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Abstract: Effective water management increases the performance of proton exchange membrane fuel
cells (PEMFCs). The liquid droplet movement mechanism in the cathode channel, the gas-liquid
two-phase flow pattern, and the resulting pressure drop are important to water management in
PEMFCs. This work employed computational fluid dynamics (CFD) with a volume of fluid (VOF)
to simulate the effects of two operating parameters on the liquid water flow in the cathode flow
channel: Gas diffusion layer (GDL) pore shape for water emergence, and distance between GDL pores.
From seven pore shapes considered in this work, the longer the windward side of the micropore is,
the larger the droplet can grow, and the duration of droplet growth movement will be longer. In the
cases of two micropores for water introduction, a critical pore distance is noted for whether two
droplets coalesce. When the micropore distance was shorter than this critical value, different droplets
coalesce after the droplets grew to a certain extent. These results indicate that the pore shape and the
distance between pores should be accounted for in future simulations of PEMFC droplet dynamics
and that these parameters need to be optimized when designing novel GDL structures.

Keywords: water management; VOF model; droplet dynamics; two-phase flow; PEM fuel cells

1. Introduction

Proton exchange membrane fuel cells (PEMFCs), as a clean, efficient, and environ-
mentally friendly energy generation device, have been used in the fields of transportation,
aerospace, and communication [1]. However, high cost and short life still limit the commer-
cialization of fuel cells [2,3]. The transport and removal of water is critically important to
the performance, stability, and durability of the fuel cell [4]. An important water manage-
ment issue is the gas–liquid flow as water enters the reactant flow field channels, typically
mini-channels [5].

The movement of liquid water in the cathode channels of fuel cells and the formation
of gas–liquid two-phase flow are important to water management in PEMFCs. Researchers
have studied droplet motion mechanisms of liquid water entering the gas channel through
gas diffusion layers (GDLs) by experimental efforts and numerical simulation. Ye et al. [6]
experimentally studied the effect of cell structure on the two-phase flow. A parallel channel
flow system was machined from two acrylic blocks, and the GDL was sandwiched between
the two blocks. Liquid water was injected into the channel through two 100 µm inlets.
The airflow bypassed the channel blocked by the water. The resulting slug flow caused
severe maldistribution and significant fluctuations in the pressure drop. Hussaini et al. [7]
used an optically transparent fuel cell test platform to visually study the liquid water
on the cathode side of the fuel cell. They determined the gas–liquid two-phase flow
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pattern in the fuel cell channel and developed the first flow regime map with slug, film,
droplet, single-phase flows. Anderson et al. [8] proposed an additional flow pattern,
the accumulation regime, from a large collection of experimental data from the literature.
Bazylak et al. [9] conducted an experiment to study the dynamics of liquid water entering
the gas channel through the GDL in a fuel cell. They found that the droplets tended to fix
near the breakthrough position during the process of forming slug flow when the droplets
detached from the GDL surface. This increased the liquid water content in the channel.

Although the flow of liquid water can be observed directly in experiments, the high
cost and complexity of the experimental setup have made it important to optimize the
water management of fuel cells through simulation [10,11]. Mathematical modeling and
numerical simulation can theoretically explore the dynamic parameters of gas–liquid two-
phase flow in the channel and clearly observe the flow area distribution in the flow channel.
Quan et al. [12] first applied computational fluid dynamics simulation with the volume of
fluid (VOF) model for interface tracking to study gas–liquid two-phase flow in a PEMFC
and investigate the blockage of liquid water in curved areas. The VOF method possesses
the capability of tracking a distinct interface between immiscible fluids by capturing the
effect of surface tension, which is an important force under flow conditions relevant to
fuel cell operations. The gas–liquid two-phase flow pattern formed in the flow channel
has been studied. Cai et al. [13] studied the influence of wettability of the channel wall on
the removal effect of liquid water. It is found that the wettability of the channel wall has a
great impact on water transport in the channel, the distribution of water along the channel,
and the removal time. Zhan et al. [14] found that a hydrophobic GDL and hydrophilic
channel walls is the best combination, which is not only good for water drainage, but also
for diffusion of the reaction gas from the channel to the catalytic layer. Moosa et al. [15]
simulated vertical and horizontal fuel cells to study the influence of gravity on the gas–
liquid two phase flow in a single-serpentine flow field. Ding et al. [16,17] used a VOF
model combined with a 1D model to form a membrane electrode to study the effect of two-
phase flow on the electrochemical performance. Comparing the single-phase flow model
against two-phase flow models, it was found that the existence of slug flow reduces the
output voltage due to the resultant limitation in mass transfer. Jiao et al. [18,19] designed
gas channel models of parallel serpentine channels and straight channels to study the
influence of different channel geometries on water drainage performance. The results
showed that even a little water in both channels can cause an uneven distribution of the
gas. Zhang et al. [20] used the Eulerian-Eulerian model and showed that the serpentine
flow field is more favorable to the removal of liquid water than the parallel flow field,
which improved the performance of fuel cells. Magesh et al. [21] designed a sinuous flow
field by increasing the size of the PEMFC from 25 cm2 to 100 cm2. The results showed that
the newly developed flow field was more beneficial to water removal than a serpentine
flow field.

As discussed, many researchers have studied the influence of wall wettability, gas–
liquid velocity and channel geometry on liquid water flow in the fuel cell’s channel.
The microstructure of the GDLs also has a significant effect on the flow of liquid water
in the channel. Real GDL micropores usually have an irregular geometry and are not
simply circular or cylindrical; however, most simulation studies have introduced liquid
water through a simplified single circular GDL micropore. In addition, most numerical
simulations in literature only consider a simplified single droplet model. In the actual
operation of fuel cells, the interaction between multiple droplets has an important impact on
the liquid water flow. Understanding the emergence and interactions of multiple droplets
from the GDL surface is still lacking in the literature. Therefore, in this work, the VOF
model combined with CFD simulation was used to study the influence of the pore shape
on the liquid water behavior in the fuel cells and the effect of the pore spacing (distance
between pores). Liquid water introduced from two pores was studied with two water inlets
set on the same straight line along the direction of airflow. The mechanism of the movement
of the two droplets in the mini-channel and its influential factors were discussed.
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2. Models and Methods
2.1. The VOF Model

The VOF multiphase flow model simulates two or more non-miscible fluids by solving
a set of momentum equations and tracking the volume fraction of each fluid passing
through the computational domain. It is assumed in the VOF model that two or multiple
phases are not interspersed with each other, and each additional phase in the calculation
region can be represented by phase volume fractions. In each governing equation, the total
volume fraction of all phases is 1. This work uses air and water as the two fluids, obtains the
instantaneous phase interface of arbitrary gas–liquid two phases by using the VOF model.
The model assumes that air is a compressible ideal gas and water is an incompressible fluid.
The VOF model equations are written as follows:

Continuity equation:

∂αq

∂t
+
→
v · ∇αq =

Sαq

q
,

2

∑
q=1

αq = 1 (1)

Mixture properties:
ρ = α2ρ2 + (1− α2)ρ1 (2)

µ = α2µ2 + (1− α2)µ1 (3)

Momentum equation:

∂

∂t

(
ρ
→
v
)
+∇ ·

(
ρ
→
v
→
v
)
= −∇p +∇ ·

[
µ

(
∇→v +∇→v

T
)]

+ ρ
→
g +

→
F (4)

Energy equation:

∂

∂t
(ρE) +∇ ·

(→
ν (ρE + p)

)
= ∇ ·

(
ke f f∇T

)
+ Sh (5)

where α is volume fraction, ρ is the density (kg/m3), P is the pressure (Pa), µ is the viscosity
(Pa·s), t is time (s), v is the velocity (m/s), keff is effective thermal conductivity (W·m−2·K−1),
and E is the energy (J).

A key advantage of the VOF model is that it can examine the effect of surface tension
on fluid flow in microchannels. The VOF model includes two kinds of surface tension
models: The continuum surface force model (CSF) and surface stress model (CSS) [22].
Brackbill et al. [23] proposed the CSF model to explain the effect of surface tension on the

source term
→
F of the momentum equation in the VOF model and is determined by the

coefficient of surface tension (σ) and surface curvature (κ). It is a volume force expressed
by the divergence theorem. The influence of the wall adhesion force was also considered
in the VOF model. The equations of surface tension in the model are shown as follows.
The curvature (κ) is defined in terms of the divergence of the unit normal:

κ = ∇ ·
(

n
|n|

)
(6)

where n is surface normal, the gradient of α.

n = ∇αq, p2 − p1 = σ

(
1

R1
+

1
R2

)
(7)

Terms p1 and p2 are the pressures in the two fluids on either side of the interface and
R (m) is the radii in the orthogonal direction. The forces from the CSF and CSS model are:

F(CSF) = σij
ρκi∇αi

1
2
(
ρi + ρj

) , F(CSS) = ∇ ·
[

σ

(
|∇α|I − ∇α⊗∇α

|∇α|

)]
(8)



Energies 2021, 14, 1250 4 of 18

where σ is the surface tension (N/m) and κ is the curvature.
The equations of the wall adhesion force model are:

n̂ = n̂wcosθw + t̂wsinθw (9)

where n̂w and t̂w are the unit vectors normal and tangential to the wall, and θw is the contact
angle at the wall.

2.2. Model Settings and Boundary Conditions

In this work, the simplified geometric model was based on simplifying the cathode
channel in the experimental device of Cheah et al. [24,25]. The simplified channel model is
shown in Figure 1. The geometric size of the channel was 60.0 × 1.0 × 1.0 mm3, and the
cross section was a regular quadrilateral. The water inlet micropore(s) were located at the
center of the GDL, 20 mm from the gas inlet. In the case of two water inlets, the downstream
micropore was located at a certain distance along the x-direction of the upstream micropore.
GAMBIT software was used to divide the computing area. The grid diagram is shown in
Figure 2.
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The boundary conditions were set as follows: The gas velocity inlet was set at x = 0,
the pressure-outlet was set at x = 60, the liquid velocity-inlet was marked at X1, Y1, and Z1,
the channel bottom was set with a hydrophobic GDL (135◦), other surfaces were set as
hydrophilic walls (45◦).

2.3. Solution Procedure

Under the same simulation parameters, four grid sizes were tested: 1× 5× 5 (10−5 m),
1 × 5 × 10 (10−5 m), 10 × 10 × 10 (10−5 m), and 20 × 20 × 20 (10−5 m). The corresponding
number of grids was 2.53 million, 1.55 million, 550,000, and 94,000, respectively. For the
four mesh sizes, liquid phase fraction cloud maps were compared with different mesh
precision. To obtain a clear phase interface and a suitable flow pattern and save computing
resources as much as possible, the mesh size of 1 × 5 × 5 (10−5 m) was selected for
this work. Under the unsteady state condition, the convergence of simulation can be
obtained by selecting the time step that satisfies the calculation. According to the time step
mentioned by Wu et al. [26], the maximum time step is 1.5 × 10−6 s under the condition
that the maximum Courant number is 0.25 and the minimum grid size is 6.189 × 10−6 m.
In the simulation process, we chose a time step of 10−6 s to meet the accuracy and time
requirements of the simulation.

The commercial CFD software FLUENT 14.5 (Fluent, Inc., New York, NY, USA) was
used to conduct a single-precision numerical simulation of gas-liquid two-phase flow
on the 3D channel geometry model. The solution flow process is the laminar flow state,
the solver is set as unsteady state mode, and the governing equation is the VOF model.
The pressure-velocity coupling was obtained by using the PISO scheme. The pressure
interpolation was obtained by using the PRESTO! Scheme, and the second-order upwind
differencing scheme was used for the momentum equation. Geo-Reconstruct was used for
the volume fraction calculation.

3. Results and Discussion
3.1. Effect of the Pore Shape

After the liquid water enters the channel through the pores, small spherical droplets
form on the surface of the GDL and continue to grow. The droplet growth is affected
by shear force, viscous force, inertial force, surface tension, pressure, and gravity [27,28].
Related dimensionless numbers that represent the ratio of surface tension to other forces
are the Capillary number (Ca = (µGUG/σ)), Weber number (We = ρGU2

GDh/σ), and Bond
number (Bo =

(
ρLgD2

h/σ
)
). Since the pore size was similar in this work, the water injection

pore diameter 2R was used as the characteristic length Dh. The following dimensionless
numbers were obtained: Ca = 2.46 × 10−4, We = 1.68 × 10−3, Bo = 1.34 × 10−3. From these
results, the effect of surface tension is much greater than the other forces, which explains
why liquid water forms near-spherical droplets on the surface of hydrophobic GDLs.

3.1.1. Effect of the Pore Shape on Droplet Volume and Cycle Time

The characterization of GDL micropores is generally based on the porosity measure-
ment to obtain the pore size distribution, but the pore size distribution may not be the only
factor affecting the performance of GDLs. Parikh et al. [29] characterized and compared the
pore diameter, pore shape, direction, and distribution of three types of GDLs, and defined
the roundness of the pore S = 4πA/P2, to express the pore shape more clearly, where A
is the pore area and P is the pore circumference. Most existing research used simplified
the pore into a circle or a square to study the flow of droplets in the cathode channel.
In this section, the influence of the pore shape on the flow of a single droplet is discussed.
Seven pore shapes for the micropores were investigated. The circular pore is 0.1 mm in
diameter, and the area of the remaining pores was the same as that of the circular pore.
Detailed simulation parameters for the seven pore shapes are provided in Table 1 (UG and
UL represent the inlet rate of gas and liquid water; Lw represents the length of windward
side of the pore; θ is the angle between the airflow and Lw).
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Table 1. The pore shape parameter with area kept constant in all cases.

Case Shape of Pore A (mm2) P (mm) S = 4πA/P2 Lw (mm) UG (m/s) UL (m/s) θ (◦)

1
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Figure 3 shows critical droplet sizes for the seven cases. The droplet is considered the
critical droplet when it is about to collide with the wall or detach from the pores and move
along the GDL surface, and the droplet size is called critical crushing size. It can be seen in
this figure that the critical volume of liquid droplets decreases in an order of case 4 > case 6
> case 7 > case 1 > case 5 > case 2 > case 3. The critical droplet size is closely related to the
droplet movement cycle. Therefore, the droplet movement cycle can also reflect the critical
volume of the droplet.

Figure 4 shows that the droplet movement cycle has the same trend as the critical
droplet volume, and it decreases in the same order as discussed above. Therefore, the larger
the critical size of the droplet, the longer the movement period. A droplet movement
cycle refers to an entire droplet growth stage including emergence, growth, deformation,
and fragmentation. At the beginning of droplet formation, the surface tension dominated
and kept the droplet nearly spherical due to its small size. With the growth of the droplet,
the blocking effect of the droplet on the airflow increased, causing the droplet to deform and
detach under the action of the shear force. The droplet growth process is mainly affected by
shear force, viscous force, inertial force, surface tension, pressure, and gravity [27,28,30,31].
As shown in Table 2, µG, UG, σ, ρG, ρL, g, Dh are gas viscosity, gas inlet velocity (equal to gas
apparent velocity and gas flow rate), surface tension coefficient, gas density, liquid density,
acceleration of gravity, and the hydraulic diameter, using the dimensionless number to
correlate these forces. Regarding the pore diameter 2R as the hydraulic diameter Dh,
the calculation results in the table confirm that the surface tension in the smaller channels
and GDL micropores plays a major role in the droplet size change. Since the critical droplet
size is different in the above cases, it is concluded that the pore shape has a great effect on
the droplet growth.



Energies 2021, 14, 1250 7 of 18

Energies 2021, 14, x FOR PEER REVIEW 7 of 19 
 

 

7 

 

0.00785 0.4430 0.502 0.0443 1.0 0.1273 90 

Figure 3 shows critical droplet sizes for the seven cases. The droplet is considered the 

critical droplet when it is about to collide with the wall or detach from the pores and move 

along the GDL surface, and the droplet size is called critical crushing size. It can be seen 

in this figure that the critical volume of liquid droplets decreases in an order of case 4 > 

case 6 > case 7 > case 1 > case 5 > case 2 > case 3. The critical droplet size is closely related 

to the droplet movement cycle. Therefore, the droplet movement cycle can also reflect the 

critical volume of the droplet. 

 
Figure 3. Morphology of critical droplets under different cases ((a) front view, (b) top view; the 

airflow direction is from left to right). 

Figure 4 shows that the droplet movement cycle has the same trend as the critical 

droplet volume, and it decreases in the same order as discussed above. Therefore, the 

larger the critical size of the droplet, the longer the movement period. A droplet move-

ment cycle refers to an entire droplet growth stage including emergence, growth, defor-

mation, and fragmentation. At the beginning of droplet formation, the surface tension 

dominated and kept the droplet nearly spherical due to its small size. With the growth of 

the droplet, the blocking effect of the droplet on the airflow increased, causing the droplet 

to deform and detach under the action of the shear force. The droplet growth process is 

mainly affected by shear force, viscous force, inertial force, surface tension, pressure, and 

gravity [27,28,30,31]. As shown in Table 2, μG, UG, σ, ρG, ρL, g, Dh are gas viscosity, gas inlet 

velocity (equal to gas apparent velocity and gas flow rate), surface tension coefficient, gas 

Figure 3. Morphology of critical droplets under different cases ((a) front view, (b) top view; the
airflow direction is from left to right).

Energies 2021, 14, x FOR PEER REVIEW 8 of 19 
 

 

density, liquid density, acceleration of gravity, and the hydraulic diameter, using the di-

mensionless number to correlate these forces. Regarding the pore diameter 2R as the hy-

draulic diameter Dh, the calculation results in the table confirm that the surface tension in 

the smaller channels and GDL micropores plays a major role in the droplet size change. 

Since the critical droplet size is different in the above cases, it is concluded that the pore 

shape has a great effect on the droplet growth. 

Table 2. Dimensionless number. 

Name Meaning Formula Value 

Capillary number Viscous force/surface tension /G GCa U   
42.46 10  

Weber number Inertial force/surface tension 
2 /G G G hWe U D   

31.68 10  

Bond number Gravity/surface tension 
2 /L hBo gD   

31.34 10  

 

Figure 4. Effect of the pore shape on the droplet movement cycle. 

As shown in Table 1, the windward side length Lw of the water inlet pore decreases 

in the order of case 6 > case 1 > case 3 > case 5 > case 2 > case 4 > case 7. The angle 𝜃 

between the windward side of the pore and the direction of the airflow, which is defined 

as the windward side slope, has a different increasing trend in the order of case 6 = case 4 

= case 7 > case 1 > case 5 = case 2 > case 3. The results show that although the length of the 

windward side is the smallest in case 7, the critical volume of the droplet is larger than 

the non-quadrangular pore condition due to the larger slope of the windward side. This 

result indicates that the increasing trend of the critical volume of the droplet follows the 

law of windward slope and the important influence of the windward slope on droplet 

movement. 

It can be seen that when the slope of the windward side is all 90 degrees, the differ-

ence of windward side length affects the critical volume of droplets. By comparing case 6 

with case 7, the longer the windward side, the larger the critical droplet volume. When 

the angle of the windward side is all 120 degrees, the windward side length of case 5 is 

larger than that of case 2, which also supports the conclusion that the longer the windward 

side is, the larger the critical crushing volume of liquid droplets. Although an increase in 

Figure 4. Effect of the pore shape on the droplet movement cycle.



Energies 2021, 14, 1250 8 of 18

Table 2. Dimensionless number.

Name Meaning Formula Value

Capillary number Viscous force/surface tension Ca = µGUG/σ 2.46× 10−4

Weber number Inertial force/surface tension WeG = ρGU2
GDh/σ 1.68× 10−3

Bond number Gravity/surface tension Bo = ρLgD2
h/σ 1.34× 10−3

As shown in Table 1, the windward side length Lw of the water inlet pore decreases
in the order of case 6 > case 1 > case 3 > case 5 > case 2 > case 4 > case 7. The an-
gle θ between the windward side of the pore and the direction of the airflow, which is
defined as the windward side slope, has a different increasing trend in the order of
case 6 = case 4 = case 7 > case 1 > case 5 = case 2 > case 3. The results show that although
the length of the windward side is the smallest in case 7, the critical volume of the droplet
is larger than the non-quadrangular pore condition due to the larger slope of the windward
side. This result indicates that the increasing trend of the critical volume of the droplet
follows the law of windward slope and the important influence of the windward slope on
droplet movement.

It can be seen that when the slope of the windward side is all 90 degrees, the difference
of windward side length affects the critical volume of droplets. By comparing case 6 with
case 7, the longer the windward side, the larger the critical droplet volume. When the
angle of the windward side is all 120 degrees, the windward side length of case 5 is larger
than that of case 2, which also supports the conclusion that the longer the windward side
is, the larger the critical crushing volume of liquid droplets. Although an increase in the
length of the windward side increases the adhesive force, it also makes the transverse
diameter of the droplet larger. The obstruction effect on airflow increases and the drag
force of airflow increases accordingly. When the drag force increase is greater than the
adhesion force, the large length of the windward side will shorten the droplet movement
cycle. This can explain why the critical droplet volume of case 4 is larger than that for
cases 6 and 7.

It can also be observed from the schematic diagram of the water inlet pore that the
slope of the windward side of the water inlet pore and the length of the windward side of
the water inlet pore are determined by the direction of pore placement and the roundness
of the pore. Therefore, it is concluded that the droplet motion period is closely related
to the pore direction and roundness. From these simulations, when the pore shape is
symmetrical and there is a corner rushing toward the flow direction, roundness can be
used as a parameter to evaluate the critical volume of liquid droplets.

3.1.2. Effect of the Pore Shape on Downstream Liquid Flow Pattern

Figure 5 shows the liquid flow pattern in the channel at t = 1.0 s. With the change of
the shape of the pore, the liquid flow pattern in the channel will change correspondingly.
In the cases of square and rectangular pores, the longer droplet movement period and
the larger critical droplet volume results in additional channel obstruction. The removed
droplet in the last period moves a long distance downstream of the channel under the
greater airflow drag force, so it will not merge with the broken droplet in this period.
Due to this, a new droplet is formed after each droplet in the channel is removed from
the pore. As noted previously, the liquid droplet movement period of the circular pore
is shorter than that of a quadrilateral, and the critical volume and channel obstruction of
the liquid droplet are also smaller. Therefore, the broken droplets in the last cycle move
downstream for a relatively short distance under the relatively weak drag force of airflow,
which coalesce with the detached droplets in this cycle and eventually accumulates to form
a corner flow. In other cases, with the shortened droplet movement cycle and the decline
of the critical droplet volume, the broken droplet will merge and accumulate into a larger
droplet. This droplet moves downstream under the constant drag force of the air stream,
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becoming an independent droplet when the droplet moves beyond the range covered by
the smaller droplet generated in the new cycle.
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3.1.3. Effect of the Pore Shape on Channel Pressure Drop

Changes in the droplet morphology can also be identified by changes in the liquid
water coverage on each wall and the pressure drop at the inlet and outlet of the channel.
The coverage of liquid water on the GDL surface is an important parameter, as excess
water coverage negatively impacts the performance of the fuel cell. The inlet and outlet
pressure drop can reflect the blockage degree of liquid water to airflow. Low coverage of
liquid water on the GDL surface and low-pressure drop are favorable for improving the
cell performance [32].

Liquid water coverage on the GDL surface is closely correlated with the droplet
motion cycle. According to Figures 4 and 6, although case 4 and case 6 have the longest
cycles, the maximum liquid coverage and average time on the GDL surface are smaller
compared to other cases. It is known that in the case of large channel obstruction, to ensure
sufficient passage of airflow, the contact surface between the droplet and the GDL surface
will decrease to a minimum because of the large drag force of airflow, and the droplet
height will increase. This phenomenon is mainly due to the channel blockage caused by
the critical droplet volume under the condition of a quadrilateral pore being stronger than
that of other shapes of pores.

The simulation calculates the final moment of liquid water coverage of SUM-wall
(SUM-wall is the sum of the average liquid water coverage on the other three walls except
for the GDL surface). The liquid water coverage on the wall in the case of a circular pore is
much higher than that for other cases, while the rectangular and quadrilateral pores lead
to walls with the least water coverage. This phenomenon indicates that as the number and
size of the corner flow increases, liquid water coverage decreases.
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Figure 6. Effect of the pore shape on the averaged liquid water coverage on the gas diffusion layer
(GDL) surface.

The pressure drop between the inlet and outlet of the channel is shown in Figure 7.
It can be seen in this figure that the pressure drop has the same trend as the droplet
movement cycle. Long droplet movement cycles increase the accumulation of liquid
water in the channel and the blockage of the channel, resulting in an increase in the overall
channel pressure drop. For example, the droplet movement cycle under case 4 is the longest,
the pressure drop is also the largest. The periodic appearance, growth, and breakage of
the liquid droplet leads to fluctuations of the pressure drop as can be seen in Figure 7.
Moreover, it can be observed that while the overall pressure drop behavior in the channel
is similar, the periodic increment will increase as the droplet movement cycle increases.
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3.2. Effect of the Pore Distance

The effect of the pore distance on liquid water flow in the channel was studied by
varying the spacing of the two circular pores. The specific simulation parameters are as
follows: Ra = Rb = 0.05 mm, UG = 1.0 m/s, UL = 0.1273 m/s (Ra represents the upstream
pore radius; Rb represents the downstream pore radius; UG and UL represent the inlet rate
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of gas and liquid water). The contact angles for the GDL surface and the channel wall was
set at 135◦ and 45◦, respectively. Cases 8, 9, 10, 11, and 12 correspond to the pore spacing
values of 0.3, 0.4, 0.6, 0.8, 1.2 mm, respectively.

3.2.1. Effect of the Pore Distance on Droplet Interactions

The changes in droplet morphology over time are shown in Figure 8. In the initial
stage, the two droplets emerge and grow from the two micropores. When the volume of the
two droplets grow to be in contact with each other, they will show different morphological
changes due to the different pore distance. When the pore distance is 0.3 mm, as shown in
case 8 in Figure 8, at 0.004 s, the two droplets merge into a larger droplet (e.g., case 8 (a)),
which will remain nearly spherical and continue to grow (e.g., case 8 (b), case 8 (c)) and
break from the surface (e.g., case 8 (d)) due to the surface tension.
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When the pore distance is 0.4 mm, as shown in case 9 in Figure 8, the two small
droplets merge into one large droplet (e.g., case 9 (a)) and rapidly move to the downstream
micropore. This newly formed droplet continues to grow and coalesce with the new formed
small droplet until it collides with the wall surface and breaks up. In addition, it is found
that the combined, larger droplet in different cycles will transfer to the upstream and
downstream micropores alternately and become the coalescent droplets that do not stop
coalescing with small droplets on the other side. This is because, after the breakup of the
coalescent droplet in the previous cycle, the small droplet on the micropore on the side
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of the coalescent droplet has grown to a certain volume, while the small droplet that has
just appeared on the micropore on the side of the coalescent droplet has a small volume.
Therefore, after coalescence, the center of gravity of the merged droplet is inclined to the
micropore on the side of the coalescent droplet in the last cycle and transferred to the pores.
This results in the phenomenon that the coalescent droplet appears alternately on both
sides of the micropores.

When the pore distance is 0.6 mm, as shown in case 10 in Figure 8, the upstream
droplets deform to the downstream under the shear force of convection, while the down-
stream droplets deform to the upstream under the action of reverse airflow. At some point,
the two droplets will come into contact and merge into one droplet (e.g., case 10 (b)). Under
the action of airflow and surface tension, the fusion droplets will leave the micropores,
shrink to be nearly spherical, and move to the middle of the two pores. The droplet can
then be broken due to collision with the wall of the channel or transfer to a side of the
micropores for further growth or fusion (e.g., case 10 (c)). Fusion droplets can block the
channel and cause a pressure difference between the upstream and downstream of the
droplet. In this case, a countercurrent eddy is formed in the lower reaches to push the
fusion droplets towards the upstream micropores (e.g., case 10 (d)). After the fusion droplet
is transferred to the upstream, it will continue to fuse with the other side of the micropore
droplet where it will separate and grow until broken. The main reason is that the gravity
and the projected area at the bottom of the fused droplet are much larger than that of the
small droplet in the other micropore. Therefore, the fusion droplets will continue to fuse
with the small droplets on the micropores until they are broken.

When the pore distance is 0.8 mm, as shown in case 11 in Figure 8, the pores are widely
spaced, and the droplets grow until they break up. The two droplets do not contact each
other or coalesce during the entire process. However, since the airflow first contacts the
upstream droplet and flows around the droplet, the drag force and deformation caused
by the drag force on the upstream droplet is greater than that on the downstream droplet.
Thus, the upstream droplet first breaks up and is removed from the GDL surface, while the
downstream droplet will be broken when the droplet volume is large enough. As shown in
case 11(d) of Figure 8, as the liquid water in the channel increases, slug flow forms in the
channel and increases the channel blockage. Therefore, the gas flow has to pass through the
gap between the upstream droplet and the slug flow. This exerts a stronger drag force on
the downstream droplet, leading to the downstream droplet detaching from the micropore
and moving along the GDL surface

When the pore distance continues to increase to 1.2 mm, as shown in case 12 in
Figure 8, the two droplets have nearly no interaction between each other, so they grow and
detach from the pores separately. This result is due to the large pore distance. Due to the
large pore distance, the two droplets will not coalesce before detaching from the pores.
However, the upstream droplet will indirectly affect the downstream droplet through the
airflow during the growth process. This part will be discussed later.

3.2.2. Effect of the Pore Distance on Gas Velocity Profile, Flow Regime, and Pressure Drop

As can be seen from the above, the degree of interaction between the two droplets
changes with an increase in the pore space. It is found that when the pore spacing is less
than or equal to 0.6 mm, the droplets will merge and detach from the pores. When the pore
distance exceeds 0.6 mm, the droplets will no longer merge, but indirectly interact with
each other by affecting the airflow, and the droplets will move downstream from the pores
along the GDL surface. Based on this observation, 0.6 mm was considered as the critical
pore distance in these conditions—the maximum pore spacing for coalescing between two
droplets. The influence of liquid droplets on airflow flow can be seen in Figure 9. Figure 9a
is the velocity flow diagram of the x-z section at Y = 0.1 and Figure 9b is the velocity flow
diagram of the x-y section at Z = 0.
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In Figure 9, case 8 and case 9 are gas velocity flow fields when the two droplets start
to merge. As can be seen from this figure, the droplet volume is small at this time, but it
can still obstruct the airflow and cause the phenomenon of bypass flow, creating a void
space downstream of the merged droplet. Due to the small pore distance at this time,
the downstream liquid droplet is just in the void space of the upstream liquid droplet.
The reverse eddy current formed at the downstream position of the upstream liquid drop
will move to the downstream position of the downstream liquid drop because of the
obstruction of the downstream liquid droplet, and there will be an area of no airflow
between the two droplets. When the pore distance is 0.6 mm, the gas velocity flow field is
shown in case 10 of Figure 9. Different from case 8 and case 9, with an increase in the pore
distance, the volume of the two droplets will increase when they are about to merge, but the
increase is less than that of the pore distance, so some airflow will pass through the area
between the two droplets. As the pore distance continues to increase, coalescence no longer
occurs between the two droplets. In this case, a large amount of airflow will pass through
the space between the two droplets, as shown in the velocity flow diagram of case 11 and
case 12 in Figure 9. Due to the large volume of liquid droplets at this time, the airflow
will collide with the wall surface when it flows around the upstream liquid droplets and
flows in the opposite direction to the area between the two liquid droplets. After that,
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it will change its direction again due to the influence of the downstream liquid droplet,
resulting in irregular airflow through the space of the two liquid droplets. This change in
the direction of the airflow causes the upstream and downstream droplets to collide with
different sidewalls and break up, then spread along the wall surface. It can be seen that
the droplets do affect each other by affecting the airflow flow even when the pore distance
is large.

Figure 10 shows the flow pattern of liquid water in the channel when t = 1.0 s.
When the spacing of pores is less than or equal to the critical spacing of 0.6 mm, most liquid
water exists at the top of one side of the channel in the form of corner flow. When the
spacing between the two pores is greater than 0.6 mm, liquid water tends to be evenly
distributed on both sides of the top wall. Part of the upstream liquid water still exists in
the form of corner flow on both sides, but the downstream liquid water will form slug flow.
This result is because when the pore space is less than 0.6 mm, the droplet will break up in
the form of a large droplet.

Energies 2021, 14, x FOR PEER REVIEW 15 of 19 
 

 

that, it will change its direction again due to the influence of the downstream liquid drop-

let, resulting in irregular airflow through the space of the two liquid droplets. This change 

in the direction of the airflow causes the upstream and downstream droplets to collide 

with different sidewalls and break up, then spread along the wall surface. It can be seen 

that the droplets do affect each other by affecting the airflow flow even when the pore 

distance is large. 

Figure 10 shows the flow pattern of liquid water in the channel when t = 1.0 s. When 

the spacing of pores is less than or equal to the critical spacing of 0.6 mm, most liquid 

water exists at the top of one side of the channel in the form of corner flow. When the 

spacing between the two pores is greater than 0.6 mm, liquid water tends to be evenly 

distributed on both sides of the top wall. Part of the upstream liquid water still exists in 

the form of corner flow on both sides, but the downstream liquid water will form slug 

flow. This result is because when the pore space is less than 0.6 mm, the droplet will break 

up in the form of a large droplet. 

 

Figure 10. Effect of the pore distance on the liquid flow pattern in the channel. ((a) case8: L = 0.3mm, (b) case9: L = 0.4mm, 

(c) case10: L = 0.6mm, (d) case11: L = 0.8mm, (e) case12: L = 1.2mm). 

The pressure drop between the inlet and outlet of the channel is shown in Figure 11. 

As can be seen in this figure, when the pore distance is less than 0.6 mm, the pressure drop 

increases periodically with the droplet movement period, but the overall pressure drop is 

small. When the pore distance is greater than 0.6 mm, the initial pressure drop increases 

periodically and the overall pressure drop is small, but in the later stage, the pressure drop 

suddenly increases and fluctuates significantly. The change in the pressure drop is closely 

related to the change of liquid water in the channel. It is known that the pore distance will 

affect the droplet motion period, and 0.6 mm is the critical pore distance in this work. 

Taking the critical hole spacing of 0.6 mm as the demarcation point, the droplet movement 

period in the left and right sections decreases with the increase of the hole spacing, which 

makes the pressure drop changes in the two sections the same as the hole spacing. How-

ever, when the pore distance is greater than 0.6 mm, the pressure drop increases sharply 

because of the formation of slug flow downstream of the channel in the later period. This 

also indicates that slug flow has a much higher degree of obstruction to the channel than 

corner flow, and increases the pressure drop fluctuations of the channel. 

Figure 10. Effect of the pore distance on the liquid flow pattern in the channel. ((a) case8: L = 0.3 mm, (b) case9: L = 0.4 mm,
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The pressure drop between the inlet and outlet of the channel is shown in Figure 11.
As can be seen in this figure, when the pore distance is less than 0.6 mm, the pressure drop
increases periodically with the droplet movement period, but the overall pressure drop is
small. When the pore distance is greater than 0.6 mm, the initial pressure drop increases
periodically and the overall pressure drop is small, but in the later stage, the pressure
drop suddenly increases and fluctuates significantly. The change in the pressure drop
is closely related to the change of liquid water in the channel. It is known that the pore
distance will affect the droplet motion period, and 0.6 mm is the critical pore distance in
this work. Taking the critical hole spacing of 0.6 mm as the demarcation point, the droplet
movement period in the left and right sections decreases with the increase of the hole
spacing, which makes the pressure drop changes in the two sections the same as the hole
spacing. However, when the pore distance is greater than 0.6 mm, the pressure drop
increases sharply because of the formation of slug flow downstream of the channel in the
later period. This also indicates that slug flow has a much higher degree of obstruction to
the channel than corner flow, and increases the pressure drop fluctuations of the channel.
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3.3. Implications in PEMFC Applications

The gas diffusion layer is a key component of PEMFCs, providing a needed flow
domain for reactant gas and product water. The real GDL is typically carbon paper made of
interwoven carbon fibers, which is a porous medium structure with complex and random
microstructures. Despite the geometric complexities of the GDL, simulated liquid water
entering the gas channel through the GDL micropores in literature is mostly based on
the shape of a single hole or a round hole. Therefore, changing the hole shape and hole
spacing as done in this work can better approach the disordered fiber stacking situation
encountered in actual fuel cell operation. The shape and spacing of the micropores simu-
lated in this work show significant effects on the droplet motion, flow pattern distribution,
and coverage of liquid water in the gas channel. The different critical droplet volumes
caused by different pore shapes affect the accumulation of liquid water in the channel and
the overall pressure drop of the channel, which in turn can affect the performance of PEM-
FCs. When considering multiple pores, although the existence of slug flow makes it easier
for liquid water to move out of the channel, it increases the pressure drop and pressure
drop fluctuation of the channel. This can adversely result in increased parasitic energy
losses and decreased fuel cell performance. These effects should be considered in fuel cell
simulations. The current results also provide a guide for effective water management of
the proton exchange membrane fuel cell when considering new GDL materials.

4. Conclusions

CFD simulation coupled with a volume of fluid (VOF) method was employed to inves-
tigate liquid water droplet dynamics in flow channels for PEMFCs. The main parameters
investigated include the pore shape (under the single water inlet condition) and the pore
distance between two pores. Seven pore shapes and five distances between droplets were
considered. These parameters strongly affect the droplet cycle, flow regime, and pressure
drop, and should be considered in numerical simulations. The main findings from this
work are as follows:

The pore shape showed a significant impact on the critical droplet volume and the
growth period of the droplet. It was found that the larger the windward side slope and
side length was, the larger the critical volume and the longer the growth cycle. It should be
noted that the critical droplet volume would be reduced if the windward side of a pore is
too long. The results showed that under the same pore area, the pentagon and the hexagon
pore structure is more conducive to the discharge of liquid water in the channel and can
improve the performance of the cell.

Under the range of conditions investigated in this work, the pore distance influences
the air flow pattern, whether droplets coalesce, and the resulting flow regimes. In these
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conditions, a distance of 0.6 mm between droplets seemed to be the critical distance, beyond
which droplet coalescence did not occur. When the micropore distance was smaller than
this value, droplets coalesced when the droplets grew. In addition, the large pore distance
caused the formation of slug flow in the downstream of the channel, leading to the increase
of the overall pressure drop.

Author Contributions: Conceptualization by W.D., L.Z., M.F., F.D. and T.W.; methodology, software,
validation, and investigation—M.F., F.D., T.W., M.K., L.Z. and W.D.; data curation—M.K., B.Z., J.X.,
R.A., W.D. and L.Z.; writing—original draft preparation, M.F., F.D. and T.W.; writing—review and
editing, L.Z., R.A., W.D., T.W. and M.F.; visualization—F.D., T.W., B.Z. and W.D.; supervision—R.A.,
L.Z. and W.D.; project administration—J.X., L.Z. and W.D.; funding acquisition, L.Z., and W.D.
All authors have read and agreed to the published version of the manuscript.

Funding: The authors thank the National Natural Science Foundation of China under Grant
No.21878327 for supporting this project. LFZ acknowledges the financial support provided by the Uni-
versity of Saskatchewan and Natural Sciences and Engineering Research Council of Canada (NSERC).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

A The pore area, mm2

E Energy, J
keff Effective thermal conductivity
n The surface normal
L The pore distance, mm
LW The windward side length of micropores, mm
n̂wn̂w The unit vectors normal to the wall
P The pore circumference, mm
p1,p2 The pressures in the two fluids on either side of the interface, Pa
R Radii in the orthogonal direction, m
Ra The upstream pore, mm
Rb The downstream pore, mm
S Roundness of the pore
T Time, s
t̂w The unit vectors tangential to the wall
UG Gas velocity, m/s
UL Liquid velocity, m/s
v Velocity, m/s
VL-inlet Liquid velocity at the inlet, m/s
Greek Letters
α Volume fraction
θw The contact angle at the wall
κ Surface curvature
µ The viscosity Pa·s,
ρ Density, kg/m3

σ Surface tension
Subscripts
a Symbol of upstream pore
b Symbol of downstream pore
G Gas
L Liquid
w Wall
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