carried out show that it is possible. For time series No. 1,
improvement in comparison with the AR(1) method is equal to 10.94%, whereas for
time series No. 2, improvement reaches 19.00% for the best methods being tested.

(2) For both time series, the validity of using a vast majority of ensemble methods in
comparison with single methods has been demonstrated. It is necessary to pay
attention to the great complexity of such methods, their time demand as well as very
small differences in RMSE error value for the best eight ensemble methods for both
forecast time series.

(3) RF is the worst performing ensemble method in both time series, thus this tech-
nique of machine learning should not be preferred as an ensemble method for this
forecasting exercise.

(4) Very small MAPE and sMAPE errors for the KNN method, used as a single method
or applied as an integrator of ensemble, together with quite large RMSE error at the
same time, is a characteristic and recurring phenomenon.
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(5) The impact of proper selection of input data varies from case to case; some methods
achieved smaller RMSE errors with the use of 5 input data, whereas other methods
performed better with the use of 11 input data, depending on time series being
forecast, the exception being the GBT method, for which it was more useful to utilize
all 11 input data.

(6) For both time series, it was better to use the criterion of the least RMSE errors for
selection of the four most beneficial predictors used for constructing the ensemble
methods, as well as the rule of dissimilarity of predictor action, rather than to use an
additional criterion of the biggest differences in rests from forecasts obtained with the
use of methods being candidates to the ensemble.

The studies conducted allow us to conclude that there are effective methods of fore-
casting very short-term (10 s) power demand values (characterized by big dynamics of load
changes) which are suitable for practical use, although it is a very complicated forecasting
exercise. This is due to very dynamic random rises of the received power of 10 s duration.
In further studies on methods of very short-term forecasting of power demand, we intend
to conduct, among others, research on the development of forecasts for time intervals from
t + 1 to t + 6, that is, with the time horizon up to 1 min.
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The following abbreviations are used in this manuscript:

ACF Autocorrelation Function
APN Access Point Name
AE Absolute Error
EIASC Enhanced iterative algorithm with stop condition
ANN Artificial Neural Network
AR Autoregressive model
ARIMA Autoregressive Integrated Moving Average
BFGS Broyden–Fletcher–Goldfarb–Shanno algorithm
EKM Enhanced Karnik–Mendel
FLS Fuzzy Logic System
GA Genetic Algorithm
GBT Gradient Boosted Trees
IASC Iterative algorithm with stop condition
IT2FLS Interval Type-2 Fuzzy Logic System
KM Karnik–Mendel
KNN K-Nearest Neighbors
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
ML Machine Learning
MLP Multi-Layer Perceptron
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MaxAE Maximum Absolute Error
LR Linear Regression
PACF Partial Autocorrelation Function
PSO Particle Swarm Optimization
R Pearson linear correlation coefficient
R2 Determination coefficient
RBF Radial Base Function
RF Random Forest
RMSE Root Mean Square Error
sMAPE Symmetric Mean Absolute Percentage Error
SVM Support Vector Machine
SVR Support Vector Regression

Appendix A

Table A1 shows the results of hyperparameter tuning for proposed single methods for
time series No. 1.

Table A1. Results of hyperparameter tuning for proposed single methods for time series No. 1.

Method Code Description of Method, Name and Range of Values of Hyperparameters
Tuning and Selected Values

Method for
Hyperparameter Tuning

ARIMA(5,1,1) The number of time lags p, range: 1–8, selected: 5, degree of differencing d,
range: 1–3, selected: 1, order of the moving-average q, range 1–3, selected: 1.

Manual, based on ACF and
PACF results

SVR(11_inputs)
Regression SVM: Type-1, Type 2, selected: Type-1, kernel type: Gaussian (RBF),
width parameter σ: 0.077, regularization constant C, range: 1–20 (step 1),
selected: 2, tolerance ε, range: 0.05–2 (step 0.05), selected: 0.1.

Grid search using
cross-validation

SVR(5_inputs)
Regression SVM: Type-1, Type 2, selected: Type-1, kernel type: Gaussian (RBF),
width parameter σ: 0.200, regularization constant C, range: 1–20 (step 1),
selected: 3, tolerance ε, range: 0.05–2 (step 0.05), selected: 0,1.

Grid search using
cross-validation

KNN(11_inputs) Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean,
number of nearest neighbors k, range: 1–50, selected: 9.

Grid search using
cross-validation

KNN(5_inputs) Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean,
number of nearest neighbors k, range: 1–50, selected: 12.

Grid search using
cross-validation

MLP(11_inputs)
The number of neurons in hidden layer: 5–20, selected: 13, learning algorithm:
BFGS, activation function in hidden layer: linear, hyperbolic tangent, selected:
hyperbolic tangent, activation function in output layer: linear.

Manual, supported by
cross-validation

MLP(5_inputs)
The number of neurons in hidden layer: 5–20, selected: 4, learning algorithm:
BFGS, activation function in hidden layer: linear, hyperbolic tangent, selected:
hyperbolic tangent, activation function in output layer: linear.

Manual, supported by
cross-validation

IT2FLS(4_inputs)

Interval Type-2 Sugeno FLS, learning and tuning algorithm: GA, PSO, selected:
PSO, initial swarm span: 1500–3000, selected: 1500, minimum neighborhood
size: 0.20–0.30, selected: 0.20, inertia range: from [0.10–1.10] to [0.20–2.20],
selected: [0.15–1.50], number of iterations in the learning and tuning process:
5–20, selected: 12, type of the membership functions: triangular, Gauss,
selected: triangular, the number of output membership functions: 3–81,
selected: 81, window size for computing average validation cost: 4–7, selected:
5, maximum allowable increase in validation cost: 0.0–1.0, selected: 0.1, the
type-reduction methods: KM, EKM, IASC, EIASC, selected: KM.

Manual, supported by
cross-validation

IT2FLS(5_inputs)

Interval Type-2 Sugeno FLS, learning and tuning algorithm: GA, PSO, selected:
PSO, initial swarm span: 1500–3000, selected: 1500, minimum neighborhood
size: 0.20–0.30, selected: 0.20, inertia range: from [0.10–1.10] to [0.20–2.20],
selected: [0.15–1.50], number of iterations in learning and tuning process: 5–20,
selected: 12, type of the membership functions: triangular, Gauss, selected:
triangular, number of output membership functions: 3–243, selected: 243,
window size for computing average validation cost: 4–7, selected: 5, maximum
allowable increase in cost: 0.0–1.0, selected: 0.1, the type-reduction methods:
KM, EKM, IASC, EIASC, selected: KM.

Manual, supported by
cross-validation
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Table A2 presents the results of hyperparameter tuning for the proposed ensemble
methods for time series No. 1.

Table A2. Results of hyperparameter tuning for the proposed ensemble methods for time series No. 1.

Method Code Description of Method, Name and Range of Values of Hyperparameters
Tuning and Selected Values

Method for
Hyperparameter Tuning

RF(6/12)

The number of predictors chosen at random: 6, number of decision trees:
1–500, selected: 352. Stop parameters: maximum number of levels in each
decision tree: 10, minimum number of data points placed in a node before
the node is split: 200, min number of data points allowed in a leaf node: 5,
maximum number of nodes: 100.

Grid search using
cross-validation

RF(10/12)

The number of predictors chosen at random: 10, number of decision trees:
1–500, selected: 421. Stop parameters: maximum number of levels in each
decision tree: 10, minimum number of data points placed in a node before
the node is split: 200, min number of data points allowed in a leaf node: 5,
maximum number of nodes: 100.

Grid search using
cross-validation

GBT(11_inputs)

The learning rate: 0.05, 0.1, 0.5, selected: 0.1, number of decision trees: 1–500,
selected: 461. Stop parameters: maximum number of levels in each decision
tree: 5, minimum number of data points placed in a node before the node is
split: 200, min number of data points allowed in a leaf node: 3, maximum
number of nodes: 3.

Grid search using
cross-validation, early

stopping

GBT(5_inputs)

The learning rate: 0.05, 0.1, 0.5, selected: 0.1, number of decision trees: 1–500,
selected: 440. Stop parameters: maximum number of levels in each decision
tree: 5, minimum number of data points placed in a node before the node is
split: 200, min number of data points allowed in a leaf node: 3, maximum
number of nodes: 3.

Grid search using
cross-validation, early

stopping

MLP [LR(11_inputs),
RF(6/12),

MLP(11_inputs),
GBT(11_inputs)]

The number of neurons in hidden layer: 3–10, selected: 7, learning algorithm:
BFGS, activation function in hidden layer: linear, hyperbolic tangent,
selected: linear, activation function in output layer: linear.

Manual, supported by
cross-validation

KNN [LR(11_inputs),
RF(6/12),

MLP(11_inputs),
GBT(11_inputs)]

Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean,
number of nearest neighbors k, range: 1–50, selected: 12.

Grid search using
cross-validation

RF [LR(11_inputs),
RF(6/12),

MLP(11_inputs),
GBT(11_inputs)]

The number of predictors by random choice: 3 from 4, number of decision
trees: 1–400, selected: 241. Stop parameters: maximum number of levels in
each decision tree: 10, minimum number of data points placed in a node
before the node is split: 200, min number of data points allowed in a leaf
node: 5, maximum number of nodes: 100.

Grid search using
cross-validation

Table A3 shows the results of hyperparameter tuning for proposed single methods for
time series No. 2.

Table A3. Results of hyperparameters tuning for proposed single methods for time series No. 2.

Method Code Description of Method, the Name and the Range of Values of
Hyperparameters Tuning and Selected Values

Method for
Hyperparameters Tuning

ARIMA(3,1,1) The number of time lags p, range: 1–8, selected: 3, degree of differencing d,
range: 1–3, selected: 1, order of the moving-average q, range 1–3, selected: 1.

Manual, based on ACF and
PACF results

SVR(11_inputs)
Regression SVM: Type-1, Type 2, selected: Type-1, kernel type: Gaussian (RBF),
width parameter σ: 0.833, regularization constant C, range: 1–20 (step 1),
selected: 7, tolerance ε, range: 0.05–2 (step 0.05), selected: 0,1.

Grid search using
cross-validation

SVR(5_inputs)
Regression SVM: Type-1, Type 2, selected: Type-1, kernel type: Gaussian (RBF),
width parameter σ: 0.200, regularization constant C, range: 1–20 (step 1),
selected: 8, tolerance ε, range: 0.05–2 (step 0.05), selected: 0,1.

Grid search using
cross-validation
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Table A3. Cont.

Method Code Description of Method, the Name and the Range of Values of
Hyperparameters Tuning and Selected Values

Method for
Hyperparameters Tuning

KNN(11_inputs) Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean,
number of nearest neighbors k, range: 1–50, selected: 29.

Grid search using
cross-validation

KNN(5_inputs) Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean,
number of nearest neighbors k, range: 1–50, selected: 14.

Grid search using
cross-validation

MLP(11_inputs)
The number of neurons in hidden layer: 5–20, selected: 13, learning algorithm:
BFGS, activation function in hidden layer: linear, hyperbolic tangent, selected:
hyperbolic tangent, activation function in output layer: linear.

Manual, supported by
cross-validation

MLP(5_inputs)
The number of neurons in hidden layer: 5–20, selected: 4, learning algorithm:
BFGS, activation function in hidden layer: linear, hyperbolic tangent, selected:
hyperbolic tangent, activation function in output layer: linear.

Manual, supported by
cross-validation

IT2FLS(4_inputs)

Interval Type-2 Sugeno FLS, learning and tuning algorithm: GA, PSO, selected:
PSO, initial swarm span: 1500–3000, selected: 1500, minimum neighborhood
size: 0.20–0.30, selected: 0.20, inertia range: from [0.10–1.10] to [0.20–2.20],
selected: [0.15–1.50], number of iterations in learning and tuning process: 5–20,
selected: 12, type of the membership functions: triangular, Gauss, selected:
triangular, number of output membership functions: 3–81, selected: 81,
window size for computing average validation cost: 4–7, selected: 5, maximum
allowable increase in validation cost: 0.0–1.0, selected: 0.1, type-reduction
methods: KM, EKM, IASC, EIASC, selected: KM.

Manual, supported by
cross-validation

IT2FLS(5_inputs)

Interval Type-2 Sugeno FLS, learning and tuning algorithm: GA, PSO, selected:
PSO, initial swarm span: 1500–3000, selected: 1500, number of iterations in
learning and tuning process: 5–20, selected: 12, minimum neighborhood size:
0.20–0.30, selected: 0.20, inertia range: from [0.10–1.10] to [0.20–2.20], selected:
[0.15–1.50], type of the membership functions: triangular, Gauss, selected:
triangular, number of the output membership functions: 3–243, selected: 243,
window size for computing average validation cost: 4–7, selected: 5, maximum
allowable increase in validation cost: 0.0–1.0, selected: 0.1, type-reduction
methods: KM, EKM, IASC, EIASC, selected: KM.

Manual, supported by
cross-validation

Table A4 presents the results of hyperparameter tuning for the proposed ensemble
methods for time series No. 2.

Table A4. Results of hyperparameter tuning for the proposed ensemble methods for time series No. 2.

Method Code Description of Method, the Name and the Range of Values of
Hyperparameters Tuning and Selected Values

Method for
Hyperparameters Tuning

RF (6/12)

The number of predictors chosen at random: 6, number of decision trees:
1–500, selected: 245. Stop parameters: maximum number of levels in each
decision tree: 10, minimum number of data points placed in a node before
the node is split: 200, min number of data points allowed in a leaf node: 5,
maximum number of nodes: 100.

Grid search using
cross-validation

RF (10/12)

The number of predictors chosen at random: 10, number of decision trees:
1–500, selected: 281. Stop parameters: maximum number of levels in each
decision tree: 10, minimum number of data points placed in a node before
the node is split: 200, min number of data points allowed in a leaf node: 5,
maximum number of nodes: 100.

Grid search using
cross-validation

GBT (11_inputs)

The learning rate: 0.05, 0.1, 0.5, selected: 0.1, number of decision trees: 1–500,
selected: 392. Stop parameters: maximum number of levels in each decision
tree: 5, minimum number of data points placed in a node before the node is
split: 200, min number of data points allowed in a leaf node: 3, maximum
number of nodes: 3.

Grid search using
cross-validation, early

stopping
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Table A4. Cont.

Method Code Description of Method, the Name and the Range of Values of
Hyperparameters Tuning and Selected Values

Method for
Hyperparameters Tuning

GBT (5_inputs)

The learning rate: 0.05, 0.1, 0.5, selected: 0.1, number of decision trees: 1–500,
selected: 448. Stop parameters: maximum number of levels in each decision
tree: 5, minimum number of data points placed in a node before the node is
split: 200, min number of data points allowed in a leaf node: 3, maximum
number of nodes: 3.

Grid search using
cross-validation, early

stopping

MLP [LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),

GBT(11_inputs)]

The number of neurons in hidden layer: 3–10, selected: 8, learning algorithm:
BFGS, activation function in hidden layer: linear, hyperbolic tangent,
selected: hyperbolic tangent, activation function in output layer: linear.

Manual, supported by
cross-validation

KNN [LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),

GBT(11_inputs)]

Distance metrics: Euclidean, Manhattan, Minkowski, selected: Euclidean,
number of nearest neighbors k, range: 1–50, selected: 11.

Grid search using
cross-validation

RF [LR(11_inputs),
ARIMA(3,1,1),
MLP(5_inputs),

GBT(11_inputs)]

The number of predictors chosen at random: 3 from 4, number of decision
trees: 1–400, selected: 243. Stop parameters: maximum number of levels in
each decision tree: 10, minimum number of data points placed in a node
before the node is split: 200, min number of data points allowed in a leaf
node: 5, maximum number of nodes: 100.

Grid search using
cross-validation
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